首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major depressive disorder (MDD) is a leading contributor to the global burden of disease. However, the causal relationship of risk factors, such as genetic predisposition or experience of augmented stress, remain unknown. Numerous studies in humans and rodents have implicated brain‐derived neurotrophic factor (BDNF) in MDD pathology, as a genetic risk factor and a factor regulated by stress. Until now, the majority of preclinical studies have employed genetically modified mice as their model of choice. However, mice display a limited behavioural repertoire and lack expression of circulating BDNF, which is present in rats and humans. Therefore, heterozygous BDNF (BDNF+/?) rats were tested for affective behaviours and accompanying expression of key genes associated with affective disorders in the brain. We found that BDNF+/? rats, which have reduced BDNF levels in brain and plasma, displayed symptoms of anhedonia, a core symptom of MDD, and anxiety‐like behaviour, but no behavioural despair or cognitive impairments. This was accompanied by changes in the expression of genes that are implicated in modulation of the stress response and affective disorders. Hence, glucocorticoid receptor, neuregulin 1 and disrupted‐in‐schizophrenia 1 gene expression were upregulated in the prefrontal cortex of BDFN+/? rats, whereas FK506 binding protein 5 levels were decreased in the hippocampus. We conclude that a reduction in BDNF levels alters expression of genes associated with affective disorders, which may contribute to the development of depressive‐like symptoms.  相似文献   

2.
3.
BDNF regulates eating behavior and locomotor activity in mice   总被引:22,自引:0,他引:22       下载免费PDF全文
Brain-derived neurotrophic factor (BDNF) was studied initially for its role in sensory neuron development. Ablation of this gene in mice leads to death shortly after birth, and abnormalities have been found in both the peripheral and central nervous systems. BDNF and its tyrosine kinase receptor, TrkB, are expressed in hypothalamic nuclei associated with satiety and locomotor activity. In heterozygous mice, BDNF gene expression is reduced and we find that all heterozygous mice exhibit abnormalities in eating behavior or locomotor activity. We also observe this phenotype in independently derived inbred and hybrid BDNF mutant strains. Infusion with BDNF or NT4/5 can transiently reverse the eating behavior and obesity. Thus, we identify a novel non-neurotrophic function for neurotrophins and indicate a role in behavior that is remarkably sensitive to alterations in BDNF activity.  相似文献   

4.
Substantial evidence indicates that predisposition to diseases can be acquired during early stages of development and interactions between environmental and genetic factors may be implicated in the onset of many pathological conditions. Data collected over several decades have shown that chemicals are among the relevant factors that can endanger CNS. We previously showed that perinatal exposure to methylmercury (MeHg) causes persistent changes in learning and motivational behavior in mice. In this study, we report that the depression-like behavior in MeHg-exposed male mice is reversed by chronic treatment with the antidepressant fluoxetine. Behavioral alterations are associated with a decrease in brain-derived neurotrophic factor (BDNF) mRNA in the hippocampal dentate gyrus and fluoxetine treatment restores BDNF mRNA expression. We also show that MeHg-exposure induces long-lasting repressive state of the chromatin structure at the BDNF promoter region, in particular DNA hypermethylation, an increase in histone H3-K27 tri-methylation and a decrease in H3 acetylation at the promoter IV. While fluoxetine treatment does not alter hypermethylation of H3-K27, it significantly up-regulates H3 acetylation at the BDNF promoter IV in MeHg-exposed mice. Our study shows that developmental exposure to low levels of MeHg predisposes mice to depression and induces epigenetic suppression of BDNF gene expression in the hippocampus.  相似文献   

5.
During development of the nervous system, molecular signals mediating cell–cell interactions play critical roles in the guidance of axonal growth and establishment of synaptic functions. The Eph family of tyrosine kinase receptors and their ephrin ligands has been shown to mediate neuronal interactions in the development of topographic axon projection maps in several brain regions, and the loss of Eph activities result in defects in select axonal pathways. However, effects of deficiencies of the Eph signals on animal behavior have not been well documented. In this study, we showed that inactivation of a ligand of the Eph receptors, ephrin‐A5, resulted in defects in maternal behavior and alterations in anxiety. Female ephrin‐A5 ?/? mice show significant defects in nest building and pup retrieval. In addition, lower levels of anxiety were observed in both male and female null mice. These changes were not due to deficiencies in estradiol, progesterone or corticosterone levels. Our observations suggest that ephrin‐A5 plays a key role in the development and/or function of neural pathways mediating mouse maternal care and anxiety.  相似文献   

6.
Studies over the past half-century have made it clear that environmental influences in development, particularly stress and traumatic experiences, can remain pervasive across the lifespan. Though it has been hypothesized for some time that the long-term consequences of early-life adversity represent epigenetic influences, it has not been until recently that studies have begun to provide empirical support of experience-driven epigenetic modifications to the genome. Here we focus on this theme, and review current knowledge pertaining to the epigenetics of behavioral development. At the center of our discussion is the brain-derived neurotrophic factor (BDNF) gene, as abnormal BDNF gene activity is a leading etiological hypothesis by which early-life adverse experiences persistently modify brain and behavioral plasticity.  相似文献   

7.
Anxiety disorders are a major public health concern worldwide. Studies indicate that repeated exposure to adverse experiences early in life can lead to anxiety disorders in adulthood. Current treatments for anxiety disorders are characterized by a low success rate and are associated with a wide variety of side effects. The aim of the present study was to evaluate the anxiolytic effects of a novel herbal treatment, in comparison to treatment with the selective serotonin reuptake inhibitor escitalopram. We recently demonstrated the anxiolytic effects of these treatments in BALB mice previously exposed to one week of stress. In the present study, ICR mice were exposed to post natal maternal separation and to 4 weeks of unpredictable chronic mild stress in adolescence, and treated during or following exposure to stress with the novel herbal treatment or with escitalopram. Anxiety-like behavior was evaluated in the elevated plus maze. Blood corticosterone levels were evaluated using radioimmunoassay. Brain derived neurotrophic factor levels in the hippocampus were evaluated using enzyme-linked immunosorbent assay. We found that (1) exposure to stress in childhood and adolescence increased anxiety-like behavior in adulthood; (2) the herbal treatment reduced anxiety-like behavior, both when treated during or following exposure to stress; (3) blood corticosterone levels were reduced following treatment with the herbal treatment or escitalopram, when treated during or following exposure to stress; (4) brain derived neurotrophic factor levels in the hippocampus of mice treated with the herbal treatment or escitalopram were increased, when treated either during or following exposure to stress. This study expands our previous findings and further points to the proposed herbal compound''s potential to be highly efficacious in treating anxiety disorders in humans.  相似文献   

8.
Serotonin1A receptor (5‐HT1AR) deficiency has been associated with anxiety and depression and mice with genetic receptor inactivation exhibit heightened anxiety. We have reported that 5‐HT1AR is not only a genetic but also a maternal ‘environmental’ factor in the development of anxiety in Swiss‐Webster mice. Here, we tested whether the emergence of maternal genotype‐dependent adult anxiety is preceded by early behavioral abnormalities or whether it is manifested following a normal emotional development. Pups born to null or heterozygote mothers had significantly reduced ultrasonic vocalization (USV) between postnatal day (P) 4 and 12, indicating an influence of the maternal genotype. The offspring's own genotype had an effect limited to P4. Furthermore, we observed reduced weight gain in the null offspring of null but not heterozygote mothers, indicating that a complete maternal receptor deficiency compromises physical development of the offspring. Except a short perinatal deficit during the dark period, heterozygote females displayed normal maternal behavior, which, with the early appearance of USV deficit, suggests a role for 5‐HT1AR during pre‐/perinatal development. Consistent with this notion, adult anxiety in the offspring is determined during the pre‐/perinatal period. In contrast to heterozygote females, null mothers exhibited impaired pup retrieval and nest building that may explain the reduced weight gain of their offspring. Taken together, our data indicate an important role for the maternal 5‐HT1AR in regulating emotional and physical development of their offspring. Because reduced receptor binding has been reported in depression, including postpartum depression, reduced 5‐HT1AR function in mothers may influence the emotional development of their offspring.  相似文献   

9.
1. Brain-derived neurotrophic factor (BDNF) supports serotonergic neuronal development and our recent study found that heterozygous mice lacking one BDNF gene allele interbred with male serotonin transporter (SERT) knockout mice had greater reductions in brain tissue serotonin concentrations, greater increases in anxiety-like behaviors and greater ACTH responses to stress than found in the SERT knockout mice alone.2. We investigated here whether there might be gender differences in these consequences of combined SERT and BDNF deficiencies by extending the original studies to female mice, and also to an examination of the effects of ovariectomy and tamoxifen in these female mice, and of 21-day 17-β estradiol implantation to male mice.3. We found that unlike the male SERT×BDNF-deficient mice, female SERT×BDNF mice appeared protected by their gender in having significantly lesser reductions in serotonin concentrations in hypothalamus and other brain regions than males, relative to controls. Likewise, in the elevated plus maze, female SERT×BDNF-deficient mice demonstrated no increases in the anxiety-like behaviors previously found in males.4. Furthermore, female SERT×BDNF mice did not manifest the ∼40% reduction in the expression of TrkB receptors or the ∼30% reductions in dopamine and its metabolites that male SERT×BDNF did. After estradiol implantation in male SERT×BDNF mice, hypothalamic serotonin was significantly increased compared to vehicle-implanted mice. These findings support the hypothesis that estrogen may enhance BDNF function via its TrkB receptor, leading to alterations in the serotonin circuits, which modulate anxiety-like behaviors.5. This double-mutant mouse model contributes to the knowledge base that will help in understanding gene×gene×gender interactions in studies of SERT and BDNF gene polymorphisms in human genetic diseases such as anxiety disorders and depression.  相似文献   

10.
The maternal care that offspring receive from their mothers early in life influences the offspring’s development of emotional behavior in adulthood. Here we found that offspring reared by circadian clock-impaired mice show elevated anxiety-related behavior. Clock mutant mice harboring a mutation in Clock, a key component of the molecular circadian clock, display altered daily patterns of nursing behavior that is fragmented during the light period, instead of long bouts of nursing behavior in wild-type mice. Adult wild-type offspring fostered by Clock mutant mice exhibit increased anxiety-related behavior. This is coupled with reduced levels of brain serotonin at postnatal day 14, whose homeostasis during the early postnatal period is critical for normal emotional behavior in adulthood. Together, disruption of the circadian clock in mothers has an adverse impact on establishing normal anxiety levels in offspring, which may increase their risk of developing anxiety disorders.  相似文献   

11.
吕慎金  杨燕  魏万红 《生态学报》2011,31(17):4881-4888
采用目标动物取样法(Focal Animal Sampling)和全事件记录方法(All-occurrence Recording),观察统计了江苏省扬州市平山堂养殖场及扬州市动物园共48只梅花鹿昼间日常行为节律。以脑源性神经生长因子(Brain-derived Neurotrophic Factor, BDNF)为目的基因,采用PCR-SSCP方法,研究梅花鹿行为性状与基因多态性之间的关联。结果表明,在P-4引物,AA与BB基因型在卧息行为上存在显著差异(P<0.05),在运动行为上存在极显著差异(P=0.001)。在P-5引物,CC/DD/CD基因型在观望行为上两两差异显著,并且CC和DD基因型在卧息与修饰行为均存在显著差异(P<0.05)。研究表明,BDNF基因多态性和动物日常行为性状存在一定相关。  相似文献   

12.
13.
A major question in the biology of stress and environmental adaptation concerns the neurobiological basis of how neuroendocrine systems governing physiological regulatory mechanisms essential for life (metabolism, immune response, organ function) become harmful. The current view is that a switch from protection to damage occurs when vulnerable phenotypes are exposed to adverse environmental conditions. In accordance with this theory, sequelae of early life social and environmental stressors, such as childhood abuse, neglect, poverty, and poor nutrition, have been associated with the emergence of mental and physical illness (i.e., anxiety, mood disorders, poor impulse control, psychosis, and drug abuse) and an increased risk of common metabolic and cardiovascular diseases later in life. Evidence from animal and human studies investigating the associations between early life experiences (including parent‐infant bonding), hypothalamus‐pituitary‐adrenal axis activity, brain development, and health outcome provide important clues into the neurobiological mechanisms that mediate the contribution of stressful experiences to personality development and the manifestation of illness. This review summarizes our current molecular understanding of how early environment influences brain development in a manner that persists through life and highlights recent evidence from rodent studies suggesting that maternal care in the first week of postnatal life establishes diverse and stable phenotypes in the offspring through epigenetic modification of genes expressed in the brain that shape neuroendocrine and behavioral stress responsivity throughout life. Birth Defects Research (Part C) 87:314–326, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Jiang  Hua  Yin  Hong  Wang  Lin  Feng  Chunzhen  Bai  Yang  Huang  Dongzong  Zhang  Qiao  Liu  Hongchen  Hu  Yuan 《Molecular and cellular biochemistry》2021,476(1):303-310

Although tooth loss is a known risk factor of cognitive function, whether and how the chewing-side preference (CSP) affects memory impairment still remains unclear. This study evaluates the behavior changes in mice after the loss of teeth on one side and explores the role of serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) signal pathway within these changes. To this end, CSP mouse models with either the removal of left unilateral molars (CSP-L) or right unilateral molars (CSP-R) were established. Morris water maze test and passive avoidance test were performed to evaluate the mice’s learning and memory capacity in the 4th and 8th weeks. The correlation between CSP and brain function changes was validated with changes in 5-HT and BDNF levels. CSP mice’s cognitive function was found to be decreased, along with a significant decline in 5-HT1A level, especially in CSP-R mice. BDNF and TrkB levels in CSP-R mice were also significantly lowered. These findings suggest that CSP results in memory impairment, which is associated with the 5-HT-BDNF signaling pathway.

  相似文献   

15.
Prenatal exposure to alcohol causes a wide range of deficits known as fetal alcohol spectrum disorders (FASDs). Many factors determine vulnerability to developmental alcohol exposure including timing and pattern of exposure, nutrition and genetics. Here, we characterized how a prevalent single nucleotide polymorphism in the human brain‐derived neurotrophic factor (BDNF) gene (val66met) modulates FASDs severity. This polymorphism disrupts BDNF's intracellular trafficking and activity‐dependent secretion, and has been linked to increased incidence of neuropsychiatric disorders such as depression and anxiety. We hypothesized that developmental ethanol (EtOH) exposure more severely affects mice carrying this polymorphism. We used transgenic mice homozygous for either valine (BDNFval/val) or methionine (BDNFmet/met) in residue 68, equivalent to residue 66 in humans. To model EtOH exposure during the second and third trimesters of human pregnancy, we exposed mice to EtOH in vapor chambers during gestational days 12 to 19 and postnatal days 2 to 9. We found that EtOH exposure reduces cell layer volume in the dentate gyrus and the CA1 hippocampal regions of BDNFmet/met but not BDNFval/val mice during the juvenile period (postnatal day 15). During adulthood, EtOH exposure reduced anxiety‐like behavior and disrupted trace fear conditioning in BDNFmet/met mice, with most effects observed in males. EtOH exposure reduced adult neurogenesis only in the ventral hippocampus of BDNFval/val male mice. These studies show that the BDNF val66met polymorphism modulates, in a complex manner, the effects of developmental EtOH exposure, and identify a novel genetic risk factor that may regulate FASDs severity in humans.  相似文献   

16.
17.
Ceruloplasmin (Cp) is a ferroxidase involved in iron metabolism by converting Fe(2+) to Fe(3+), and by regulating cellular iron efflux. In the ceruloplasmin knockout (CpKO) mouse, the deregulation of iron metabolism results in moderate liver and spleen hemosiderosis, but the impact of Cp deficiency on brain neurochemistry and behavior in this animal model is unknown. We found that in contrast to peripheral tissues, iron levels in the hippocampus are significantly reduced in CpKO mice. Although it does not cause any discernable deficits in motor function or learning and memory, Cp deficiency results in heightened anxiety-like behavior in the open field and elevated plus maze tests. This anxiety phenotype is associated with elevated levels of plasma corticosterone. Previous studies provided evidence that anxiety disorders and long-standing stress are associated with reductions in levels of serotonin (5HT) and brain-derived neurotrophic factor (BDNF) in the hippocampus. We found that levels of 5HT and norepinephrine (NE), and the expression of BDNF and its receptor trkB, are significantly reduced in the hippocampus of CpKO mice. Thus, Cp deficiency causes an anxiety phenotype by a mechanism that involves decreased levels of iron, 5HT, NE, and BDNF in the hippocampus.  相似文献   

18.
There is a growing body of data suggesting that gene-environment interaction is critical in the characterization of personality traits; however, previous studies have not taken into consideration variability in parental rearing as an environmental factor. In this study, we examined the effects of the interaction between the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and parental rearing on personality traits in 710 healthy Japanese subjects. Perceived parental rearing was assessed by the Parental Bonding Instrument (PBI), which consists of the care and protection factors. Assessment of personality traits was performed by the temperament and character inventory (TCI), which has seven dimensions, i.e. novelty seeking, harm avoidance, reward dependence, persistence, self-directedness, cooperativeness and self-transcendence. Parental rearing has significant main effects on some TCI dimensions, but no significant main effects of the BDNF genotype on the TCI scores were found. The interaction between the BDNF genotype and maternal care of the PBI had significant effects on harm avoidance and self-directedness of the TCI. Post hoc analyses showed that decreased maternal care was correlated with increased harm avoidance and decreased self-directedness, and for both personality traits the partial correlation coefficient was highest in the Met/Met genotype group and lowest in the Val/Val genotype group and the value of the Val/Met genotype group was in the middle. Data from this study suggest that the BDNF Val66Met polymorphism modulates the effects of parental rearing, especially maternal care, on harm avoidance and self-directedness in healthy subjects.  相似文献   

19.
The aging process and age‐related diseases all involve perturbed energy adaption and impaired ability to cope with adversity. Brain‐derived neurotrophic factor (BDNF) in the hypothalamus plays important role in regulation of energy balance. Our previous studies show that recombinant adeno‐associated virus (AAV)‐mediated hypothalamic BDNF gene transfer alleviates obesity, diabetes, and metabolic syndromes in both diet‐induced and genetic models. Here we examined the efficacy and safety of a built‐in autoregulatory system to control transgene BDNF expression mimicking the body's natural feedback systems in middle‐aged mice. Twelve‐month‐old mice were treated with either autoregulatory BDNF vector or yellow fluorescence protein (YFP) control, maintained on normal diet, and monitored for 28 weeks. BDNF gene transfer prevented the development of aging‐associated metabolic declines characterized by: preventing aging‐associated weight gain, reducing adiposity, reversing the decline of brown fat activity, increasing adiponectin while reducing leptin and insulin in circulation, improving glucose tolerance, increasing energy expenditure, alleviating hepatic steatosis, and suppressing inflammatory genes in the hypothalamus and adipose tissues. Moreover, BDNF treatment reduced anxiety‐like and depression‐like behaviors. These safety and efficacy data provide evidence that hypothalamic BDNF is a target for promoting healthy aging.  相似文献   

20.
Retinal ganglion cells (RGCs) become increasingly vulnerable to injury with advancing age. We recently showed that this vulnerability can be strongly modified in mice by exercise. However, the characteristics and underlying mechanisms of retinal protection with exercise remain unknown. Hence, the aim of this study was to investigate cellular changes associated with exercise‐induced protection of aging retinal cells and the role of local and peripheral trophic signalling in mediating these effects. We focussed on two molecules that are thought to play key roles in mediating beneficial effects of exercise: brain‐derived neurotrophic factor (BDNF) and AMP‐activated protein kinase (AMPK). In middle‐aged (12 months old) C57BL/6J mice, we found that exercise protected RGCs against dysfunction and cell loss after an acute injury induced by elevation of intra‐ocular pressure. This was associated with preservation of inner retinal synapses and reduced synaptic complement deposition. Retinal expression of BDNF was not upregulated in response to exercise alone. Rather, exercise maintained BDNF levels in the retina, which were decreased postinjury in nonexercised animals. Confirming a critical role for BDNF, we found that blocking BDNF signalling during exercise by pharmacological means or genetic knock‐down suppressed the functional protection of RGCs afforded by exercise. Protection of RGCs with exercise was independent of activation of AMPK in either retina or skeletal muscle. Our data support a previously unidentified mechanism in which exercise prevents loss of BDNF in the retina after injury and preserves neuronal function and survival by preventing complement‐mediated elimination of synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号