首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new lignano-9,9′-lactones (α,β-dibenzyl-γ-butyrolactone lignans), which showed the higher cytotoxicity than arctigenin, were synthesized. The well-known cytotoxic arctigenin showed activity against HL-60 cells (EC50 = 12 μM), however, it was inactive against HeLa cells (EC50 > 100 μM). The synthesized (3,4-dichloro, 2′-butoxy)-derivative 55 and (3,4-dichloro, 4′-butyl)-derivative 66 bearing the lignano-9,9′-lactone structures showed the EC50 values of 10 μM and 9.4 μM against HL-60 cells, respectively. Against HeLa cells, the EC50 value of the derivative 66 was 27 μM. By comparing the activities with the corresponding 9,9′-epoxy structure (tetrahydrofuran compounds), the importance of the lactone structure of 55 and 66 for the higher activities was shown. The substituents on the aromatic ring of the lignano-9,9′-lactones affected the cytotoxicity level, observing more than 10-fold difference.  相似文献   

2.
In this study, we explore the cytotoxic activity of four natural abenquines (2ad) and fourteen synthetic analogues (2e–j and 3a–h) against a panel of six human cancer cell lines using a SRB assay. It was found that most of the compounds revealed higher levels of cytotoxic activities than naturally occurring abenquines. The analogues carrying ethylpyrrolidinyl and ethylpyrimidinyl with either an acetyl group (2 h–i) or a benzoyl group (3fg), were the most potent against all human cancer cell lines and displayed EC50 between a range of 0.6–3.4 μM. Notably, of the compounds tested, compound 2i proved the most cytotoxic against both ovarian (A2780) and breast (MCF7) cells, showing EC50 = 0.6 and 0.8 μM respectively. Likewise, the analogues 2i, 3f and 3 g showed strong activity against cell HT29 with EC50 = 0.9 μM for these compounds.  相似文献   

3.
A series of novel pyrazole oxime derivatives containing a substituted oxadiazole group were designed and synthesized. The bioassay results indicated that some title compounds displayed good acaricidal and insecticidal activities against Tetranychus cinnabarinus, Aphis medicaginis, Oriental armyworm, and Nilaparvata lugens. Especially, compounds 7a, 7b, and 7c had 80%, 90%, and 90% insecticidal activities against A. medicaginis at 20 μg/mL, respectively. Interestingly, some of the designed compounds displayed wonderful fungicidal activities in vivo against cucumber Pseudoperonospora cubensis. Furthermore, compounds 7a (EC50 = 4.97 μg/mL) and 7h (EC50 = 0.51 μg/mL) showed excellent fungicidal activity against P. cubensis comparable or better than that of the control Pyraclostrobin (EC50 = 4.59 μg/mL).  相似文献   

4.
Chemical investigation of leaves and heartwood of Dalbergia boehmii resulted in the isolation of two new phenolic compounds, designated dalbergestan (1) and dalbergichromone (2), along with eleven known compounds, carpachromene (3), proanthocyanidin A-2 (4); piceatannol (5); biochanin A (6); macckiain (7); homopterocarpin (8); angolensin (9); medicarpin (10); 2′,7-dihydroxy-4′,5′-dimethoxyisoflavone (11); 2′-methoxyformononetin (12); and genistein (13). The structures of the new compounds were elucidated on the basis of extensive spectroscopic analyses including, IR, UV, 1D and 2D – NMR as well as HRMS data. Some of the isolated compounds were evaluated for their in vitro insulin secretion activity on isolated mice islets, leishmanicidal activity against L. major (DESTO) promastigotes and in vitro cytotoxicity on MCF-7 cell lines. All tested compounds were inactive on glucose-stimulated insulin secretion at stimulatory glucose (20.0 mM) from MIN6 cells. Compounds 3 (IC50, 70.0 μg/ml), 6 (IC50, 60.3 μg/ml), 7 (IC50, 86.5 μg/ml) and 13 (IC50, 62.6 μg/ml) exhibited low leishmanicidal activity while compound 12 (IC50, 56.8 μg/ml) displayed a moderate activity. Compounds 3 and 5 were found to be active against MCF-7 at 50 μM with IC50 value 33.2 ± 3.79 μg/ml and 42.64 ± 5.05 μg/ml respectively.  相似文献   

5.
Current treatment for hepatitis C is barely satisfactory, there is an urgent need to develop novel agents for combating hepatitis C virus infection. This study discovered a new class of thieno[2,3-b]pyridine derivatives as HCV inhibitors. First, a hit compound characterized by a thienopyridine core was identified in a cell-based screening of our privileged small molecule library. And then, structure activity relationship study of the hit compound led to the discovery of several potent compounds without obvious cytotoxicity in vitro (12c, EC50 = 3.3 μM, SI >30.3, 12b, EC50 = 3.5 μM, SI >28.6, 10l, EC50 = 3.9 μM, SI >25.6, 12o, EC50 = 4.5 μM, SI >22.2, respectively). Although the mechanism of them had not been clearly elucidated, our preliminary optimization of this class of compounds had provided us a start point to develop new anti-HCV agents.  相似文献   

6.
A sulfonamidebenzamide series was assessed for anti-kinetoplastid parasite activity based on structural similarity to the antiparasitic drug, nifurtimox. Through structure-activity optimization, derivatives with limited mammalian cell toxicity and increased potency toward African trypanosomes and Leishmania promastigotes were developed. Compound 22 had the best potency against the trypanosome (EC50 = 0.010 μM) while several compounds showed ~10-fold less potency against Leishmania promastigotes without impacting mammalian cells (EC50 > 25 μM). While the chemotype originated from an unrelated optimization program aimed at selectively activating an apoptotic pathway in mammalian cancer cells, our preliminary results suggest that a distinct mechanism of action from that observed in mammalian cells is responsible for the promising activity observed in parasites.  相似文献   

7.
A series of novel 1,3,4-oxadiazole/thiadiazole–chalcone conjugates were synthesized and their in vitro and in vivo antiviral activities were evaluated via microscale thermophoresis method and half-leaf method, respectively. The in vitro results indicated that compounds 7g, 7l, 8h, and 8l displayed good antiviral activity against TMV, with the binding constant values of 5.93, 6.15, 6.02, and 5.04 μM, respectively, which were comparable to that of Ninnanmycin (6.78 μM) and even better than that of Ribavirin (99.25 μM). The in vivo results demonstrated that compounds 7g, 7l, 8h, and 8l exhibited remarkable anti-TMV activity with the EC50 values of 33.66, 33.97, 33.87 and 30.57 µg/mL, respectively, which were comparable to that of Ningnanmycin (36.85 µg/mL) and superior to that of Ribavirin (88.52 µg/mL). Interestingly, the trend of antiviral activity in vivo was consistent with the in vitro results.  相似文献   

8.
The efficient synthesis of a new series of polyhydroxylated dibenzyl ω-(1H-1,2,3-triazol-1-yl)alkylphosphonates as acyclic nucleotide analogues is described starting from dibenzyl ω-azido(polyhydroxy)alkylphosphonates and selected alkynes under microwave irradiation. Selected O,O-dibenzylphosphonate acyclonucleotides were transformed into the respective phosphonic acids. All compounds were evaluated in vitro for activity against a broad variety of DNA and RNA viruses and for cytostatic activity against murine leukemia L1210, human T-lymphocyte CEM and human cervix carcinoma HeLa cells. Compound (1S,2S)-16b exhibited antiviral activity against Influenza A H3N2 subtype (EC50 = 20 μM—visual CPE score; EC50 = 18 μM—MTS method; MCC >100 μM, CC50 >100 μM) in Madin Darby canine kidney cell cultures (MDCK), and (1S,2S)-16k was active against vesicular stomatitis virus and respiratory syncytial virus in HeLa cells (EC50 = 9 and 12 μM, respectively). Moreover, compound (1R,2S)-16l showed activity against both herpes simplex viruses (HSV-1, HSV-2) in HEL cell cultures (EC50 = 2.9 and 4 μM, respectively) and feline herpes virus in CRFK cells (EC50 = 4 μM) but at the same time it exhibited cytotoxicity toward uninfected cell (MCC  4 μM). Several other compounds have been found to inhibit proliferation of L1210, CEM as well as HeLa cells with IC50 in the 4–50 μM range. Among them compounds (1S,2S)- and (1R,2S)-16l were the most active (IC50 in the 4–7 μM range).  相似文献   

9.
Fleximers, a novel type of flexible nucleoside that have garnered attention due to their unprecedented activity against human coronaviruses, have now exhibited highly promising levels of activity against filoviruses. The Flex-nucleoside was the most potent against recombinant Ebola virus in Huh7 cells with an EC50 = 2 μM, while the McGuigan prodrug was most active against Sudan virus-infected HeLa cells with an EC50 of 7 μM.  相似文献   

10.
Neuroinflammation is a key contributor to neuronal damage in neurodegenerative diseases. In our previous work on natural effective neuroinflammatory inhibitors, Alhagi sparsifolia Shap. (Leguminosae), a folk medicine widely distributed in Xinjiang, attracted our attention because of its significant anti-neuroinflammatory effect. Therefore, further investigation of the bioactive material basis was carried out. As a result, 33 major components were characterized and identified by chromatographic and spectral methods, respectively. Furthermore, the anti-neuroinflammatory effects of the extract and purified constituents were evaluated in LPS-induced N9 cells in vitro. The results displayed that compounds 1, 2, 3, 5, 6, 8, 11, 15, 16, 17, 22, 23, 25, 26, 28, 30, 33 could exhibit significant inhibitory activities without obvious cytotoxicities at their effective concentrations. Especially, isorhamnetin (1) (IC50 17.87 μM), quercetin (2) (10.22 μM), 3′,7-dihydroxyl-4′-methoxylisoflavone (5) (17.43 μM), 3′,7-dihydroxyl-4′,6-dimethoxylisoflavone (6) (11.21 μM), syringgaresinol (16) (2.68 μM), bombasinol A (17) (7.61 μM), aurantiamide (23) (14.91 μM) and 1,3,3,4-tetramethyl cyclopentene (33) (2.63 μM) showed much stronger inhibiting effect than that of the positive control minocycline (19.89 μM). Therefore, the effective compositions might be responsible for the significant neuroinflammation inhibitory activities exhibited by the herb. Moreover, compounds 16 and 33 could be good leading compounds for the development of potential therapeutic agents against neurodegenerative diseases.  相似文献   

11.
Two series of xanthotoxin-triazole derivatives were designed, synthesized, and studied for their antiproliferative properties. The in vitro cytotoxicity of the compounds in the AGS cancer cell line and the L02 normal cell line was evaluated via MTT assay. Among the synthesized compounds, 9-((1-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)methoxy)-7H-furo[3,2-g]chromen-7-one (6p) was found to have the greatest antiproliferative activity against AGS cells (IC50 = 7.5 μM) and showed better activity than the lead compound (xanthotoxin, IC50 > 100 μM) and the reference drug (5-fluorouracil, IC50 = 29.6 μM) did. The IC50 value of 6p in L02 cells was 13.3 times higher than that in the AGS cells. Therefore, the compound exhibited better therapeutic activity and specificity compared with the positive control 5-fluorouracil. Cell cycle analysis revealed that compound 6p inhibited cell growth via the induction of S/G2 phase arrest in AGS cells. Compound 6p was identified as a promising lead compound for the further development and identification of 1,2,3-triazole-based anticancer agents.  相似文献   

12.
We describe the discovery and optimization of a novel series of furo[3,2-d]pyrimidines as G protein-coupled receptor 119 agonists. Agonistic activity of 4 (EC50 = 129 nM) was improved by replacing the intramolecular hydrogen bond between the fluorine atom and the aniline hydrogen in the head moiety with a covalent C-C bond to enhance conformational restriction, which consequently gave a lead compound 12 (EC50 = 53 nM). Optimized compound 26, which was identified by the further optimization of 12, exhibited potent activity (EC50 = 42 nM) with improved clearance in liver microsomes and induced a 33% reduction in blood glucose area under the curve at a dose of 10 mg/kg in an oral glucose tolerance test in C57BL/6N mice.  相似文献   

13.
A new series of bis(indolyl)-pyridine derivatives 6(a–m) were synthesized by Chichibabin reaction process and evaluated for antileishmanial and antibacterial activities to establish structure–activity relationship. The synthesis was carried out through one-pot multicomponent reaction of 3-acetylindole, aromatic aldehydes, and ammonium acetate in the presence of camphor-10-sulfonic acid as a catalyst. The compounds 6d (IC50 = 102.47 μM) and 6f (IC50 = 99.49 μM) had shown promising antileishmanial against L. donovani promastigotes when compared with standard sodium stibogluconate (IC50 = 490.00 μM). All the synthesized compounds (MIC range = 41.35–228.69 μg/mL) had shown potent antibacterial activity than standard ampicillin (MIC range = 100.00–250.00 μg/mL) against all the tested bacterial strains. In silico ADME and metabolic site prediction studies were also held out to set an effective lead candidate for the future antileishmanial and antibacterial drug discovery initiatives.  相似文献   

14.
On the basis of previous study on 2-methylpyrimidine-4-ylamine derivatives I, further synthetic optimization was done to find potent PDHc-E1 inhibitors with antibacterial activity. Three series of novel pyrimidine derivatives 6, 11 and 14 were designed and synthesized as potential Escherichia coli PDHc-E1 inhibitors by introducing 1,3,4-oxadiazole-thioether, 2,4-disubstituted-1,3-thiazole or 1,2,4-triazol-4-amine-thioether moiety into lead structure I, respectively. Most of 6, 11 and 14 exhibited good inhibitory activity against E. coli PHDc-E1 (IC50 0.97–19.21 μM) and obvious inhibitory activity against cyanobacteria (EC50 0.83–9.86 μM). Their inhibitory activities were much higher than that of lead structure I. 11 showed more potent inhibitory activity against both E. coli PDHc-E1 (IC50 < 6.62 μM) and cyanobacteria (EC50 < 1.63 μM) than that of 6, 14 or lead compound I. The most effective compound 11d with good enzyme-selectivity exhibited most powerful inhibitory potency against E. coli PDHc-E1 (IC50 = 0.97 μM) and cyanobacteria (EC50 = 0.83 μM). The possible interactions of the important residues of PDHc-E1 with title compounds were studied by molecular docking, site-directed mutagenesis, and enzymatic assays. The results indicated that 11d had more potent inhibitory activity than that of 14d or I due to its 1,3,4-oxadiazole moiety with more binding position and stronger interaction with Lsy392 and His106 at active site of E. coli PDHc-E1.  相似文献   

15.
A new small library of 2-aminobenzoyl amino acid hydrazide derivatives and quinazolinones derivatives was synthesized and fully characterized by IR, NMR, and elemental analysis. The activity of the prepared compounds on the growth of Leishmania aethiopica promastigotes was evaluated. 2-Benzoyl amino acid hydrazide showed higher inhibitory effect than the quinazoline counterpart. The in vitro antipromastigote activity demonstrated that compounds 2a, 2b, 2f and 4a had IC50 better than standard drug miltefosine and comparable activity to amphotericin B deoxycholate, which indicates their high antileishmanial activity against Leishmania. aethiopica. Among the prepared compounds; 2-amino-N-(6-hydrazinyl-6-oxohexyl)benzamide 2f (IC50 = 0.051 μM) has the best activity, 154 folds more active than reference standard drug miltefosine (IC50 = 7.832 μM), and half fold the activity of amphotericin B (IC50 = 0.035 μM). In addition, this compound was safe and well tolerated by experimental animals orally up to 250 mg/kg and parenterally up to 100 mg/kg.  相似文献   

16.
12 novel scopoletin-isoxazole and scopoletin-pyrazole hybrids were designed, synthesized and their chemical structures were confirmed by HR-MS, IR, 1H NMR and 13C NMR spectra. The anticancer activities of the newly synthesized compounds were evaluated in vitro against three human cancer cell lines including HCT-116, Hun7 and SW620 by MTT assay. The screening results showed that six compounds (9a, 9c, 9d, 12a, 18b and 18d) exhibited potent cytotoxic activities with IC50 values below 20 μM. Besides, we have further evaluated the growth inhibitory activities of six compounds against the human normal tissue cell lines HFL-1. Especially, compound 9d displayed significant anti-proliferative activity with IC50 values ranging from 8.76 μM to 9.83 μM and weak cytotoxicity with IC50 value of 90.9 μM on normal cells HFL-1, which suggested that isoxazole-based hybrids of scopoletin were an effective chemical modification to improve the anticancer activity of scopoletin.  相似文献   

17.
Secoisolariciresinol diglucosides (SDGs) (S,S)-SDG-1 (major isomer in flaxseed) and (R,R)-SDG-2 (minor isomer in flaxseed) were synthesized from vanillin via secoisolariciresinol (6) and glucosyl donor 7 through a concise route that involved chromatographic separation of diastereomeric diglucoside derivatives (S,S)-8 and (R,R)-9. Synthetic (S,S)-SDG-1 and (R,R)-SDG-2 exhibited potent antioxidant properties (EC50 = 292.17 ± 27.71 μM and 331.94 ± 21.21 μM, respectively), which compared well with that of natural (S,S)-SDG-1 (EC50 = 275.24 ± 13.15 μM). These values are significantly lower than those of ascorbic acid (EC50 = 1129.32 ± 88.79 μM) and α-tocopherol (EC50 = 944.62 ± 148.00 μM). Compounds (S,S)-SDG-1 and (R,R)-SDG-2 also demonstrated powerful scavenging activities against hydroxyl [natural (S,S)-SDG-1: 3.68 ± 0.27; synthetic (S,S)-SDG-1: 2.09 ± 0.16; synthetic (R,R)-SDG-2: 1.96 ± 0.27], peroxyl [natural (S,S)-SDG-1: 2.55 ± 0.11; synthetic (S,S)-SDG-1: 2.20 ± 0.10; synthetic (R,R)-SDG-2: 3.03 ± 0.04] and DPPH [natural (S,S)-SDG-1: EC50 = 83.94 ± 2.80 μM; synthetic (S,S)-SDG-1: EC50 = 157.54 ± 21.30 μM; synthetic (R,R)-SDG-2: EC50 = 123.63 ± 8.67 μM] radicals. These results confirm previous studies with naturally occurring (S,S)-SDG-1 and establish both (S,S)-SDG-1 and (R,R)-SDG-2 as potent antioxidants and free radical scavengers for potential in vivo use.  相似文献   

18.
The structure-based approaches were implemented to design and rationally select the molecules for synthesis and anti-HCV activity evaluation. The systematic structure–activity relationships of previously discovered molecules (types I, II, III) were analyzed to design new molecules (type IV) by bioisosteric replacement of the amino group. The ligand conformation, binding mode studies and drug like properties were major determinant for selection of molecules for final synthesis. The replacement of amino group with methyl restored the interactions with RNA-template (Tem 799) through bifurcated weak H-bond (C–H…O). This is an interesting finding observed from molecular modeling studies. It was found that 6ce has anti-HCV activity (EC50 in 37–46 μM) while 6a, 6b and 6g were inactive. The compound 6f (EC50 28 μM) was the most active among the series however it also showed some cytotoxicity (CC50 52.8 μM). Except 6f, none of the compounds were found to be cytotoxic (CC50 > 100 μM). The present study discloses structure–based approach for novel anti-HCV lead discovery and opens a future scope of lead optimization.  相似文献   

19.
A series of chromone hydrazone derivatives 4a4p have been synthesized, characterized by 1H NMR and 13C NMR and evaluated for their in vitro α-glucosidase inhibitory activity. Out of these tested compounds, six (4a, 4b, 4d, 4j, 4o and 4p) displayed potent α-glucosidase inhibitory activity with IC50 values in the range of 20.1 ± 0.19 μM to 45.7 ± 0.23 μM, as compared to the standard drug acarbose (IC50 = 817.38 ± 6.27 μM). Among this series, compound 4d (IC50 = 20.1 ± 0.19 μM) with 4-sulfonamide substitution at phenyl part of hydrazide was found to be the most active compound. Lineweaver-Burk plot analysis indicated that compound 4d is a non-competitive inhibitor of α-glucosidase. The binding interactions of the most active analogs were confirmed through molecular docking studies. Docking studies showed 4d are interacting with the residues Glu-276, Asp-214, Asp-349 and Arg-439 through hydrogen bonds, arene-anion and arene-cation interactions. In summary, our studies shown that these chromone hydrazone derivatives are a new class of α-glucosidase inhibitors.  相似文献   

20.
Described as a Btk inhibitor, ibrutinib also potently inhibits Bmx and EGFR, two good targets for lung cancer. Owing to its high CLogP (4.07) and low aqueous solubility (<0.01 mg/ml), resulting in unfavorable bioavailability, ibrutinib requires high dosages to achieve good clinical response in the treatment of non-small cell lung cancer (NSCLC). In our effort to improve the CLogP of ibrutinib by structural optimization led to the discovery of a potent anti-cancer agent B6, with beneficial physicochemical parameters (CLogP = 2.56, solubility in water  0.1 mg/ml) meeting the principles of oral drugs. B6 exhibited anti-proliferation activities against EGFR-expressing cells, especially the mutant ones, such as H1975 (L858R/T790M, IC50 = 0.92 ± 0.19 μM) and HCC827 (Del119 IC50 = 0.014 ± 0.01 μM). Moreover, B6 significantly slowed down H1975 tumor growth with anti-tumor rate of 73.9% (p < 0.01). Enzyme potencies assay demonstrated B6 moderately selectively inhibited Bmx (IC50 = 35.7 ± 0.1 nM) over other kinases. So, as a potent Bmx inhibitor, B6 has the potential to be an efficacious treatment for NSCLC with acquired drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号