首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Monthly collections were made of man‐biting female blackflies: Simulium auripellitum Enderlein, S. guianense Wise, S. minusculum Lutz and S. nigrimanum Macquart (Diptera: Simuliidae) from four catching stations in the newly discovered focus of human onchocerciasis at Minaçu (13°35′ S 48°18′ W), 300 km north of Brasília in Goiás State. These provided baseline data on biting habits, population density and seasonal prevalence during the year before completion of the Serra da Mesa hydroelectric dam on the Rio Tocantins near Minaçu, in a project investigating the effect of dam construction on onchocerciasis transmission in the area. All four simuliid species were most abundant during the dry season, and only bit in low numbers (S. auripellitum S.minusculum, S. nigrimanum) or were absent (S. guianense) in the wet season. Simulium minusculum was the predominant species at all catching stations, being particularly abundant by the large River Tocantins. The other three species were mainly associated with smaller rivers. In the dry season, biting rhythms of S. minusculum varied with catching site, while S. nigrimanum showed peaks of activity in early morning and during the afternoon. Experimental infection with Onchocerca volvulus (Leuckart) (Nematoda: Onchocercidae), from a human volunteer, showed that this parasite could develop fully in the four simuliid species, which are all considered to be potential vectors in the area.  相似文献   

2.
Aim The assumedly anomalous occurrence of savannas and forest–savanna mosaics in the Gran Sabana – a neotropical region under a climate more suitable for tropical rain forests – has been attributed to a variety of historical, climatic, and anthropogenic factors. This paper describes a previously undocumented shift in vegetation and climate that occurred during the early Holocene, and evaluates its significance for the understanding of the origin of the Gran Sabana vegetation. Location A treeless savanna locality of the Gran Sabana (4°30′–6°45′ N and 60°34′–62°50′ W), in the Venezuelan Guayana of northern South America, at the headwaters of the Caroní river, one of the major tributaries of the Orinoco river. Methods Pollen and charcoal analysis of a previously dated peat section spanning from about the Pleistocene/Holocene boundary until the present. Results Mesothermic cloud forests dominated by Catostemma (Bombacaceae) occupied the site around the Pleistocene/Holocene boundary. During the early Holocene, a progressive but relatively rapid trend towards savanna vegetation occurred, and eventually the former cloud forests were replaced by a treeless savanna. Some time after the establishment of savannas, a marked increase in charcoal particles indicates the occurrence of the first local fires. Main conclusions The occurrence of cloud forests at the Pleistocene/Holocene boundary contradicts the historical hypothesis according to which the Gran Sabana is a relict of the hypothetical widespread savannas that have been assumed to have dominated the region during the last glaciation. The first local fires recorded in the Holocene were on savanna vegetation, which is against the hypothesis of fire as the triggering factor for the establishment of these savannas. Climate change, in the form of global warming and a persistently drier climate, emerges as the most probable cause for the forest–savanna turnover.  相似文献   

3.
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type.  相似文献   

4.
5.
Aim To carry out (1) a floristic survey of endemic flowering plants of the Western Ghats occurring in Goa, (2) identify their habitat preference and diversity of life‐form type, (3) observe flowering phenology of the endemics and (4) to correlate factors that affect their phenological pattern. Location Goa state is located between 15°48′ N and 14°53′54′′ N and 74°20′13′′ E and 73°40′33′′ E, in the northern part of the Western Ghats, India. Method A list of endemic plants from the study area was prepared using available floristic works and checklists of endemic plants of India. Based on preliminary field observations carried out in the study area, major habitats such as plateaus, moist deciduous forests, semi‐evergreen forests, evergreen forests and mangroves were identified for the subsequent intensive survey of endemics. Voucher specimens for all the endemic species were collected, processed using conventional herbarium techniques and deposited in the Herbarium, Department of Botany, Goa University. Species were identified using local and regional floras and their identity was confirmed at various herbaria along the Western Ghats. Data on their life‐form types, habitat and phenology was recorded in the field. Phenological observations were made every fortnight. A computerized data base was generated incorporating details on their life‐form type, phenology and habitat. Results A floristic survey of endemic plants of the Western Ghats in Goa resulted in the collection of 113 endemic species. Life‐form analysis reveals that herbaceous endemics are the most dominant followed by trees, shrubs and climbers. Plateaus in the study area harbour the largest number of endemic species, especially herbs. Endemic trees are distributed in the semi‐evergreen and evergreen forests. Endemic species in the study area show different peak and lean seasons of flowering depending on their life‐form type, habitat and ecological factors like temperature and rainfall/moisture content in the soil. Main conclusions The plateaus in the northern part of the Western Ghats are unique, being species rich with herbaceous endemics. These ephemerals are closely associated with the rainfall patterns thus; any change of moisture regime over the long‐term will have an impact on the distribution of these endemics.  相似文献   

6.
Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire‐tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models.  相似文献   

7.
The soils are seasonally or permanently saturated in the moist grassland savanna, locally known as Campo Limpo Umido. Soil moisture variation seems to determine spatial distribution of communities. The objective of this study is to analyse the relationship between environmental variables and the patterns of spatial distribution of species in the herbaceous-subshrub layer of an area of moist grassland at the Agua Limpa Farm, Brasília, DF (15 degrees 56' to 15 degrees 59' S and 47 degrees 55' to 47 degrees 58' W Gr.). An area of 400 x 400 m was divided into four sections of 200 x 200 m where four transects were randomly sampled. A line intercept method was adopted for the phytossociological study. Superficial soils samples (0-20 cm) were collected for chemical and textural analyses. Gravimetric soil moisture was measured quarterly during the study-year. A total of 85 species in 67 genera and 24 families were found. The diversity was high, Shannon's index, H', was 2.60 nats.cover(-1). Floristic composition of the transects in soils with a high gravimetric soil moisture and high content of organic matter and sand differed from those transects in soils with a lower gravimetric soil moisture indicating seasonal variation. A Canonical Correspondence Analysis (CCA) showed significant correlations between soil texture and soil moisture features and species distribution. Gravimetric soil moisture, organic matter, clay, silt and sand were significantly correlated to species distribution in the moist grassland determining mosaics in the vegetation.  相似文献   

8.
Aim Our two main goals are first to evaluate the resilience of the boreal forest according to latitude across the closed‐crown forest zone using the post‐disturbance distribution and cover of lichen woodlands and closed‐crown forests as a metric, and second to identify the disturbance factors responsible for the regeneration and degradation of the closed‐crown forest according to latitude since the 1950s. Location The study area extends between 70°00′ and 72°00′ W and throughout the closed‐crown forest zone, from its southern limit near 47°30′ N to its northern limit at the contact with the lichen woodland zone at around 52°40′ N. Methods Recent (1972–2002) and old (1954–1956) aerial photos were used to map the distribution of lichen woodlands across the closed‐crown forest zone. Forest disturbances such as fire, spruce budworm (Choristoneura fumiferana (Clemens)) outbreak, and logging were recorded on each set of aerial photos. Each lichen woodland and stand disturbance was validated by air‐borne surveys and digitized using GIS software. Results Over the last 50 years, the area occupied by lichen woodlands has increased according to latitude; that is, 9% of the area that was occupied by closed‐crown forests has shifted to lichen woodlands. Although logging activities have been concentrated in the same areas during the last 50 years, the area covered by logging has increased significantly. Outbreaks by the spruce budworm occurred predominantly in the southern (47°30′ N to 48°30′ N) and central (48°53′ N to 50°42′ N) parts of the study area, where balsam fir stands are extensive. In the northern part of the study area (51°–52°40′ N), extensive fires affected the distribution and cover of closed‐crown forests and lichen woodlands. Main conclusions Over the last 50 years, the area occupied by closed‐crown forests has decreased dramatically, and the ecological conditions that allow closed‐crown forests to establish and develop are currently less prevalent. Fire is by far the main disturbance, reducing the ability of natural closed‐crown forests to self‐regenerate whatever the latitude. Given the current biogeographical shift from dense to open forests, the northern part of the closed‐crown forest zone is in a process of dramatic change towards the dominance of northern woodlands.  相似文献   

9.
Understanding climatic influences on the proportion of evergreen versus deciduous broad‐leaved tree species in forests is of crucial importance when predicting the impact of climate change on broad‐leaved forests. Here, we quantified the geographical distribution of evergreen versus deciduous broad‐leaved tree species in subtropical China. The Relative Importance Value index (RIV ) was used to examine regional patterns in tree species dominance and was related to three key climatic variables: mean annual temperature (MAT ), minimum temperature of the coldest month (MinT), and mean annual precipitation (MAP ). We found the RIV of evergreen species to decrease with latitude at a lapse rate of 10% per degree between 23.5 and 25°N, 1% per degree at 25–29.1°N, and 15% per degree at 29.1–34°N. The RIV of evergreen species increased with: MinT at a lapse rate of 10% per °C between ?4.5 and 2.5°C and 2% per °C at 2.5–10.5°C; MAP at a lapse rate of 10% per 100 mm between 900 and 1,600 mm and 4% per 100 mm between 1,600 and 2,250 mm. All selected climatic variables cumulatively explained 71% of the geographical variation in dominance of evergreen and deciduous broad‐leaved tree species and the climatic variables, ranked in order of decreasing effects were as follows: MinT > MAP  > MAT . We further proposed that the latitudinal limit of evergreen and deciduous broad‐leaved mixed forests was 29.1–32°N, corresponding with MAT of 11–18.1°C, MinT of ?2.5 to 2.51°C, and MAP of 1,000–1,630 mm. This study is the first quantitative assessment of climatic correlates with the evergreenness and deciduousness of broad‐leaved forests in subtropical China and underscores that extreme cold temperature is the most important climatic determinant of evergreen and deciduous broad‐leaved tree species’ distributions, a finding that confirms earlier qualitative studies. Our findings also offer new insight into the definition and distribution of the mixed forest and an accurate assessment of vulnerability of mixed forests to future climate change.  相似文献   

10.
Aim Using a long‐term data set we investigated the response of semi‐desert grasslands to altered disturbance regimes in conjunction with climate patterns. Specifically, we were interested in the response of a non‐native grass (Eragrostis lehmanniana), mesquite (Prosopis velutina), and native species to the reintroduction of fire and removal of livestock. Location The study site is located on the 45,360‐ha Buenos Aires National Wildlife Refuge (31°32′ N, 110°30′ W) in southern Arizona, USA. In 1985, livestock were removed and prescribed fires were reintroduced to this semi‐desert grassland dominated by non‐native grasses and encroaching mesquite trees. Methods Plant species cover was monitored along 38, 30‐m transects five times over a period of 15 years. Data were analysed using principal components analysis on the variance–covariance and correlation matrix, multivariate analysis of variance for changes over time in relation to environmental data, and analysis of variance for altered disturbance regimes. Results Reintroduction of fire and removal of livestock have not led to an increase in native species diversity or a decrease in non‐native grasses or mesquite. The cover of non‐native grass was influenced by soil type in 1993. Main conclusions Variability of plant community richness, diversity, and cover over time appear to be most closely linked to fluctuations in precipitation rather than human‐altered disturbance regimes. The effects of altered grazing and fire regimes are likely confounded by complex interactions with climatic factors in systems significantly altered from their original physiognomy.  相似文献   

11.
Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought‐fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire‐driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2‐million km2 Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait‐based differences in fire tolerance is critical for determining the climate‐carbon‐fire feedback in tropical savanna and forest biomes.  相似文献   

12.
Savannas are defined based on vegetation structure, the central concept being a discontinuous tree cover in a continuous grass understorey. However, at the high‐rainfall end of the tropical savanna biome, where heavily wooded mesic savannas begin to structurally resemble forests, or where tropical forests are degraded such that they open out to structurally resemble savannas, vegetation structure alone may be inadequate to distinguish mesic savanna from forest. Additional knowledge of the functional differences between these ecosystems which contrast sharply in their evolutionary and ecological history is required. Specifically, we suggest that tropical mesic savannas are predominantly mixed tree–C4 grass systems defined by fire tolerance and shade intolerance of their species, while forests, from which C4 grasses are largely absent, have species that are mostly fire intolerant and shade tolerant. Using this framework, we identify a suite of morphological, physiological and life‐history traits that are likely to differ between tropical mesic savanna and forest species. We suggest that these traits can be used to distinguish between these ecosystems and thereby aid their appropriate management and conservation. We also suggest that many areas in South Asia classified as tropical dry forests, but characterized by fire‐resistant tree species in a C4 grass‐dominated understorey, would be better classified as mesic savannas requiring fire and light to maintain the unique mix of species that characterize them.  相似文献   

13.

Aims

The effects of fire ensure that large areas of the seasonal tropics are maintained as savannas. The advance of forests into these areas depends on shifts in species composition and the presence of sufficient nutrients. Predicting such transitions, however, is difficult due to a poor understanding of the nutrient stocks required for different combinations of species to resist and suppress fires.

Methods

We compare the amounts of nutrients required by congeneric savanna and forest trees to reach two thresholds of establishment and maintenance: that of fire resistance, after which individual trees are large enough to survive fires, and that of fire suppression, after which the collective tree canopy is dense enough to minimize understory growth, thereby arresting the spread of fire. We further calculate the arboreal and soil nutrient stocks of savannas, to determine if these are sufficient to support the expansion of forests following initial establishment.

Results

Forest species require a larger nutrient supply to resist fires than savanna species, which are better able to reach a fire-resistant size under nutrient limitation. However, forest species require a lower nutrient supply to attain closed canopies and suppress fires; therefore, the ingression of forest trees into savannas facilitates the transition to forest. Savannas have sufficient N, K, and Mg, but require additional P and Ca to build high-biomass forests and allow full forest expansion following establishment.

Conclusions

Tradeoffs between nutrient requirements and adaptations to fire reinforce savanna and forest as alternate stable states, explaining the long-term persistence of vegetation mosaics in the seasonal tropics. Low-fertility limits the advance of forests into savannas, but the ingression of forest species favors the formation of non-flammable states, increasing fertility and promoting forest expansion.  相似文献   

14.
Aim We ask whether contemporary forests of the Chilean Coastal Range can be considered to be direct and conservative descendants of pre‐Pleistocene palaeofloras that occurred in southern South America from the Palaeogene to early Neogene periods (65–10 Ma), maintaining foliar physiognomies that do not match their present‐day climate. We also identify the most likely ancestors of present‐day coastal forests. Location Coastal Range of south‐central Chile (33–40° S). Methods We compared leaf morphology between five representative modern floras from mid‐latitude forests of the Chilean Coastal Range, and 14 Palaeogene–early Neogene palaeofloras from southern South America. We also compared the composition of biogeographical elements (defined by the modern distribution of plant genera) between fossil and present‐day assemblages. Palaeoclimatic reconstructions were based on a canonical correspondence analysis between leaf morphology of modern assemblages and eight climatic variables, and tested by a Monte Carlo permutation test. We compared the relative positions of fossil and modern floras on the environmental vector space defined by Canoco, and on axes defined by instrumental and estimated temperature and precipitation data. Results According to foliar characters, Palaeogene palaeofloras were strikingly divergent from present‐day coastal forests of central Chile. In contrast, two extant forest floras of the Chilean Coastal Range have a foliar morphology that resembles some late Eocene to early Miocene mixed palaeofloras, at least 23 Myr older. These two modern sites are representative of an area of the Coastal Range (36–37° S) that has been highlighted for its relictual character. None of the 14 fossil floras corresponded exactly to the modern composition of phytogeographic elements, although correspondence analyses showed that mixed and Neogene subtropical fossil floras were compositionally close to the extant woody floras of coastal forests in central Chile. Main Conclusions Contemporary forests of the Chilean Coastal Range exhibit strong physiognomic resemblance to the mixed palaeofloras from 33°57′ to 41°15′ S, which may be the closest ancestor of the deciduous and endemic‐rich Maulino forest, presently restricted to coastal areas between 36° and 38° S. In turn, the Neogene subtropical palaeoflora that occurred in the Proto‐Andean foothills of central Chile is the likely predecessor of Mediterranean‐type sclerophyllous forests of central Chile (32–33° S). Despite foliar resemblance between the late pre‐Pleistocene and extant forest floras, our palaeoclimatic reconstructions suggest that modern assemblages exist under climatic conditions that do not match their foliar physiognomy. We attribute this convergence in foliar morphology to the ‘evolutionary inertia’ of surviving lineages, favoured by the buffering effect of the coastal environment on climatic variability.  相似文献   

15.
Question: How do N fertilization and disturbance affect the understorey vegetation, microbial properties and soil nutrient concentration in boreal forests? Location: Kuusamo (66°22′N; 29°18′E) and Oulu (65°02′N; 25°47′E) in northern Finland. Methods: We conducted a fully factorial experiment with three factors: site (two levels), N fertilization (four levels) and disturbance (two levels). We measured treatment effects on understorey biomass, vegetation structure, and plant, soil and microbial N and C concentrations. Results: The understorey biomass was not affected by fertilization either in the control or in the disturbance treatment. Fertilization reduced the biomass of deciduous Vaccinium myrtillus. Disturbance had a negative effect on the biomass of V. myrtillus and evergreen Vaccinium vitis‐idaea and decreased the relative proportion of evergreen species. Fertilization and disturbance increased the biomass of grass Deschampsia flexuosa and the relative proportion of graminoids. The amount of NH4+ increased in soil after fertilization, and microbial C decreased after disturbance. Conclusions: Our results suggest that the growth of slow‐growing Vaccinium species and soil microbes in boreal forests are not limited by N availability. However, significant changes in the proportion of dwarf shrubs to graminoids and a decrease in the biomass of V. myrtillus demonstrate the susceptibility of understorey vegetation to N enrichment. N enrichment and disturbance seem to have similar effects on understorey vegetation. Consequently, increasing N does not affect the rate or the direction of recovery after disturbance. Moreover, our study demonstrates the importance of understorey vegetation as a C source for soil microbes in boreal forests.  相似文献   

16.
Fire–vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4 grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.  相似文献   

17.
Aim We investigate the timing and factors responsible for the transformation of closed‐crown forests into lichen–spruce woodlands. Location The study area extends between 70° and 72° W in the closed‐crown forest zone from its southern limit near 47°30′ N to its northern limit at the contact with the lichen–spruce woodland zone around 52°10′ N. A total of 24 lichen–spruce woodlands were selected. Methods Radiocarbon dating of charcoals at mineral soil contact and within the organic horizons allowed the principal factors causing the degradation of the closed‐crown forest to be identified, i.e. light fires, successive fires and the occurrence of a spruce budworm epidemic followed by a fire. Results Charcoals dated in the organic horizon were less than 200 years old, suggesting a recent transformation of the closed‐crown forest following surface fires. Before their transformation into lichen–spruce woodlands, stands were occupied by old, dense forests that originated from fires dating back to 1000 yr bp . The radiocarbon dating of charcoals in the organic horizon indicated that several stands burned twice in less than 50 years, while others burned shortly after a spruce budworm epidemic. Light fires are frequent within the lichen–spruce woodlands according to multiple charcoal layers found within the organic matter horizon. Main conclusions While closed‐crown forests are predicted to expand under climate warming, compound disturbances diminish the natural regeneration of the closed‐crown forests in the south and favour the expansion of lichen–spruce woodlands. As black spruce germinates on mineral soils, surface fires accentuate the expansion of the lichen–spruce woodlands southward. Under global warming, warmer springs will lead to earlier low‐intensity fires that do not remove as much organic matter, and hence prevent conditions suitable for black spruce regeneration. Also, spruce budworm reduces seed production for a certain time. The occurrence of fire during this period is critical for regeneration of black spruce.  相似文献   

18.
Three stocks of the Brazilian flathead Percophis brasiliensis were identified on the coast of Argentina and Uruguay using parasites as biological tags. A total of 177 fish were examined and 23 parasite species were found. Fish were caught in four zones: north of the Argentine–Uruguayan Common Fishing Zone (34°30′–36°30′ S; 53°30′–56°00′ W), south of the Argentine–Uruguayan Common Fishing Zone (38°08′ S 57°32′ W), El Rincón zone (39–41° S; 60–62° W) and San Matías Gulf (41°40′–42°10′ S; 63°50′–65°00′ W). Discriminant analyses allowed the identification of three discrete stocks in the four zones (86·44% of classified samples were correctly identified), with P. brasiliensis from both north and south of the Argentine–Uruguayan Common Fishing Zone clumping together, as a single stock. Some species were important in discriminating among groups, Anisakis simplex was related to southern areas, while Grillotia sp., Corynosoma australe and Hysterothylacium sp. were important in determining the position of fish from the Argentine–Uruguayan Common Fishing Zone. These results were corroborated by comparing parasite prevalence and abundance among zones. The main differences were observed in those comparisons involving fish from the San Matías Gulf. Fish from the Argentine–Uruguayan Common Fishing Zone were characterized by higher infections of Grillotia sp., C. australe, Corynosoma cetaceum and Hysterothylacium sp., while the samples from El Rincón and San Matías Gulf showed higher infections of A. simplex. Samples from San Matías Gulf were characterized by lower levels of parasitism for all other species. Differences in environmental factors and their influence on the distribution of zooplankton and other hosts in the food web may be differentially shaping the parasite community structure in each zone, resulting in identifiable stocks of the P. brasiliensis. The present study confirmed the existence of regional biological tags that delineated fish assemblages.  相似文献   

19.
This study attempts to understand the biogeographic history of the Western Ghats forests by investigating decoupling between phylogenetic and taxonomic diversity. We specifically test whether the deciduous forests have been recently established, whether the southern region was a refuge, and whether the deciduous and evergreen forest species have disparate evolutionary histories. We used species composition data from 23 forest types along the Western Ghats for all woody angiosperms above 10‐cm diameter at breast height. Forests were broadly grouped as either evergreen or deciduous. Mean phylogenetic distances corrected for species richness and mean phylogenetic beta diversity corrected for shared species were assessed using z‐scores from null distributions. Null distributions were generated by randomizing the species relationships on the phylogeny. We found that all evergreen forests showed a greater phylogenetic diversity as compared with null expectations. Deciduous forests showed the inverse pattern. Within the evergreen belt, there was a decreasing phylogenetic diversity from south to north, as predicted by the southern refuge hypothesis. The phylogenetic beta diversity across evergreen–deciduous forests was lesser than the null expectation, whereas it was much higher across forests within the evergreen belt. This study provides the first phylogenetic evidence for the antiquity of evergreen forests as well as the southern refuge hypothesis in the Western Ghats. The deciduous forests species have shared evolutionary histories with the evergreen forest species, suggesting multiple shifts between evergreen and deciduous states through the lineages. Conversely, the evergreen species exhibited a disparate evolutionary history across these forests, possibly owing to sharper ecological or climatic gradients.  相似文献   

20.
Sensitivity of African biomes to changes in the precipitation regime   总被引:4,自引:0,他引:4  
Aim Africa is identified by the Inter‐governmental Panel on Climate Change (IPCC) as the least studied continent in terms of ecosystem dynamics and climate variability. The aim of this study was (1) to adapt the Lund‐Postdam‐Jena‐GUESS (LPJ‐GUESS) ecological modelling framework to Africa by providing new parameter values for tropical plant functional types (PFT), and (2) to assess the sensitivity of some African biomes to changes in precipitation regime. Location The study area was a representative transect (0–22° N and 7–18° E) through the transition from equatorial evergreen forests to savannas, steppes and desert northwards. The transect showed large latitudinal variation in precipitation (mean rainfall ranged from 50 to 2300 mm year?1). Methods New PFT parameters used to calibrate LPJ‐GUESS were based on modern pollen PFTs and remote sensed leaf area index (LAI). The model was validated using independent modern pollen assemblages, LAI and through comparison with White's modern potential vegetation map. Several scenarios were developed by combining changes in total rainfall amount with variation in the length of the dry season in order to test the sensitivity of African biomes. Results Simulated vegetation compared well to observed data at local and regional scales, in terms of ecosystem functioning (LAI), and composition (pollen and White's vegetation map). The assessment of the sensitivity of biomes to changes in precipitation showed that none of the ecosystems would shift towards a new type under the range of precipitation increases suggested by the IPCC (increases from 5 to 20%). However, deciduous and semi‐deciduous forests may be very sensitive to small reductions in both the amount and seasonality of precipitation. Main conclusions This version of LPJ‐GUESS parameterized for Africa simulated correctly the vegetation present over a wide precipitation gradient. The biome sensitivity assessment showed that, compared with savannas and grasslands, closed canopy forests may be more sensitive to change in precipitation regime due to the synergetic effects of changed rainfall amounts and seasonality on vegetation functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号