首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of the plant pathogen Phytophthora cinnamomi and the fungicide phosphite on species assemblages, richness, abundance and vegetation structure was quantified at three sites in Kwongkan communities in the Southwest Australian Floristic Region. Healthy and diseased vegetation treated with phosphite over 7–16 years was compared with non‐treated healthy and diseased vegetation. After site differences, disease had the greatest effect on species assemblages, species richness and richness within families. Disease significantly reduced cover in the upper and lower shrub layers and increased sedge and bare ground cover. Seventeen of 21 species assessed from the families Ericaceae, Fabaceae, Myrtaceae and Proteaceae were significantly less abundant in non‐treated diseased vegetation. In diseased habitats, phosphite treatment significantly reduced the loss of shrub cover and reduced bare ground and sedge cover. In multivariate analysis of species assemblages, phosphite‐treated diseased plots grouped more closely with healthy plots. Seven of 17 susceptible species were significantly more abundant in phosphite‐treated diseased plots compared with diseased non‐treated plots. The abundance of seven of 10 Phytophthora‐susceptible species was significantly higher along transects in phosphite‐treated vegetation. Comparison of the floristics of healthy non‐treated with healthy‐treated plots showed no significant differences in species assemblages. Of 21 species assessed, three increased in abundance and only one decreased significantly in phosphite‐treated healthy plots. In three Kwongkan communities of the SWAFR, P. cinnamomi had a profound impact on species assemblages, richness, abundance and vegetation structure. There was no evidence of adverse effects of phosphite treatment on phosphorus‐sensitive species, even after fire. Treatment with phosphite enhanced the survival of key susceptible species and mitigated disease‐mediated changes in vegetation structure. In the absence of alternative methods of control in native communities, phosphite will continue to play an important role in the protection of high priority species and communities at risk of extinction due to P. cinnamomi.  相似文献   

2.
3.
Kwongan is an important vegetation type in southwestern Australia. It occurs in small patches throughout Tutanning Nature Reserve. Eleven patches, totalling 64 ha, were found to contain 315 vascular plant species: over half the total species recorded for the whole reserve. The patches were floristically heterotoneous (cf. Westhoff & van der Maarel 1973) but could be grouped according to three major soil types. The richest kwongan was on pockets of shallow duplex soil occurring midway down the landscape profile. Species richness appears to decline only slightly with increasing time since fire. Presence of emergent Banksia attenuata at one site did not influence the overall speciesrichness of that area.  相似文献   

4.
Banksia attenuata plants were treated with soil drenches or foliar sprays of benzoic acid (BZA) to determine induced resistance to Phytophthora cinnamomi. Stems of B. attenuata were inoculated with the pathogen 1 week after treatment with BZA. Resistance was estimated by measuring P. cinnamomi lesions on stems. Treatment with 0.10 mM, 0.25 mM or 0.50 mM BZA caused a reduction in lesion size with 0.50 mM BZA applied as a soil drench being the most effective treatment at suppressing the development of lesions. This is the first report of BZA induced host resistance in any plant species to any pathogen.  相似文献   

5.
Question: What is the relative importance of environmental and spatial factors for species compositional and phylogenetic turnover? Location: High‐rainfall zone of the Southwest Australian Floristic Region (SWAFR). Methods: Correlates of species compositional turnover were assessed using quadrat‐based floristic data, and establishing relationships with environmental and spatial factors using canonical correspondence analyses and Mantel tests. Between‐quadrat phylogenetic distance measures were computed and examined for correlations with environmental and spatial attributes. Processes structuring pa2t2terns of beta diversity were also evaluated within four broad floristic assemblages defined a priori. Results: Floristic diversity was strongly related to environmental attributes. A low significance of spatial variables on assemblage patterns suggested no evident effect of dispersal limitations. Species compositional turnover was especially high within the swamp and outcrop assemblage. Phylogenetic turnover was closely coupled to species compositional turnover, implying the occurrence of many locally endemic and phylogenetically relict taxa. Beta diversity patterns within assemblages were also significantly correlated with the local environment, and relevant correlates differed between floristic assemblage types. Conclusion: Phylogenetic diversity in the SWAFR high‐rainfall zone is clustered within edaphic microhabitats in a generally subdued landscape. A clustered rather than dispersed distribution of phylogenetic diversity increases the probability of significant plant diversity loss during periods of climate change. Climate change susceptibility of the region's flora is accordingly estimated to be high. We highlight the conservation significance of swamp and outcrops that are characterized by distinct hydrological properties and may provide refugial habitat for plant diversity during periods of moderate climate change.  相似文献   

6.
Slender Banksia (Banksia attenuata) is a primary component of declining Banksia woodlands around Perth, south‐western Australia. It is important that its re‐establishment be promoted, but there are little data on its growth rates and response to applied nutrients. To quantify longer‐term growth rate, I periodically measured heights of Slender Banksia planted mid‐2005 over 7½ years. Without fertiliser, these seedlings grew slowly to about 1½ m. In mid‐2009, I planted Slender Banksia on the same site, with and without fertiliser tablets, and evaluated survival, growth and root development over 1½ years. First‐summer Slender Banksia seedling survival of around 30% was not unusual for this species. Low‐phosphorus native plant fertiliser tablets increased growth significantly.  相似文献   

7.
Question: How will changing climate and habitat structure interact to control the species diversity of lichen epiphytes? Location: Scotland. Method: Species richness (=diversity) of the epiphyte lichen community known as Lobarion (named after Lobaria pulmonaria) was quantified for 94 Populus tremula stands across Scotland, and compared in a predictive model to seven climate variables and eight measures of woodland structure. An optimum model was selected and used to project Lobarion diversity over the geographic range of the study area, based on IPCC climate change scenarios and hypothetical shifts in woodland structure. Results: Species diversity of the Lobarion community was best explained by three climate variables: (1) average annual temperature; (2) autumn and winter precipitation; in combination with (3) historic‐woodland extent. Projections indicate a positive effect of predicted climate change on Lobarion diversity, consistent with the physiological traits of cyanobac‐terial lichens comprising the Lobarion. However, the general response to climate is modified significantly by the effect on diversity of historic‐woodland extent. Conclusions: Historic‐woodland extent may exert an important control over local climate, as well as impacting upon the metapopulation dynamics of species in the Lobarion. In particular, a temporal delay in the response of Lobarion species to changed woodland structure is critical to our understanding of future climate change effects. Future Lobarion diversity (e.g. in the 2050s) may depend upon the interaction of contemporary climate (e.g. 2050s climate) and historic habitat structure (e.g. 1950s woodland extent). This is supported by previous observations for an extinction debt amongst lichen epiphytes, but suggests an extension of simple climate‐response models is necessary, before their wider application to lichen epiphyte diversity.  相似文献   

8.
Questions: Studies of gap effects have been conducted mainly in forests. We studied gap ecology in a pyrogenic Ceratiola ericoides (Florida rosemary) dominated shrubland and asked: How do gap size and the frequency of large gaps change across the fire chronosequence? Do larger gaps differ from smaller gaps in vegetation structure or species diversity? Are effects of gaps independent of, or dependent upon, time‐since‐fire? Are larger gaps refugia for herbs and subshrubs? Location: Archbold Biological Station, Lake Wales Ridge, south‐central Florida, USA. Methods: We investigated plant species occurrence and diversity in 805 gaps (areas free of shrubs taller than 50 cm) in 28 fire‐dependent Florida rosemary scrub sites. We collected quantitative cover data in a subset of seven sites. Results: Gap area distribution was lognormal. The largest gaps occurred throughout all but the longest time‐since‐fire intervals. Gaps were smallest in the longest unburned site but otherwise did not show strong patterns across the fire chronosequence. Species diversity measures increased with increasing gap area, with herbaceous diversity increasing with both gap area and bare sand. Herb diversity (H') decreased with time‐since‐fire. Larger gaps are refugia for some species. Of 14 species occurring in 25–75% of gaps, 13 had increased occupancy with increasing gap area, and gap area was the strongest predictor of occupancy for seven species of herbs and shrubs. Time‐since‐fire was the strongest predictor of occupancy for five species, including four ground lichens that increased with time‐since‐fire. Conclusions: Community structure within Florida scrub gaps is influenced by gap size, which in turn is affected by fire, the dominant ecological disturbance. We present a conceptual model that considers both gap size and time‐since‐fire as drivers of community structure and herbaceous plant diversity in Florida scrub. Because gap properties (independently of fire) have strong influences on species assemblages in Florida rosemary scrub gaps, fire management should consider the number and size of gaps across the landscape.  相似文献   

9.

Aim

Mega hydroelectric dams have become one of the main drivers of biodiversity loss in the lowland tropics. In these reservoirs, vertebrate studies have focused on local (α) diversity measures, whereas between‐site (β) diversity remains poorly assessed despite its pivotal importance in understanding how species diversity is structured and maintained. Here, we unravel the patterns and ecological correlates of mammal β‐diversity, including both small (SM) and midsized to large mammal species (LM) across 23 islands and two continuous forest sites within a mega hydroelectric reservoir.

Location

Balbina Hydroelectric Dam, Central Brazilian Amazonia.

Methods

Small mammals were sampled using live and pitfall traps (48,350 trap‐nights), and larger mammals using camera traps (8,160 trap‐nights). β‐diversity was examined for each group using multiplicative diversity decomposition of Hill numbers, which considers the importance of rare, common and dominant species, and tested to what extent those were related to a set of environmental characteristics measured at different spatial scales.

Results

β‐diversity for both mammal groups was higher when considering species presence–absence. When considering species abundance, β‐diversity was significantly higher for SM than for LM assemblages. Habitat variables, such as differences in tree species richness and percentage of old‐growth trees, were strong correlates of β‐diversity for both SMs and LMs. Conversely, β‐diversity was weakly related to patch and landscape characteristics, except for LMs, for which β‐diversity was correlated with differences in island sizes.

Main conclusions

The lower β‐diversity of LMs between smaller islands suggests subtractive homogenization of this group. Although island size plays a major role in structuring mammal α‐diversity in several land‐bridge islands, local vegetation characteristics were additional key factors determining β‐diversity for both mammal groups. Maintaining the integrity of vegetation characteristics and preventing the formation of a large set of small islands within reservoirs should be considered in long‐term management plans in both existing and planned hydropower development in lowland tropical forests.
  相似文献   

10.
Aim Species assemblages with high proportions of localized taxa occur in regional islands with a history of strong eco‐climatic separation from adjacent systems. Current disturbance in such islands of relictualism or endemism disrupts the distinctive local character in favour of regionally distributed taxa with a wider range of tolerances. However, rehabilitation of the system should restore the localized biota. Thus, we used biogeographical composition to assess progress towards restoration of the dung beetle fauna associated with such an island of endemism following dredge‐mining. Location The study was conducted in natural coastal dune forest and a 23‐year chronosequence of regenerating dune vegetation in the Maputaland centre of endemism, KwaZulu‐Natal, South Africa. Methods Dung beetles were trapped in eight stands of regenerating vegetation of different ages (< 1 year to ~21 years) and in four stands of natural dune forest with differing ecological characteristics defined by measurements of vegetative physiognomy and microclimate. Species groups defined from multivariate analysis of biogeographical distribution patterns and vegetation associations were used to demonstrate quantitative compositional changes in the dung beetle assemblages across the chronosequence to natural forest. Results Three biogeographical groups were defined. One group comprised species widespread in southern Africa or both southern and east Africa. The other two groups were endemic, one to the east coast and the other to Maputaland. There was a general trend from dominance by regionally distributed dung beetle taxa to dominance by locally distributed taxa across the chronosequence of regenerating vegetation from grassland, to open Acacia karroo thicket, to dense A. karroo‐dominated woodland. However, this trend was linked closely to the relative physiognomic and microclimatic similarity between the regenerating vegetation and natural forest. Thus, proportions of locally distributed taxa were lower in older chronosequence woodland (~18–~21 years) with its low canopy cover and open understorey than in dense early chronosequence woodland (~9–~12 years), which is physiognomically and microclimatically closer to species‐diverse natural forest with its dense canopy and understorey. Overall, the present dung beetle community comprises five species groups. Single widespread (21 spp.) and endemic groups (14 spp.) showed similar patterns of association with early chronosequence grassland and open thicket stands. A single widespread (3 spp.) and two endemic shade‐associated groups (3 and 11 spp.) showed differing patterns of association centred, respectively, in late chronosequence woodland, natural forest, or all shaded stands. Main conclusions At 23 years, vegetative regeneration is still at an early stage, but abundant activity of most, although not all species recorded in natural forest, is recovered with the closure of the woodland canopy at ~9 years. Compositional differences with respect to natural forest vary closely with vegetative physiognomy and its effect on the microclimate. Therefore, full compositional recovery is dependent on the re‐establishment of natural forest physiognomy and microclimate.  相似文献   

11.
The wild tobacco species Nicotiana attenuata has been intensively used as a model plant to study its interaction with insect herbivores and pollinators in nature, however very little is known about its native pathogen community. We describe a fungal disease outbreak in a native N. attenuata population comprising 873 plants growing in an area of about 1500 m2. The population was divided into 14 subpopulations and disease symptom development in the subpopulations was monitored for 16 days, revealing a waxing and waning of visible disease symptoms with some diseased plants recovering fully. Native fungal N. attenuata pathogens were isolated from diseased plants, characterized genetically, chemotaxonomically and morphologically, revealing several isolates of the ascomycete genera Fusarium and Alternaria, that differed in the type and strength of the disease symptoms they caused in bioassays on either detached leaves or intact soil-grown plants. These isolates and the bioassays will empower the study of N. attenuata-pathogen interactions in a realistic ecological context.  相似文献   

12.
Vegetation structure and plant species diversity of restoration sites are predicted to directly affect pollinator attraction, with potential impacts on gene flow, reproduction, genetic diversity of future generations, and ultimately restoration success. We compared Banksia attenuata R.Br. (Proteaceae) in a low species diversity restoration site and an adjacent natural remnant. We assessed fecundity genetic diversity in adult plants and their offspring, mating system parameters and pollen dispersal using paternity assignment. Results were compared to an earlier study of reproductive functionality within a high species diversity restoration site that was restored in a similar manner, enabling us to investigate any association between plant species diversity and fecundity. Seed set data indicated no significant differences between restored and adjacent natural sites; however, seed set data between restoration sites was significantly different (2.08 ± 0.39 and 6.89 ± 1.12, respectively). The mean number of fruits (follicles) per inflorescence was not significantly different between restoration sites. Genetic diversity of adult plants and their offspring were comparable in all sites. Higher allelic richness and genetic differentiation in one restored site reflected sourcing beyond local provenance. Low correlated paternity indicated high levels of multiple siring of seeds and paternity assignment demonstrated strong genetic connectivity between sites. Reproductive functionality, as measured by fecundity and genetic diversity in the offspring of B. attenuata, is resilient to low species diversity within a restored plant community. We consider our results in the context of establishing seed production areas (SPAs) that maximize the quantity and genetic quality of Banksia seeds for restoration.  相似文献   

13.
Understanding the pattern of species diversity and soil factors can enhance our knowledge of the mechanism of vegetation recovery, however, there is still a gap in the knowledge of succession rate and trend for species diversity in relation to soil nutrients during the vegetation recovery process. Patterns of species diversity and soil nutrients during the tropical vegetation recovery as well as the correlation between species diversity and soil nutrients were explored in Hainan Island, located in southern China. Plots assigned as grassland stage (GS), shrub stage (SS), secondary forest stage (SFS), and primary forest stage (PFS) were established using a chronosequence approach. Results showed that species richness and evenness increased from GS to PFS. Species dominance/diversity curves were fitted using the lognormal distribution model (r 2 ?=?0.891?C0.972). Species richness for the herb layer was maximal at SFS, whereas species richness for both the shrub layer and tree layer reached their maximum at PFS. Species turnover and soil total phosphorus decreased, whereas organic matter and total nitrogen increased from GS to PFS. Organic matter and total nitrogen were both positively correlated with species richness and total coverage, and total phosphorus was positively correlated with species turnover. The results clearly demonstrate that diversity asymptotically increases and positively correlates with increasing soil fertility, and the total phosphorus value is predicted to be an important soil factor that affects successional rate during tropical vegetation recovery processes.  相似文献   

14.
Shi  Jianmin  Strack  David  Albornoz  Felipe E.  Han  Zhongming  Lambers  Hans 《Plant and Soil》2020,447(1-2):85-98
Aims

Banksia attenuata is a resprouting species growing in deep sand, while B. sessilis is a fire-killed species occurring in shallow sand over laterite or limestone. We aimed to discover the ecophysiological basis for their different distributions by exploring their investment in deep non-cluster roots and shallow cluster roots, and their cluster-root functioning.

Methods

Deep-pot (1 m), shallow-pot (400 mm), hydroponic experiments and phosphorus (P)-extraction experiment were carried out. Biomass allocation, cluster-root exudation, plant P and leaf manganese (Mn) concentrations were measured.

Results

Banksia attenuata allocated more biomass to deep roots and less biomass to cluster roots than B. sessilis did in deep pots. The two Banksias released similar carboxylates in all experiments, with similar carboxylate-exudation rates in hydroponics. The carboxylate amount per unit cluster root of B. sessilis grown in shallow pots was greater than that of B. attenuata, and B, sessilis acquired more P than B. attenuata did in limestone substrate.

Conclusions

Greater investment in deep roots for water uptake accounts for the presence of B. attenuata in deep sand, and vice versa for the absence of B. sessilis. A larger investment in cluster roots, which released greater amounts of carboxylates, likely accounts for B. sessilis occurring over limestone. Trade-offs in investment and cluster-root functioning support the species’ distribution patterns and life histories. Leaf Mn concentration was a good proxy for the plant capacity to acquire P.

  相似文献   

15.
We recently characterized a highly dynamic fungal disease outbreak in native populations of Nicotiana attenuata in the southwestern United States. Here, we explore how phytohormone signalling contributes to the observed disease dynamics. Single inoculation with three native Fusarium and Alternaria fungal pathogens, isolated from diseased plants growing in native populations, resulted in disease symptoms characteristic for each pathogen species. While Alternaria sp.‐infected plants displayed fewer symptoms and recovered, Fusarium spp.‐infected plants became chlorotic and frequently spontaneously wilted. Jasmonic acid (JA) and salicylic acid (SA) levels were differentially induced after Fusarium or Alternaria infection. Transgenic N. attenuata lines silenced in JA production or JA conjugation to isoleucine (JA‐Ile), but not in JA perception, were highly susceptible to infection by F. brachygibbosum Utah 4, indicating that products derived from the JA‐Ile biosynthetic pathway, but not their perception, is associated with increased Fusarium resistance. Infection assays using ov‐nahG plants which were silenced in pathogen‐induced SA accumulations revealed that SA may increase N. attenuata's resistance to Fusarium infection but not to Alternaria. Taken together, we propose that the dynamics of fungal disease symptoms among plants in native populations may be explained by a complex interplay of phytohormone responses to attack by multiple pathogens.  相似文献   

16.
17.
Questions: How do species composition and abundance of soil seed bank and standing vegetation vary over the course of a post‐fire succession in northern heathlands? What is the role of seed banks – do they act as a refuge for early successional species or can they simply be seen as a spillover from the extant local vegetation? Location: Coastal Calluna heathlands, Western Norway. Methods: We analysed vegetation and seed bank along a 24‐year post‐fire chronosequence. Patterns in community composition, similarity and abundances were tested using multivariate analyses, Sørensen's index of similarity, vegetation cover (%) and seedling counts. Results: The total diversity of vegetation and seed bank were 60 and 54 vascular plant taxa, respectively, with 39 shared species, resulting in 68% similarity overall. Over 24 years, the heathland community progressed from open newly burned ground via species rich graminoid‐ and herb‐dominated vegetation to mature Calluna heath. Post‐fire succession was not reflected in the seed bank. The 10 most abundant species constituted 98% of the germinated seeds. The most abundant were Calluna vulgaris (49%; 12 018 seeds m?2) and Erica tetralix (34%; 8 414 seeds m?2). Calluna showed significantly higher germination the first 2 years following fire. Conclusions: Vegetation species richness, ranging from 23 to 46 species yr?1, showed a unimodal pattern over the post‐fire succession. In contrast, the seed bank species richness, ranging from 21 to 31 species yr?1, showed no trend. This suggests that the seed bank act as a refuge; providing a constant source of recruits for species that colonise newly burned areas. The traditional management regime has not depleted or destroyed the seed banks and continued management is needed to ensure sustainability of northern heathlands.  相似文献   

18.
19.
Determining patterns of plant diversity on granite inselbergs is an important task for conservation biogeography due to mounting threats. However, beyond the tropics there are relatively few quantitative studies of floristic diversity, or consideration of these patterns and their environmental, biogeographic, and historical correlates for conservation. We sought to contribute broader understanding of global patterns of species diversity on granite inselbergs and inform biodiversity conservation in the globally significant Southwest Australian Floristic Region (SWAFR). We surveyed floristics from 16 inselbergs (478 plots) across the climate gradient of the SWAFR stratified into three major habitats on each outcrop. We recorded 1,060 species from 92 families. At the plot level, local soil and topographic variables affecting aridity were correlated with species richness in herbaceous (HO) and woody vegetation (WO) of soil‐filled depressions, but not in woody vegetation on deeper soils at the base of outcrops (WOB). At the outcrop level, bioclimatic variables affecting aridity were correlated with species richness in two habitats (WO and WOB) but, contrary to predictions from island biogeography, were not correlated with inselberg area and isolation in any of the three habitats. Species turnover in each of the three habitats was also influenced by aridity, being correlated with bioclimatic variables and with interplot geographic distance, and for HO and WO habitats with local site variables. At the outcrop level, species replacement was the dominant component of species turnover in each of the three habitats, consistent with expectations for long‐term stable landscapes. Our results therefore highlight high species diversity and turnover associated with granite outcrop flora. Hence, effective conservation strategies will need to focus on protecting multiple inselbergs across the entire climate gradient of the region.  相似文献   

20.
Question: Can current understory vegetation composition across an elevation gradient of Pinus ponderosa‐dominated forests be used to identify areas that, prior to 20th century fire suppression, were characterized by different fire frequencies and severities (i.e., historic fire regimes)? Location: P. ponderosa‐dominated forests in the montane zone of the northern Colorado Front Range, Boulder and Larimer Counties, Colorado, USA. Methods: Understory species composition and stand characteristics were sampled at 43 sites with previously determined fire histories. Indicator species analyses and indirect ordination were used to determine: (1) if stands within a particular historic fire regime had similar understory compositions, and (2) if understory vegetation was associated with the same environmental gradients that influence fire regime. Classification and regression tree analysis was used to ascertain which species could predict fire regimes. Results: Indicator species analysis identified 34 understory species as significant indicators of three distinct historic fire regimes along an elevation gradient from low‐ to high‐elevation P. ponderosa forests. A predictive model derived from a classification tree identified five species as reliable predictors of fire regime. Conclusions: P. ponderosa‐dominated forests shaped by three distinct historic fire regimes have significantly different floristic composition, and current understory compositions can be used as reliable indicators of historical differences in past fire frequency and severity. The feasibility demonstrated in the current study using current understory vegetation properties to detect different historic fire regimes, should be examined in other fire‐prone forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号