首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations of net ecosystem exchange (NEE) of carbon and its biophysical drivers have been collected at the AmeriFlux site in the Morgan‐Monroe State Forest (MMSF) in Indiana, USA since 1998. Thus, this is one of the few deciduous forest sites in the world, where a decadal analysis on net ecosystem productivity (NEP) trends is possible. Despite the large interannual variability in NEP, the observations show a significant increase in forest productivity over the past 10 years (by an annual increment of about 10 g C m?2 yr?1). There is evidence that this trend can be explained by longer vegetative seasons, caused by extension of the vegetative activity in the fall. Both phenological and flux observations indicate that the vegetative season extended later in the fall with an increase in length of about 3 days yr?1 for the past 10 years. However, these changes are responsible for only 50% of the total annual gain in forest productivity in the past decade. A negative trend in air and soil temperature during the winter months may explain an equivalent increase in NEP through a decrease in ecosystem respiration.  相似文献   

2.
In order to quantify and characterize the variance in desert riparian forest tree sap flow, we measured the sap flow from Populus euphratica and compared the daytime and nighttime patterns and responses to environmental variables. Results showed that daytime sap flow velocity was significantly higher (P?<?0.05). Daytime and nighttime mean sap flow velocities were 7.65 and 4.01 cm h?1 in spring, 21.38 and 9.60 cm h?1 in summer, and 11.04 and 5.21 cm h?1 in autumn, respectively. Moreover, results indicated that the stoma remained partially open (15% minimum) throughout the night, providing sufficient evidence for the existance of nighttime transpiration. The vapor pressure deficit (VPD), stomatal conductance (Cs), photosynthetically active radiation (PAR), air temperature (Ta), wind speed (WS), and soil moisture (θ) all had significant positive effects on P. euphratica sap flow velocity (P?<?0.05). Furthermore, the relationship between daytime sap flow velocity and VPD showed clockwise hysteresis, while the relationship between nighttime sap flow velocity and VPD showed counter-clockwise hysteresis. It was evident that PAR and VPD were the key factors impacting daytime sap flow velocity, while Cs and θ were the key factors impacting nighttime sap flow velocity. Furthermore, linear regression results showed that daytime sap flow had a significant positive effect on nighttime sap flow throughout the growing season (P?<?0.05).  相似文献   

3.
Small, shallow lakes with dense growth of submerged macrophytes are extremely abundant worldwide, but have remained grossly understudied although open water oxygen measurements should be suitable to determine diel fluctuations and test drivers of ecosystem metabolism during the day. We measured the temporal and spatial variability of environmental conditions as well as net ecosystem production (NEP) and respiration (R) in a small, shallow Swedish lake with dense charophyte stands by collecting data from oxygen-, pH-, temperature- and light-sensors across horizontal and vertical gradients during different periods between April and June in 3 years. We found reproducible diel oxygen patterns and daily metabolic rates. The charophyte canopy accounted for almost all primary production and respiration of the ecosystem. Two novel discoveries—profound afternoon depression of production and nighttime decline of respiration—occurred on virtually every day. Extensive increase of oxygen-, temperature- and pH-levels and depletion of dissolved inorganic carbon (DIC) and CO2 concentrations could account for maximum NEP-rates before noon and afternoon depression with low NEP-rates. Ecosystem respiration declined during the night to 24–70% of rates at sunset, probably because of depletion of respiratory substrates. Afternoon depression of photosynthesis should be widespread in numerous habitats with dense growth of macrophytes, periphyton, or phytoplankton implying that daily photosynthesis and growth are restricted and species with efficient DIC use may have an advantage.  相似文献   

4.
Net ecosystem productivity (NEP) was continuously measured using the eddy covariance (EC) technique from 2003 to 2005 at three forest sites of ChinaFLUX. The forests include Changbaishan temperate mixed forest (CBS), Qianyanzhou subtropical coniferous plantation (QYZ), and Dinghushan subtropical evergreen broad‐leaved forest (DHS). They span wide ranges of temperature and precipitation and are influenced by the eastern Asian monsoon climate to varying extent. In this study, we estimated ecosystem respiration (RE) and gross ecosystem productivity (GEP). Comparison of ecosystem carbon exchange among the three forests shows that RE was mainly determined by temperature, with the forest at CBS exhibiting the highest temperature sensitivity among the three ecosystems. The RE was highly dependent on GEP across the three forests, and the ratio of RE to GEP decreased along the North–South Transect of Eastern China (NSTEC) (i.e. from the CBS to the DHS), with an average of 0.77 ± 0.06. Daily GEP was mainly influenced by temperature at CBS, whereas photosynthetic photon flux density was the dominant factor affecting the daily GEP at both QYZ and DHS. Temperature mainly determined the pattern of the interannual variations of ecosystem carbon exchange at CBS. However, water availability primarily controlled the interannual variations of ecosystem carbon exchange at QYZ. At DHS, NEP attained the highest values at the beginning of the dry seasons (autumn) rather than the rainy seasons (summer), probably because insufficient radiation and frequent fog during the rainy seasons hindered canopy photosynthesis. All the three forest ecosystems acted as a carbon sink from 2003 to 2005. The annual average values of NEP at CBS, QYZ, and DHS were 259 ± 19, 354 ± 34, and 434 ± 66 g C m−2 yr−1, respectively. The slope of NEP that decreased with increasing latitude along the NSTEC was markedly different from that observed on the forest transect in the European continent. Long‐term flux measurements over more forest ecosystems along the NSTEC will further help verify such a difference between the European forest transect and the NSTEC and provide insights into the responses of ecosystem carbon exchange to climate change in China.  相似文献   

5.
The aim of this study was to evaluate daytime and nighttime sleep, as well as daytime and nighttime sleepiness of professional shift-working bus drivers. Thirty-two licensed bus drivers were assessed by nocturnal and diurnal polysomnography (PSG) recording and multiple sleep latency testing (MSLT) sessions. Sleep length was shorter and sleep efficiency reduced during daytime sleep compared with nighttime sleep. Thirty-eight percent of the drivers had indices of obstructive apnea and hypopnea syndrome (>5/h sleep) during nighttime and daytime sleep; more drivers snored during daytime than nighttime sleep (50% vs. 35%, p < 0.05), and 38% of the drivers evidenced periodic leg movements. The MSLT revealed that 42 and 38% of the bus drivers met the criteria for sleepiness when the test was conducted during the day and night, respectively. The daytime as compared to nighttime sleep of shift-working bus drivers was shorter and more fragmented and was associated in many with evidence of excessive sleepiness. Respiratory disorder was a common finding among the professional shift-working bus drivers. All these sleep deficiencies may adversely affect on the job driving performance.  相似文献   

6.
Nighttime transpiration is a substantial portion of ecosystem water budgets, but few studies compare water use of closely related co‐occurring species in a phylogenetic context. Nighttime transpiration can range up to 69% of daytime rates and vary between species, ecosystem, and functional type. We examined leaf‐level daytime and nighttime gas exchange of five species of the genus Rubus co‐occurring in the Pacific Northwest of western North America in a greenhouse common garden. Contrary to expectations, nighttime transpiration was not correlated to daytime water use. Nighttime transpiration showed pronounced phylogenetic signals, but the proportion of variation explained by different phylogenetic groupings varied across datasets. Leaf osmotic water potential, water potential at turgor loss point, stomatal size, and specific leaf area were correlated with phylogeny but did not readily explain variation in nighttime transpiration. Patterns in interspecific variation as well as a disconnect between rates of daytime and nighttime transpiration suggest that variation in nighttime water use may be at least partly driven by genetic factors independent of those that control daytime water use. Future work with co‐occurring congeneric systems is needed to establish the generality of these results and may help determine the mechanism driving interspecific variation in nighttime water use.  相似文献   

7.
The aim of this study was to evaluate daytime and nighttime sleep, as well as daytime and nighttime sleepiness of professional shift-working bus drivers. Thirty-two licensed bus drivers were assessed by nocturnal and diurnal polysomnography (PSG) recording and multiple sleep latency testing (MSLT) sessions. Sleep length was shorter and sleep efficiency reduced during daytime sleep compared with nighttime sleep. Thirty-eight percent of the drivers had indices of obstructive apnea and hypopnea syndrome (>5/h sleep) during nighttime and daytime sleep; more drivers snored during daytime than nighttime sleep (50% vs. 35%, p < 0.05), and 38% of the drivers evidenced periodic leg movements. The MSLT revealed that 42 and 38% of the bus drivers met the criteria for sleepiness when the test was conducted during the day and night, respectively. The daytime as compared to nighttime sleep of shift-working bus drivers was shorter and more fragmented and was associated in many with evidence of excessive sleepiness. Respiratory disorder was a common finding among the professional shift-working bus drivers. All these sleep deficiencies may adversely affect on the job driving performance.  相似文献   

8.
Temperature increasing and precipitation alteration are predicted to occur in arid and semiarid lands; however, the response mechanism of carbon and water exchange at community level is still unclear in semiarid sandy land. We investigated the responses of carbon and water exchanges to warming and precipitation enhancement along a sand dune restoration gradient: mobile sand dunes (MD), semifixed sand dunes (SFD), and fixed sand dunes (FD). The average net ecosystem productivity (NEP) and evapotranspiration (ET) between May and August increased by 98% and 59%, respectively, from MD to SFD, while they had no significant differences between FD and the other two habitats. Warming inhibited ecosystem NEP, ET, and water use efficiency (WUE) by 69%, 49% (p < .001), and 80%, respectively, in SFD, while it nearly had no significant effects in MD and FD. However, precipitation addition by 30% nearly had no significant effects on community NEP, ET, and WUE, except for warming treatment in FD. In general, precipitation addition of 30% may still not be enough to prevent drought stress for growth of plants, due to with low water holding capacity and high evaporation rates in sandy land. Temperature increase magnified drought stress as it increased evapotranspiration rates especially in summer. In addition, community NEP, ET, and WUE were usually influenced by interactions between habitats and temperature, as well as the interactions among habitats, temperature, and precipitation. Species differences in each habitat along the restoration gradient may alter climate sensitivity of sandy land. These results will support in understanding and the prediction of the impacts of warming and precipitation change in semiarid sandy grassland.  相似文献   

9.
Ecosystem metabolism is an important determinant of trophic structure, nutrient cycling, and other critical ecosystem processes in streams. Whereas watershed- and local-scale controls on stream metabolism have been independently investigated, little is known about how controls exerted at different scales interact to determine stream metabolic rates, particularly in urban streams and across seasons. To address this knowledge gap, we measured ecosystem metabolism in four urban and four reference streams in northern Kentucky, USA, with paired closed and open riparian canopies, during each of the four seasons. Gross primary production (GPP), ecosystem respiration, and net ecosystem production (NEP) were all best predicted by models with season as a main effect, but interactions between season, canopy, and watershed varied for each response. Urban streams exhibited higher GPP during most seasons, likely due to elevated nutrient loads. Open canopy reaches in both urban and forested streams, supported higher rates of GPP than the closed canopy which reaches during the summer and fall, when the overhead vegetation shaded the closed reaches. The effect of canopy cover on GPP was similar among urban and forested streams. The combination of watershed and local-scale controls resulted in urban streams that alternated between net heterotrophy (NEP <0) and net autotrophy (NEP >0) at the reach-scale during seasons with dense canopy cover. This finding has management relevance because net production can lead to accumulation of algal biomass and associated issues like nighttime hypoxia. Our study suggests that although watershed urbanization fundamentally alters ecosystem function, the preservation and restoration of canopied riparian zones can provide an important management tool at the local scale, with the strongest impacts on stream metabolism during summer.  相似文献   

10.
Although the literature on the diversity of airborne algal communities in various locations around the world is increasing, little is known about their temporal and spatial patterns. We compared airborne algal communities from Honolulu, Hawai‘i, USA, over three 24-h sampling periods to examine diurnal patterns in diversity and abundance. Using a culture-based approach, 192 algal colonies were characterized and identified as 31 operational taxonomic units. A combination of microscopy and Sanger sequencing (of the UPA marker) was used for characterizations. More airborne algal colonies were identified from nighttime collections (127 of 192 colonies) than daytime collections (65 of 192 colonies) (p?<?0.0001). Similarly, 95% of the daytime collections were Cyanobacteria, and 87% of the nighttime collections were Chlorophyta, and the trends of more Cyanobacteria being collected during the day and more Chlorophyta at night were significant (p?<?0.0001). Meteorological analyses for the sampling periods indicated that air masses sampled during the three trials consistently arrived in the Hawaiian Islands on a northeast trade wind pattern, but with different origins in the Pacific Ocean, and that low-to-trace levels of rain fell during the sampling periods. Land breeze and sea breeze effects, which are common temperature-driven phenomena on tropical islands, may have played a role in the diurnal pattern observed in the current study.  相似文献   

11.
Biochronologies provide important insights into the growth responses of fishes to past variability in physical and biological environments and, in so doing, allow modelling of likely responses to climate change in the future. We examined spatial variability in the key drivers of inter-annual growth patterns of a widespread, tropical snapper, Lutjanus bohar, at similar tropical latitudes on the north-western and north-eastern coasts of the continent of Australia. For this study, we developed biochronologies from otoliths that provided proxies of somatic growth and these were analysed using mixed-effects models to examine the historical drivers of growth. Our analyses demonstrated that growth patterns of fish were driven by different climatic and biological factors in each region, including Pacific Ocean climate indices, regional sea level and the size structure of the fish community. Our results showed that the local oceanographic and biological context of reef systems strongly influenced the growth of L. bohar and that a single age-related growth trend cannot be assumed for separate populations of this species that are likely to experience different environmental conditions. Generalised predictions about the growth response of fishes to climate change will thus require adequate characterisation of the spatial variability in growth determinants likely to be found throughout the range of species that have cosmopolitan distributions.  相似文献   

12.
The photosynthetic pathway composition (C3:C4 mixture) of an ecosystem is an important controller of carbon exchanges and surface energy flux partitioning, and therefore represents a fundamental ecophysiological distinction. To assess photosynthetic mixtures at a tallgrass prairie pasture in Oklahoma, we collected nighttime above-canopy air samples along concentration and isotopic gradients throughout the 1999 and 2000 growing seasons. We analyzed these samples for their CO2 concentration and carbon isotopic composition and calculated C3:C4 proportions with a two-source mixing model. In 1999, the C4 percentage increased from 38% in spring (late April) to 86% in early fall (mid-September). The C4 percentages inferred from ecosystem respiration measurements in 2000 indicate a smaller shift, from 67% in spring (early May) to 77% in mid-summer (late July). We also sampled daytime CO2 concentration and carbon isotope gradients above the canopy to determine ecosystem discrimination against 13CO2 during net uptake. These discrimination values were always lower than corresponding nighttime ecosystem respiration isotopic signatures would suggest. After accounting for the isotopic disequilibria between respiration and photosynthesis resulting from seasonal variations in the C3:C4 mixture, we estimated canopy photosynthetic discrimination. The C4 percentage calculated from this approach agrees with the percentage determined from nighttime respiration for sampling periods in both growing seasons. Isotopic imbalances between photosynthesis and respiration are likely to be common in mixed C3:C4 ecosystems and must be considered when using daytime isotopic measurements to constrain ecosystem physiology. Given the global extent of such ecosystems, isotopic imbalances likely contribute to global variations in the carbon isotopic composition of atmospheric CO2.  相似文献   

13.
Satellite‐based observations indicate that seasonal patterns in canopy greenness and productivity in the Amazon are negatively correlated with precipitation, with increased greenness occurring during the dry months. Flux tower measurements indicate that the canopy greening that occurs during the dry season is associated with increases in net ecosystem productivity (NEP) and evapotranspiration (ET). Land surface and terrestrial biosphere model simulations for the region have predicted the opposite of these observed patterns, with significant declines in greenness, NEP, and ET during the dry season. In this study, we address this issue mainly by developing an empirically constrained, light‐controlled phenology submodel within the Ecosystem Demography model version 2 (ED2). The constrained ED2 model with a suite of field observations shows markedly improved predictions of seasonal ecosystem dynamics, more accurately capturing the observed patterns of seasonality in water, carbon, and litter fluxes seen at the Tapajos National Forest, Brazil (2.86°S, 54.96°W). Long‐term simulations indicate that this light‐controlled phenology increases the resilience of Amazon forest NEP to interannual variability in climate forcing.  相似文献   

14.
High-frequency measurements are increasingly available and used to model ecosystem processes. This growing capability provides the opportunity to resolve key drivers of ecosystem processes at a variety of scales. We use a unique series of high-frequency measures of potential predictors to analyze daily variation in rates of gross primary production (GPP), respiration (R), and net ecosystem production (NEP = GPP − R) for two north temperate lakes. Wind speed, temperature, light, precipitation, mixed layer depth, water column stability, chlorophyll a, chromophoric dissolved organic matter (CDOM), and zooplankton biomass were measured at daily or higher-frequency intervals over two summer seasons. We hypothesized that light, chlorophyll a, and zooplankton biomass would be strongly related to variability in GPP. We also hypothesized that chlorophyll a, CDOM, and temperature would be most strongly related to variability in R, whereas NEP would be related to variation in chlorophyll a and CDOM. Consistent with our hypotheses, chlorophyll a was among the most important drivers of GPP, R, and NEP in these systems. However, multiple regression models did not necessarily include the other variables we hypothesized as most important. Despite the large number of potential predictor variables, substantial variance remained unexplained and models were inconsistent between years and between lakes. Drivers of GPP, R, and NEP were difficult to resolve at daily time scales where strong seasonal dynamics were absent. More complex models with greater integration of physical processes are needed to better identify the underlying drivers of short-term variability of ecosystem processes in lakes and other systems.  相似文献   

15.
The measured net ecosystem exchange (NEE) of CO2 between the ecosystem and the atmosphere reflects the balance between gross CO2 assimilation [gross primary production (GPP)] and ecosystem respiration (Reco). For understanding the mechanistic responses of ecosystem processes to environmental change it is important to separate these two flux components. Two approaches are conventionally used: (1) respiration measurements made at night are extrapolated to the daytime or (2) light–response curves are fit to daytime NEE measurements and respiration is estimated from the intercept of the ordinate, which avoids the use of potentially problematic nighttime data. We demonstrate that this approach is subject to biases if the effect of vapor pressure deficit (VPD) modifying the light response is not included. We introduce an algorithm for NEE partitioning that uses a hyperbolic light response curve fit to daytime NEE, modified to account for the temperature sensitivity of respiration and the VPD limitation of photosynthesis. Including the VPD dependency strongly improved the model's ability to reproduce the asymmetric diurnal cycle during periods with high VPD, and enhances the reliability of Reco estimates given that the reduction of GPP by VPD may be otherwise incorrectly attributed to higher Reco. Results from this improved algorithm are compared against estimates based on the conventional nighttime approach. The comparison demonstrates that the uncertainty arising from systematic errors dominates the overall uncertainty of annual sums (median absolute deviation of GPP: 47 g C m?2 yr?1), while errors arising from the random error (median absolute deviation: ~2 g C m?2 yr?1) are negligible. Despite site‐specific differences between the methods, overall patterns remain robust, adding confidence to statistical studies based on the FLUXNET database. In particular, we show that the strong correlation between GPP and Reco is not spurious but holds true when quasi‐independent, i.e. daytime and nighttime based estimates are compared.  相似文献   

16.
The combined effects of vegetation and climate change on biosphere–atmosphere water vapor (H2O) and carbon dioxide (CO2) exchanges are expected to vary depending, in part, on how biotic activity is controlled by and alters water availability. This is particularly important when a change in ecosystem composition alters the fractional covers of bare soil, grass, and woody plants so as to influence the accessibility of shallower vs. deeper soil water pools. To study this, we compared 5 years of eddy covariance measurements of H2O and CO2 fluxes over a riparian grassland, shrubland, and woodland. In comparison with the surrounding upland region, groundwater access at the riparian sites increased net carbon uptake (NEP) and evapotranspiration (ET), which were sustained over more of the year. Among the sites, the grassland used less of the stable groundwater resource, and increasing woody plant density decoupled NEP and ET from incident precipitation (P), resulting in greater exchange rates that were less variable year to year. Despite similar gross patterns, how groundwater accessibility affected NEP was more complex than ET. The grassland had higher respiration (Reco) costs. Thus, while it had similar ET and gross carbon uptake (GEP) to the shrubland, grassland NEP was substantially less. Also, grassland carbon fluxes were more variable due to occasional flooding at the site, which both stimulated and inhibited NEP depending upon phenology. Woodland NEP was large, but surprisingly similar to the less mature, sparse shrubland, even while having much greater GEP. Woodland Reco was greater than the shrubland and responded strongly and positively to P, which resulted in a surprising negative NEP response to P. This is likely due to the large accumulation of carbon aboveground and in the surface soil. These long‐term observations support the strong role that water accessibility can play when determining the consequences of ecosystem vegetation change.  相似文献   

17.
Climate extremes such as heat waves and droughts are projected to occur more frequently with increasing temperature and an intensified hydrological cycle. It is important to understand and quantify how forest carbon fluxes respond to heat and drought stress. In this study, we developed a series of daily indices of sensitivity to heat and drought stress as indicated by air temperature (Ta) and evaporative fraction (EF). Using normalized daily carbon fluxes from the FLUXNET Network for 34 forest sites in North America, the seasonal pattern of sensitivities of net ecosystem productivity (NEP), gross ecosystem productivity (GEP) and ecosystem respiration (RE) in response to Ta and EF anomalies were compared for different forest types. The results showed that warm temperatures in spring had a positive effect on NEP in conifer forests but a negative impact in deciduous forests. GEP in conifer forests increased with higher temperature anomalies in spring but decreased in summer. The drought‐induced decrease in NEP, which mostly occurred in the deciduous forests, was mostly driven by the reduction in GEP. In conifer forests, drought had a similar dampening effect on both GEP and RE, therefore leading to a neutral NEP response. The NEP sensitivity to Ta anomalies increased with increasing mean annual temperature. Drier sites were less sensitive to drought stress in summer. Natural forests with older stand age tended to be more resilient to the climate stresses compared to managed younger forests. The results of the Classification and Regression Tree analysis showed that seasons and ecosystem productivity were the most powerful variables in explaining the variation of forest sensitivity to heat and drought stress. Our results implied that the magnitude and direction of carbon flux changes in response to climate extremes are highly dependent on the seasonal dynamics of forests and the timing of the climate extremes.  相似文献   

18.
Evapotranspiration (ET) is an important water loss flux in ecosystem water cycles, and quantifying the spatial and temporal variation of ET can improve ecohydrological models in arid ecosystems. Plant neighbor interactions may be a source of spatial and temporal variation in ET due to their effects on the above- and belowground microclimate and increased water demand for transpiration. Over longer timescales (annual to multiple years), adjustments in plant physiological traits may occur in response to neighbor environments, potentially affecting the transpiration (T) component of ET. We used a dynamic soil water model to assess the sensitivity of ET and T estimates to neighbor effects on soil moisture via competition for water, aboveground microclimate effects via canopy shading, and physiological adjustments (specifically, root distribution, stomatal behavior, and canopy leaf area). We focus on a common desert shrub (Larrea tridentata) under different inter-specific neighbor environments and precipitation regimes. Neighbors impacted T of Larrea by as much as 75% at the patch scale (plant and surrounding soil) and 30% at the stand scale. Annual T estimates were highly sensitive to changes in soil moisture associated with competition for water, and the inclusion of physiological adjustments to neighbor environments significantly impacted seasonal T. Plant neighbor interactions can significantly influence ET and soil moisture, and their inclusion in models can help explain spatial and temporal variation in water fluxes in arid ecosystems. Furthermore, physiological adjustments to neighbor environments may be an important source of variation to include in models that operate over seasonal timescales or in studies focused on plant responses to precipitation under climate change.  相似文献   

19.
The relationship between leaf photosynthetic rate (A) in a vegetation canopy and the net ecosystem CO2 exchange (NEE) over an entire ecosystem is not well understood. The aim of the present study is to assess the coordinated changes in NEE derived with eddy covariance, A measured in leaf cuvette, and their associations in a rainfed maize field. The light response-curves were estimated for the carbon assimilation rate at both the leaf and ecosystem scales. NEE and A synchronically changed throughout the day and were greater around noon and persisted longer during rapid growth periods. The leaf A had a similar pattern of daytime changes in the top, middle, and bottom leaves. Only severe leaf ageing led to a significant decline in the maximum efficiency of photosystem II (PSII) photochemistry. The greater maximum NEE was associated with a higher ecosystem quantum yield. NEE was positively and significantly correlated with the leaf A averaged based on the vertical distribution of leaf area. The finding highlights the feasibility of assessing NEE by leaf CO2 exchange because of most of experimental data obtained with leaf cuvette methods; and also implies that simultaneously enhancing leaf photosynthetic rate, electron transport rate, net carbon assimilation at whole ecosystem might play a critical role for the enhancement of crop productivity.  相似文献   

20.
Global warming is expected to cause significant changes in the distribution of species worldwide, altering ecosystem function and services. These impacts can be exacerbated by synergism with other global change drivers, such as biological invasions. Furcraea foetida (Asparagaceae) is a CAM species native to Central America and northern South America that is currently invading coastal ecosystems in the Atlantic Forest biome in Brazil. The species propagates clonally by bulbils, forming dense clusters that exclude native species. We addressed whether warming may favor or impair development of F. foetida bulbils based on functional traits and assessed whether plant cover of native species influenced F. foetida establishment in a rocky shore ecosystem. We used open-top chambers during summer and autumn, which increased air temperature during daylight hours by 0.4 °C relative to ambient conditions. This short-term warming effect increased the leaf length of bulbils but had no effect on number of leaves, dry mass, specific leaf area, leaf dry matter content (LDMC), or photosynthetic efficiency of photosystem II (Fv/Fm). However, an increase in vegetation cover decreased LDMC and helped maintain high Fv/Fm, having an indirect positive effect on F. foetida establishment that suggests a facilitation interaction in this extreme environment. Even though the manipulated temperature did not reach IPCC (Intergovernmental Panel on Climate Change) forecasts for 2100, our data show that even small, short-term changes in temperature affected plant performance. Thus, we suggest that F. foetida may be favored in a scenario of climate change, increasing its negative effects on biodiversity of coastal ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号