共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent theoretical and empirical work suggests that diversity enhances the temporal stability of a community. However, the effect of diversity on the stability of the individual populations within the community remains unclear. Some models predict a decrease of population stability with diversity, whereas others suggest that diversity has a stabilizing effect on populations. Empirical evidence for either relationship between population stability and diversity is weak. The few studies that directly assessed the stability of populations reported contradicting results. We used a six-year data-set from a plant diversity experiment to examine the relationships between diversity and temporal stability of plant biomass. Our results show that stability increased with diversity at the community-level, while the stability of populations, averaged over all species, decreased with diversity. However, when examining species separately we found positive, negative and neutral relationships between population stability and diversity. Our findings suggest that diversity may contribute to the stability of ecosystem services at the community level, but the effect of diversity on the stability of the individual populations within the community are generally negative. However, different species within the community may show strikingly different relationships between diversity and stability. 相似文献
2.
Currently many attempts are made to reconstruct the colonization history of plant species after the last ice age. A surprising finding is that during the colonization phase genetic diversity did not decrease as much as expected. In this paper we examine whether long distance seed dispersal events could play a role in the unexpected maintenance of genetic diversity during range expansion. This study is based on simulations carried out with a maternally inherited haploid locus using a cellular automaton. The simulations reveal a close relationship between the frequency of long distance seed dispersal events and the amount of genetic diversity preserved during colonization. In particular, when the colonized region is narrow, a complete loss of genetic diversity results from the occurrence of very rare long distance dispersal (LDD) events. We call this phenomenon the 'embolism effect'. However, slightly higher rates of LDD events reverse this effect, up to the point that diversity is better preserved than in a pure diffusion model. This phenomenon is linked to the reorganization of the genetic structure during colonization and is called the 'reshuffling effect'. 相似文献
3.
Environmental variables, such as ambient energy, water availability, and environmental heterogeneity have been frequently proposed to account for species diversity gradients. How taxon-specific functional traits define large-scale richness gradients is a fundamental issue in understanding spatial patterns of species diversity, but has not been well documented. Using a large dataset on the regional flora from China, we examine the contrast spatial patterns and environmental determinants between pteridophytes and seed plants which differ in dispersal capacity and environmental requirements. Pteridophyte richness shows more pronounced spatial variation and stronger environmental associations than seed plant richness. Water availability generally accounts for more spatial variance in species richness of pteridophytes and seed plants than energy and heterogeneity do, especially for pteridophytes which have high dependence on moist and shady environments. Thus, pteridophyte richness is disproportionally affected by water-related variables; this in turn results in a higher proportion of pteridophytes in regional vascular plant floras (pteridophyte proportion) in wet regions. Most of the variance in seed plant richness, pteridophyte richness, and pteridophyte proportion explained by energy is included in variation that water and heterogeneity account for, indicating the redundancy of energy in the study extent. However, heterogeneity is more important for determining seed plant distributions. Pteridophyte and seed plant richness is strongly correlated, even after the environmental effects have been removed, implying functional linkages between them. Our study highlights the importance of incorporating biological traits of different taxonomic groups into the studies of macroecology and global change biology. 相似文献
4.
Mycorrhizal fungi are essential for the germination of orchid seeds. However, the specificity of orchids for their mycorrhizal fungi and the effects of the fungi on orchid growth are controversial. Mycorrhizal fungi have been studied in some temperate and tropical, epiphytic orchids, but the symbionts of tropical, terrestrial orchids are still unknown. Here we study diversity, specificity and function of mycorrhizal fungi in Vanilla, a pantropical genus that is both terrestrial and epiphytic. Mycorrhizal roots were collected from four Vanilla species in Puerto Rico, Costa Rica and Cuba. Cultured and uncultured mycorrhizal fungi were identified by sequencing the internal transcribed spacer region of nuclear rDNA (nrITS) and part of the mitochondrial ribosomal large subunit (mtLSU), and by counting number of nuclei in hyphae. Vanilla spp. were associated with a wide range of mycorrhizal fungi: Ceratobasidium, Thanatephorus and Tulasnella. Related fungi were found in different species of Vanilla, although at different relative frequencies. Ceratobasidium was more common in roots in soil and Tulasnella was more common in roots on tree bark, but several clades of fungi included strains from both substrates. Relative frequencies of genera of mycorrhizal fungi differed significantly between cultured fungi and those detected by direct amplification. Ceratobasidium and Tulasnella were tested for effects on seed germination of Vanilla and effects on growth of Vanilla and Dendrobium plants. We found significant differences among fungi in effects on seed germination and plant growth. Effects of mycorrhizal fungi on Vanilla and Dendrobium were similar: a clade of Ceratobasidium had a consistently positive effect on plant growth and seed germination. This clade has potential use in germination and propagation of orchids. Results confirmed that a single orchid species can be associated with several mycorrhizal fungi with different functional consequences for the plant. 相似文献
5.
Changes in plant population size, induced by various forms of habitat degradation, can affect the performance of plants by altering their interactions with other organisms such as pollinators and herbivores. However, studies on plant reproductive response to variation in population size that simultaneously consider different interactions are rare. In this study, we examined (1) how levels of pollinator visitation and florivory vary with population size of a self-incompatible herb, Verbascum nigrum (Scrophulariaceae), (2) the relative effect of these two interactions on host seed set, and (3) whether the intensity of florivory influences pollinator visitation rate. The intensity of florivory increased, whereas pollinator visitation rate decreased with host population size. Although average seed production was negatively affected by the intensity of florivory, seed production was independent of population size. The direct negative effect of florivores on plant seed set was indirectly enforced by their negative effect on pollinator visitation rate. Our results emphasize the complexity of responses of different plant–animal interactions to plant population size. However, interactions involving specialized organisms are likely to disrupt first as plant population size decreases. 相似文献
6.
7.
Predicting plant responses to global environmental change 总被引:6,自引:2,他引:6
F. I. WOODWARD 《The New phytologist》1992,122(2):239-251
8.
9.
1. Although carnivores indirectly improve plant fitness by decreasing herbivory, they may also decrease plant reproduction by disrupting plant-pollinator mutualism. The overall magnitude of the resulting net effect of carnivores on plant fitness and the factors responsible for the variations in strength and direction of this effect have not been explored quantitatively to date. 2. We performed a meta-analysis of 67 studies containing 163 estimates of the effects of carnivores on plant fitness and examined the relative importance of several potential sources of variation in carnivore effects. 3. Carnivores significantly increased plant fitness via suppression of herbivores and decreased fitness by consuming pollinators. The overall net effect of carnivores on plant fitness was positive (32% increase), indicating that effects via herbivores were stronger than effects via pollinators. 4. Parasitoids had stronger positive effect on plant fitness than predators. Active hunters increased plant fitness, whereas stationary predators had no significant effect, presumably because they were more prone to disrupt plant-pollinator mutualism. Carnivores with broader habitat domain had negative effects on plant fitness, whereas those with narrow habitat domain had positive effects. 5. Predator effects were positive for plants which offered rewards (e.g. extrafloral nectaries) and negative for plants which lacked any attractors. 6. This study adds new knowledge on the factors that determine the strength of terrestrial trophic cascades and highlights the importance of considering simultaneous contrasting interactions in the same study system. 相似文献
10.
In national conservation plans, it is necessary to comparatively assess species pools of different regions and monitor their changes over time. Two specific problems arise: i) species diversity must be standardized per area, because regions differ in size, and ii) the diversity measure should take into account how common or rare the species are on the regional scale. We used the rarefaction method combined with a fitting procedure to calculate the expected number of species E(S). The method takes into account the nonlinearity of species and area, as well as how common or rare each species is and allows analysis of species groups' contribution to total species diversity. The slope parameter of the fitted power function is used as an indicator of species turnover, and thus, of β-diversity. For the analysis, Switzerland was divided into seven biogeographic regions (256–10 642 km2 ). The diversity of the total species pool and of six ecological species groups was investigated for each region. In every biogeographic region, we find the lowest species turnover in the fertilized meadow group, and the highest species turnover in the pioneer/weedy species and the mountain species groups pioneer/weedy. The results show that among Swiss regions, differences in E(S) are mainly due to the presence or absence of mountain species. Other species groups show a rather constant contribution to the regional species pools. We found the rarefaction method to be a very useful tool for assessing Swiss plant species diversity on a regional scale. 相似文献
11.
For successful conservation and restoration of biodiversity, it is important to understand how diversity is regulated. In the ecological research community, a current topic of interest is how much of the variation in plant species richness and composition is explained by environmental variation (niche-based model), relative to spatial processes (neutral theory). The Yellow River Estuary (YRE) is a newly formed and fragile wetland ecosystem influenced by both the Yellow River and Bohai Bay. Here, we applied variance partitioning techniques to assess the relative effects of spatial and environmental variables on species richness and composition in the YRE. We also conducted a species indicator analysis to identify characteristic species for three subestuaries within the YRE. Partial redundancy analysis showed that the variations in species richness and composition were explained by both environmental and spatial factors. The majority of explained variation in species richness and composition was attributable to local environmental factors. Among the environmental variables, soil salinity made the greatest contribution to species abundance and composition. Soil salinity was the most important factor in the Diaokou subestuary, while soil moisture was the most important factor influencing species richness in the Qingshui and Chahe subestuaries. The combined effects of soil salinity and moisture determined species richness and composition in the wetlands. These results increase our understanding of the organization and assembly of estuarine plant communities. 相似文献
12.
13.
Vertical distribution and diel vertical migration of a zooplankton community were studied at two stations off Central Peru in April 2006. Zooplankton was collected at five depth strata by vertical hauls with Hydo-Bios multinet (300-μm mesh, 0.25-m2 mouth size). The zooplankton community was distributed in relation to a strong, shallow oxycline (1 ml l?1 oxygen isopleth generally above 36 m). The highest total abundance was always in the upper, well-oxygenated layer. The most important species were: Acartia tonsa (72.86%), Centropages brachiatus (7.5%), and Paracalanus parvus (3.1%); Acartia tonsa was the dominant species at all times. Larvae of the polychaete Magelona sp. (7.5%) and larvae of the brachiopod Discinisca lamellosa (3.5%) were numerically dominant in April and small copepods e.g. Oncaea venusta (3.88%) were numerically dominant during August. Five distinct patterns of vertical distribution and migration in relation to the oxygen minimum layer were distinguished in this study: (1) Ontogenetic vertical migration through the oxycline (Acartia tonsa adults, nauplii, and copepodids), (2) permanent limitation to layers above the oxycline (e.g. Oikopleura sp., most invertebrate larvae), (3) distribution mostly below the oxycline with occasional migration into the layers just above the oxycline (Eucalanus inermis), (4) Diel Vertical Migration (Centropages brachiatus), and (5) reverse Diel Vertical Migration (larvae of the polychaete Magelona sp.). 相似文献
14.
Linder HP 《Molecular ecology》2010,19(21):4583-4585
The speciation process that underlies recent, rapid radiations of plants is controversial, and suggested mechanisms range from pollinator or ecological niche differentiation to allopatry and nonadaptive divergence. Phylogenetic approaches to locating the most appropriate speciation models have been constrained by the low levels of molecular divergence between recently diverged species, which are typical of recent, rapid radiations. In this issue of Molecular Ecology, Rymer et al. (2010) used coalescence analyses of sequence data and genome scans of Amplified Fragment Length Polymorphism (AFLP) loci to demonstrate that in a species complex in the irid genus Gladiolus, a member of the hyper diverse Cape flora of southern Africa, speciation is a gradual process. Older divergences are genetically more differentiated, and show a greater difference in flowering time and floral morphology, than taxa that diverged more recently. There is no evidence of any abrupt events. Gene flow is limited by shifts in flowering time and floral morphology; thus, by pre-zygotic rather than by post-zygotic mechanisms, these evolved together with the occupation of somewhat different habitats. This research gives the first critical insight into how the remarkable diversity in a diversity hotspot could have arisen. More importantly, it demonstrates that the speciation process in recent, rapid radiations is tractable and can be investigated with suitable genetic tools. 相似文献
15.
When invasive species establish in new environments, they may disrupt existing or create new interactions with resident species.
Understanding of the functioning of invaded ecosystems will benefit from careful investigation of resulting species-level
interactions. We manipulated ant visitation to compare how invasive ant mutualisms affect two common plants, one native and
one invasive, on a sub-tropical Indian Ocean island. Technomyrmex albipes, an introduced species, was the most common and abundant ant visitor to the plants. T. albipes were attracted to extrafloral nectaries on the invasive tree (Leucaena
leucocephala) and deterred the plant’s primary herbivore, the Leucaena psyllid (Heteropsylla cubana). Ant exclusion from L. leucocephala resulted in decreased plant growth and seed production by 22% and 35%, respectively. In contrast, on the native shrub (Scaevola taccada), T. albipes frequently tended sap-sucking hemipterans, and ant exclusion resulted in 30% and 23% increases in growth and fruit production,
respectively. Stable isotope analysis confirmed the more predacious and herbivorous diets of T. albipes on the invasive and native plants, respectively. Thus the ants’ interactions protect the invasive plant from its main herbivore
while also exacerbating the effects of herbivores on the native plant. Ultimately, the negative effects on the native plant
and positive effects on the invasive plant may work in concert to facilitate invasion by the invasive plant. Our findings
underscore the importance of investigating facilitative interactions in a community context and the multiple and diverse interactions
shaping novel ecosystems. 相似文献
16.
Nico Eisenhauer Alexandru Milcu Norma Nitschke Alexander C. W. Sabais Christoph Scherber Stefan Scheu 《Oecologia》2009,161(2):291-301
Diversity is one major factor driving plant productivity in temperate grasslands. Although decomposers like earthworms are
known to affect plant productivity, interacting effects of plant diversity and earthworms on plant productivity have been
neglected in field studies. We investigated in the field the effects of earthworms on plant productivity, their interaction
with plant species and functional group richness, and their effects on belowground plant competition. In the framework of
the Jena Experiment we determined plant community productivity (in 2004 and 2007) and performance of two phytometer plant
species [Centaurea jacea (herb) and Lolium perenne (grass); in 2007 and 2008] in a plant species (from one to 16) and functional group richness gradient (from one to four).
We sampled earthworm subplots and subplots with decreased earthworm density and reduced aboveground competition of phytometer
plants by removing the shoot biomass of the resident plant community. Earthworms increased total plant community productivity
(+11%), legume shoot biomass (+35%) and shoot biomass of the phytometer C. jacea (+21%). Further, phytometer performance decreased, i.e. belowground competition increased, with increasing plant species
and functional group richness. Although single plant functional groups benefited from higher earthworm numbers, the effects
did not vary with plant species and functional group richness. The present study indicates that earthworms indeed affect the
productivity of semi-natural grasslands irrespective of the diversity of the plant community. Belowground competition increased
with increasing plant species diversity. However, belowground competition was modified by earthworms as reflected by increased
productivity of the phytometer C. jacea. Moreover, particularly legumes benefited from earthworm presence. Considering also previous studies, we suggest that earthworms
and legumes form a loose mutualistic relationship affecting essential ecosystem functions in temperate grasslands, in particular
decomposition and plant productivity. Further, earthworms likely alter competitive interactions among plants and the structure
of plant communities by beneficially affecting certain plant functional groups. 相似文献
17.
The positive effect of disturbance on plant community invasibility is one of the more consistent results in invasion ecology.
It is generally attributed to a coincident increase in available resources (due to the disturbance) that allows non-resident
plant species to establish (Davis MA, Grime JP Thompson K, J Ecol 88:528–534, 2000). However, most research addressing this
issue has been in artificial or highly modified plant communities. Our goal in this study was to investigate the interactive
effects of resource availability and plant mortality disturbance on the invasion of natural plant communities. We conducted
a series of experiments that examined the response of Bromus tectorum L., a highly invasive annual grass, to experimentally created gradients of resource availability [nitrogen (N) and water]
and resident plant species mortality. We found that B. tectorum biomass was co-limited by N and water. Biomass at the end of the growing season was a saturating function (i.e., increased
to a maximum) of water, which determined maximum biomass, and N, which determined the rate at which maximum biomass was attained.
Despite that fact that plant mortality increased N availability, it had a negative impact on invasion success. Plant mortality
also decreased foliar cover, standing dead biomass, and soil cover by litter. In harsh environments, removing foliar and soil
cover may increase germination and seedling stress by increasing soil temperatures and water loss. Across all treatments,
B. tectorum success decreased with decreasing foliar cover and standing dead biomass. This, in combination with the strong limitation
of B. tectorum biomass by water in this experiment, suggests that our plant mortality disturbance removed soil cover that may have otherwise
aided B. tectorum invasion into this semi-arid plant community by reducing water stress. 相似文献
18.
19.
Relationships between spatial environmental heterogeneity and plant species diversity on a limestone pavement 总被引:4,自引:0,他引:4
No empirical studies have examined the relationship between diversity and spatial heterogeneity across unimodal species richness gradients. We determined the relationships between diversity and environmental factors for 144 0.18 m2 plots in a limestone pavement alvar in southern Ontario, Canada, including within-plot spatial heterogeneity in soil depth, microtopography and microsite composition. Species richness was unimodally related to mean soil depth and relative elevation. Microsite heterogeneity and soil depth heterogeneity were positively correlated with species richness, and the richness peaks of the unimodal gradients correspond to the maximally spatially heterogeneous plots. The best predictive models of species richness and evenness, however, showed that other factors, such as ramet density and flooding, are the major determinants of diversity in this system. The findings that soil depth heterogeneity had effects on diversity when the effects of mean soil depth were factored out, and that unimodal richness peaks were associated with high spatial heterogeneity in environmental factors represent significant contributions to our understanding of how spatial heterogeneity might contribute to diversity maintenance in plant communities. 相似文献
20.