首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Converting land to biofuel feedstock production incurs changes in soil organic carbon (SOC) that can influence biofuel life‐cycle greenhouse gas (GHG) emissions. Estimates of these land use change (LUC) and life‐cycle GHG emissions affect biofuels' attractiveness and eligibility under a number of renewable fuel policies in the USA and abroad. Modeling was used to refine the spatial resolution and depth extent of domestic estimates of SOC change for land (cropland, cropland pasture, grassland, and forest) conversion scenarios to biofuel crops (corn, corn stover, switchgrass, Miscanthus, poplar, and willow) at the county level in the USA. Results show that in most regions, conversions from cropland and cropland pasture to biofuel crops led to neutral or small levels of SOC sequestration, while conversion of grassland and forest generally caused net SOC loss. SOC change results were incorporated into the Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model to assess their influence on life‐cycle GHG emissions of corn and cellulosic ethanol. Total LUC GHG emissions (g CO2eq MJ?1) were 2.1–9.3 for corn‐, ?0.7 for corn stover‐, ?3.4 to 12.9 for switchgrass‐, and ?20.1 to ?6.2 for Miscanthus ethanol; these varied with SOC modeling assumptions applied. Extending the soil depth from 30 to 100 cm affected spatially explicit SOC change and overall LUC GHG emissions; however, the influence on LUC GHG emission estimates was less significant in corn and corn stover than cellulosic feedstocks. Total life‐cycle GHG emissions (g CO2eq MJ?1, 100 cm) were estimated to be 59–66 for corn ethanol, 14 for stover ethanol, 18–26 for switchgrass ethanol, and ?7 to ?0.6 for Miscanthus ethanol. The LUC GHG emissions associated with poplar‐ and willow‐derived ethanol may be higher than that for switchgrass ethanol due to lower biomass yield.  相似文献   

2.
This study evaluates the effect of agronomic uncertainty on bioenergy crop production as well as endogenous commodity and biomass prices on the feedstock composition of cellulosic biofuels under a binding mandate in the United States. The county‐level simulation model focuses on both field crops (corn, soybean, and wheat) and biomass feedstocks (corn stover, wheat straw, switchgrass, and Miscanthus). In addition, pasture serves as a potential area for bioenergy crop production. The economic model is calibrated to 2022 in terms of yield, crop demand, and baseline prices and allocates land optimally among the alternative crops given the binding cellulosic biofuel mandate. The simulation scenarios differ in terms of bioenergy crop type (switchgrass and Miscanthus) and yield, biomass production inputs, and pasture availability. The cellulosic biofuel mandates range from 15 to 60 billion L. The results indicate that the 15 and 30 billion L mandates in the high production input scenarios for switchgrass and Miscanthus are covered entirely by agricultural residues. With the exception of the low production input for Miscanthus scenario, the share of agricultural residues is always over 50% for all other scenarios including the 60 billion L mandate. The largest proportion of agricultural land dedicated to either switchgrass or Miscanthus is found in the southern Plains and the southeast. Almost no bioenergy crops are grown in the Midwest across all scenarios. Changes in the prices for the three commodities are negligible for cellulosic ethanol mandates because most of the mandate is met with agricultural residues. The lessons learned are that (1) the share of agricultural residue in the feedstock mix is higher than previously estimated and (2) for a given mandate, the feedstock composition is relatively stable with the exception of one scenario.  相似文献   

3.
Production of biofuel feedstocks in agricultural landscapes will result in land use changes that may have major implications for arthropod-mediated ecosystem services such as pollination and pest suppression. By comparing the abundance and diversity of insect pollinators and generalist natural enemies in three model biofuel crops: corn, switchgrass, and mixed prairie, we tested the hypothesis that biofuel crops comprised of more diverse plant communities would support increased levels of beneficial insects. These three biofuel crops contained a diverse bee community comprised of 75 species. Overall, bees were three to four times more abundant in switchgrass and prairie than in corn, with members of the sweat bee (Halictidae) and small carpenter bee (Ceratina spp.) groups the most abundant. Switchgrass and prairie had significantly greater bee species richness than corn during the July sampling period. The natural enemy community at these sites was dominated by lady beetles (Coccinellidae), long-legged flies (Dolichopodidae), and hover flies (Syrphidae) which varied in their response to crop type. Coccinellids were generally most abundant in prairie and switchgrass, with the exception of the pollen feeding Coleomegilla maculata that was most abundant in corn. Several rare or declining coccinellid species were detected in prairie and switchgrass sites. Dolichopodidae were more abundant in prairie and switchgrass while Syrphidae showed no significant response to crop type. Our results indicate that beneficial insects generally responded positively to the increased vegetational diversity of prairie and switchgrass sites; however, when managed as a dedicated biofuel crop, plant and arthropod diversity in switchgrass may decrease. Our findings support the hypothesis that vegetationally diverse biofuel crops support higher abundance and diversity of beneficial insects. Future policy regarding the production of biofuel feedstocks should consider the ecosystem services that different biofuel crops may support in agricultural landscapes.  相似文献   

4.
Growing concerns about energy and the environment have led to worldwide use of bioenergy. Switching from food crops to biofuel crops is an option to meet the fast‐growing need for biofuel feedstocks. This land use change consequently affects the ecosystem carbon balance. In this study, we used a biogeochemistry model, the Terrestrial Ecosystem Model, to evaluate the impacts of this change on the carbon balance, bioenergy production, and agricultural yield, assuming that several land use change scenarios from corn, soybean, and wheat to biofuel crops of switchgrass and Miscanthus will occur. We found that biofuel crops have much higher net primary production (NPP) than soybean and wheat crops. When food crops from current agricultural lands were changed to different biofuel crops, the national total NPP increased in all cases by a range of 0.14–0.88 Pg C yr?1, except while switching from corn to switchgrass when a decrease of 14% was observed. Miscanthus is more productive than switchgrass, producing about 2.5 times the NPP of switchgrass. The net carbon loss ranges from 1.0 to 6.3 Tg C yr?1 if food crops are changed to switchgrass, and from 0.4 to 6.7 Tg C yr?1 if changed to Miscanthus. The largest loss was observed when soybean crops were replaced with biofuel crops. Soil organic carbon increased significantly when land use changed, reaching 100 Mg C ha?1 in biofuel crop ecosystems. When switching from food crops to Miscanthus, the per unit area croplands produced a larger amount of ethanol than that of original food crops. In comparison, the land use change from wheat to Miscanthus produced more biomass and sequestrated more carbon. Our study suggests that Miscanthus could better serve as an energy crop than food crops or switchgrass, considering both economic and environmental benefits.  相似文献   

5.
The recent increase in corn ethanol production has drawn attention to the environmental sustainability of biofuel production. Environmental assessments of second‐generation biofuel crops (SGBC) have focused primarily on greenhouse gas emissions and water quality. However, expanding the production of cellulosic biomass resources, especially those that require dedicated agricultural land, is also likely to have impacts on biodiversity. We developed an optimization framework for projecting the spatial pattern of SGBC expansion in the United States and intersected these predictions with occurrence data for at‐risk species. In particular, we focused on two candidate perennial grass feedstocks, Panicum virgatum (switchgrass), and Miscanthus × giganteus (Miscanthus). Tradeoffs between biodiversity and economic profitability are assessed using county level data sets of SGBC yield, agricultural land availability, land rents, and at‐risk species occurrences. Results show that future SGBC expansion is likely to occur outside of the Corn Belt, where conventional biofuel feedstocks are currently grown. The set of at‐risk species that could potentially be impacted is therefore likely to be different from the at‐risk species prevalent in the agroecological landscapes of the Upper Midwest that are dominated by corn and soy production. The total number and type of potentially impacted taxa is influenced by several factors, including the total demand for cellulosic biomass, the type of agricultural land used for production, and the method for defining at‐risk species. SGBC production is also concentrated in fewer counties when a national species conservation constraint is combined with a biofuel production mandate. This analysis provides a foundation for future research on species conservation in bioenergy production landscapes and highlights the importance of incorporating biodiversity into broader environmental assessments of biofuel sustainability.  相似文献   

6.
7.
The proposed expansion of biofuels production may cause unintended land‐use changes and potentially alter ecosystem services. This study evaluated the impact of first‐generation (corn) and second‐generation (switchgrass and Miscanthus) biofuel crops on production and oviposition site selection by two vector mosquitoes, the yellow fever mosquito Aedes aegypti and the Asian tiger mosquito Aedes albopictus. Larvae of the two species were reared at varying conspecific and heterospecific densities in senescent leaf infusions prepared from one of the three biofuel crops and their survival and development time to adulthood determined. The effects of the three leaf infusions on water chemistry and oviposition site selection by the two mosquito species were also determined. Ae. albopictus females deposited significantly fewer eggs in Miscanthus than in corn infusion while Ae. aegypti females deposited significantly fewer eggs in Miscanthus than in both corn and switchgrass infusion. Survival to adulthood for both mosquito species was significantly lower in corn than in switchgrass and Miscanthus infusions; was consistently lower at high‐ (0:40 and 20:20) than at low density treatments in both switchgrass and Miscanthus infusions; and significantly lower at high intraspecific density (40:0 and 0: 40) than at high interspecific density (20:20) in Miscanthus infusion. Development time to adulthood was positively related to larval density, but was not influenced by biofuel leaf treatment. Corn infusion had lower pH values and higher salinity, conductivity, total dissolved solids (TDS), and temperature values than switchgrass and Miscanthus infusions. These findings demonstrate the potential for biofuel crops to modify the chemistry of aquatic habitats in ways that may influence mosquito production and thereby the risk of exposure to mosquito‐borne diseases.  相似文献   

8.
Producing biofuel feedstocks on current agricultural land raises questions of a ‘food‐vs.‐fuel’ trade‐off. The use of current or former Conservation Reserve Program (CRP) land offers an alternative; yet the volumes of ethanol that could be produced and the potential environmental impacts of such a policy are unclear. Here, we applied the Environmental Policy Integrated Climate model to a US Department of Agriculture database of over 200 000 CRP polygons in Iowa, USA, as a case study. We simulated yields and environmental impacts of growing three cellulosic biofuel feedstocks on CRP land: (i) an Alamo‐variety switchgrass (Panicum virgatum L.); (ii) a generalized mixture of C4 and C3 grasses; (iii) and no‐till corn (Zea mays L.) with residue removal. We simulated yields, soil erosion, and soil carbon (C) and nitrogen (N) stocks and fluxes. We found that although no‐till corn with residue removal produced approximately 2.6–4.4 times more ethanol per area compared to switchgrass and the grass mixture, it also led to 3.9–4.5 times more erosion, 4.4–5.2 times more cumulative N loss, and a 10% reduction in total soil carbon as opposed to a 6–11% increase. Switchgrass resulted in the best environmental outcomes even when expressed on a per liter ethanol basis. Our results suggest planting no‐till corn with residue removal should only be done on low slope soils to minimize environmental concerns. Overall, this analysis provides additional information to policy makers on the potential outcome and effects of producing biofuel feedstocks on current or former conservation lands.  相似文献   

9.
This study integrates a biophysical model with a county‐specific economic analysis of breakeven prices of bioenergy crop production to assess the biophysical and economic potential of biofuel production in the Midwestern United States. The bioenergy crops considered in this study include a genotype of Miscanthus, Miscanthus×giganteus, and the Cave‐in‐Rock breed of switchgrass (Panicum virgatum). The estimated average peak biomass yield for miscanthus in the Midwestern states ranges between 7 and 48 metric tons dry matter per hectare per year ( t DM ha?1 yr?1), while that for switchgrass is between 10 and 16 t DM ha?1 yr?1. With the exception of Minnesota and Wisconsin, where miscanthus yields are likely to be low due to cold soil temperatures, the yield of miscanthus is on average more than two times higher than yield of switchgrass. We find that the breakeven price, which includes the cost of producing the crop and the opportunity cost of land, of producing miscanthus ranges from $53 t?1 DM in Missouri to $153 t?1 DM in Minnesota in the low‐cost scenario. Corresponding costs for switchgrass are $88 t?1 DM in Missouri to $144 t?1 DM in Minnesota. In the high‐cost scenario, the lowest cost for miscanthus is $85 t?1 DM and for switchgrass is $118 t?1 DM, both in Missouri. These two scenarios differ in their assumptions about ease of establishing the perennial crops, nutrient requirements and harvesting costs and losses. The differences in the breakeven prices across states and across crops are mainly driven by bioenergy and row crop yields per hectare. Our results suggest that while high yields per unit of land of bioenergy crops are critical for the competitiveness of bioenergy feedstocks, the yields of the row crops they seek to displace are also an important consideration. Even high yielding crops, such as miscanthus, are likely to be economically attractive only in some locations in the Midwest given the high yields of corn and soybean in the region.  相似文献   

10.
Biofuels are now an important resource in the United States because of the Energy Independence and Security Act of 2007. Both increased corn growth for ethanol production and perennial dedicated energy crop growth for cellulosic feedstocks are potential sources to meet the rising demand for biofuels. However, these measures may cause adverse environmental consequences that are not yet fully understood. This study 1) evaluates the long‐term impacts of increased frequency of corn in the crop rotation system on water quantity and quality as well as soil fertility in the James River Basin and 2) identifies potential grasslands for cultivating bioenergy crops (e.g. switchgrass), estimating the water quality impacts. We selected the soil and water assessment tool, a physically based multidisciplinary model, as the modeling approach to simulate a series of biofuel production scenarios involving crop rotation and land cover changes. The model simulations with different crop rotation scenarios indicate that decreases in water yield and soil nitrate nitrogen (NO3‐N) concentration along with an increase in NO3‐N load to stream water could justify serious concerns regarding increased corn rotations in this basin. Simulations with land cover change scenarios helped us spatially classify the grasslands in terms of biomass productivity and nitrogen loads, and we further derived the relationship of biomass production targets and the resulting nitrogen loads against switchgrass planting acreages. The suggested economically efficient (planting acreage) and environmentally friendly (water quality) planting locations and acreages can be a valuable guide for cultivating switchgrass in this basin. This information, along with the projected environmental costs (i.e. reduced water yield and increased nitrogen load), can contribute to decision support tools for land managers to seek the sustainability of biofuel development in this region.  相似文献   

11.
Federal mandates to increase biofuel production in North America will require large new tracts of land with potential to negatively impact biodiversity, yet empirical information to guide implementation is limited. Because the temperate grassland biome will be a production hotspot for many candidate feedstocks, production is likely to impact grassland birds, a group of major conservation concern. We employed a multiscaled approach to investigate the relative importance of arthropod food availability, microhabitat structure, patch size and landscape‐scale habitat structure and composition as factors shaping avian richness and abundance in fields of one contemporary (corn) and two candidate cellulosic biomass feedstocks (switchgrass and mixed‐grass prairie) not currently managed as crops. Bird species richness and species density increased with patch size in prairie and switchgrass, but not in corn, and was lower in landscapes with higher forest cover. Perennial plantings supported greater diversity and biomass of arthropods, an important food for land birds, but neither metric was important in explaining variation in the avian community. Avian richness was higher in perennial plantings with greater forb content and a more diverse vegetation structure. Maximum bird species richness was commonly found in fields of intermediate vegetation density and grassland specialists were more likely to occur in prairies. Our results suggest that, in contrast to corn, perennial biomass feedstocks have potential to provide benefits to grassland bird populations if they are cultivated in large patches within relatively unforested landscapes. Ultimately, genetic improvement of feedstock genets and crop management techniques that attempt to maximize biomass production and simplify crop vegetation structure will be likely to reduce the value of perennial biomass plantings to grassland bird populations.  相似文献   

12.
Switchgrass (Panicum virgatum) has been evaluated as one potential source for cellulosic biofuel feedstocks. Planting switchgrass in marginal croplands and waterway buffers can reduce soil erosion, improve water quality, and improve regional ecosystem services (i.e. it serves as a potential carbon sink). In previous studies, we mapped high risk marginal croplands and highly erodible cropland buffers that are potentially suitable for switchgrass development, which would improve ecosystem services and minimally impact food production. In this study, we advance our previous study results and integrate future crop expansion information to develop a switchgrass biofuel potential ensemble map for current and future croplands in eastern Nebraska. The switchgrass biomass productivity and carbon benefits (i.e. NEP: net ecosystem production) for the identified biofuel potential ensemble areas were quantified. The future scenario‐based (‘A1B’) land use and land cover map for 2050, the US Geological Survey crop type and Compound Topographic Index (CTI) maps, and long‐term (1981–2010) averaged annual precipitation data were used to identify future crop expansion regions that are suitable for switchgrass development. Results show that 2528 km2 of future crop expansion regions (~3.6% of the study area) are potentially suitable for switchgrass development. The total estimated biofuel potential ensemble area (including cropland buffers, marginal croplands, and future crop expansion regions) is 4232 km2 (~6% of the study area), potentially producing 3.52 million metric tons of switchgrass biomass per year. Converting biofuel ensemble regions to switchgrass leads to potential carbon sinks (the total NEP for biofuel potential areas is 0.45 million metric tons C) and is environmentally sustainable. Results from this study improve our understanding of environmental conditions and ecosystem services of current and future cropland systems in eastern Nebraska and provide useful information to land managers to make land use decisions regarding switchgrass development.  相似文献   

13.
Growing biomass feedstocks from marginal lands is becoming an increasingly attractive choice for producing biofuel as an alternative energy to fossil fuels. Here, we used a biogeochemical model at ecosystem scale to estimate crop productivity and greenhouse gas (GHG) emissions from bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops, switchgrass, and Miscanthus, were assumed to be grown on the abandoned land and mixed crop‐vegetation land with marginal productivity. Production of biomass and biofuel as well as net carbon exchange and nitrous oxide emissions were estimated in a spatially explicit manner. We found that, cellulosic crops, especially Miscanthus could produce a considerable amount of biomass, and the effective ethanol yield is high on these marginal lands. For every hectare of marginal land, switchgrass and Miscanthus could produce 1.0–2.3 kl and 2.9–6.9 kl ethanol, respectively, depending on nitrogen fertilization rate and biofuel conversion efficiency. Nationally, both crop systems act as net GHG sources. Switchgrass has high global warming intensity (100–390 g CO2eq l?1 ethanol), in terms of GHG emissions per unit ethanol produced. Miscanthus, however, emits only 21–36 g CO2eq to produce every liter of ethanol. To reach the mandated cellulosic ethanol target in the United States, growing Miscanthus on the marginal lands could potentially save land and reduce GHG emissions in comparison to growing switchgrass. However, the ecosystem modeling is still limited by data availability and model deficiencies, further efforts should be made to classify crop‐specific marginal land availability, improve model structure, and better integrate ecosystem modeling into life cycle assessment.  相似文献   

14.
Switchgrass (Panicum virgatum L.), a highly productive perennial grass, has been recommended as one potential source for cellulosic biofuel feedstocks. Previous studies indicate that planting perennial grasses (e.g., switchgrass) in high‐topographic‐relief cropland waterway buffers can improve local environmental conditions and sustainability. The main advantages of this land management practice include (i) reducing soil erosion and improving water quality because switchgrass requires less tillage, fertilizers, and pesticides; and (ii) improving regional ecosystem services (e.g., improving water infiltration, minimizing drought and flood impacts on production, and serving as carbon sinks). In this study, we mapped high‐topographic‐relief cropland waterway buffers with high switchgrass productivity potential that may be suitable for switchgrass development in the eastern Great Plains (EGP). The US Geological Survey (USGS) Compound Topographic Index map, National Land Cover Database 2011, USGS irrigation map, and a switchgrass biomass productivity map derived from a previous study were used to identify the switchgrass potential areas. Results show that about 16 342 km2 (c. 1.3% of the total study area) of cropland waterway buffers in the EGP are potentially suitable for switchgrass development. The total annual estimated switchgrass biomass production for these suitable areas is approximately 15 million metric tons. Results from this study provide useful information on EGP areas with good cellulosic switchgrass biomass production potential and synergistic substantial potential for improvement of ecosystem services.  相似文献   

15.
Dedicated energy crops and crop residues will meet herbaceous feedstock demands for the new bioeconomy in the Central and Eastern USA. Perennial warm-season grasses and corn stover are well-suited to the eastern half of the USA and provide opportunities for expanding agricultural operations in the region. A suite of warm-season grasses and associated management practices have been developed by researchers from the Agricultural Research Service of the US Department of Agriculture (USDA) and collaborators associated with USDA Regional Biomass Research Centers. Second generation biofuel feedstocks provide an opportunity to increase the production of transportation fuels from recently fixed plant carbon rather than from fossil fuels. Although there is no “one-size-fits-all” bioenergy feedstock, crop residues like corn (Zea mays L.) stover are the most readily available bioenergy feedstocks. However, on marginally productive cropland, perennial grasses provide a feedstock supply while enhancing ecosystem services. Twenty-five years of research has demonstrated that perennial grasses like switchgrass (Panicum virgatum L.) are profitable and environmentally sustainable on marginally productive cropland in the western Corn Belt and Southeastern USA.  相似文献   

16.
Cultivating annual row crops in high topographic relief waterway buffers has negative environmental effects and can be environmentally unsustainable. Growing perennial grasses such as switchgrass (Panicum virgatum L.) for biomass (e.g., cellulosic biofuel feedstocks) instead of annual row crops in these high relief waterway buffers can improve local environmental conditions (e.g., reduce soil erosion and improve water quality through lower use of fertilizers and pesticides) and ecosystem services (e.g., minimize drought and flood impacts on production; improve wildlife habitat, plant vigor, and nitrogen retention due to post-senescence harvest for cellulosic biofuels; and serve as carbon sinks). The main objectives of this study are to: (1) identify cropland areas with high topographic relief (high runoff potentials) and high switchgrass productivity potential in eastern Nebraska that may be suitable for growing switchgrass, and (2) estimate the total switchgrass production gain from the potential biofuel areas. Results indicate that about 140,000 hectares of waterway buffers in eastern Nebraska are suitable for switchgrass development and the total annual estimated switchgrass biomass production for these suitable areas is approximately 1.2 million metric tons. The resulting map delineates high topographic relief croplands and provides useful information to land managers and biofuel plant investors to make optimal land use decisions regarding biofuel crop development and ecosystem service optimization in eastern Nebraska.  相似文献   

17.
Spatial distribution and habitat selection are integral to the study of animal ecology. Habitat selection may optimize the fitness of individuals. Hutchinsonian niche theory posits the fundamental niche of species would support the persistence or growth of populations. Although niche‐based species distribution models (SDMs) and habitat suitability models (HSMs) such as maximum entropy (Maxent) have demonstrated fair to excellent predictive power, few studies have linked the prediction of HSMs to demographic rates. We aimed to test the prediction of Hutchinsonian niche theory that habitat suitability (i.e., likelihood of occurrence) would be positively related to survival of American beaver (Castor canadensis), a North American semi‐aquatic, herbivorous, habitat generalist. We also tested the prediction of ideal free distribution that animal fitness, or its surrogate, is independent of habitat suitability at the equilibrium. We estimated beaver monthly survival probability using the Barker model and radio telemetry data collected in northern Alabama, United States from January 2011 to April 2012. A habitat suitability map was generated with Maxent for the entire study site using landscape variables derived from the 2011 National Land Cover Database (30‐m resolution). We found an inverse relationship between habitat suitability index and beaver survival, contradicting the predictions of niche theory and ideal free distribution. Furthermore, four landscape variables selected by American beaver did not predict survival. The beaver population on our study site has been established for 20 or more years and, subsequently, may be approaching or have reached the carrying capacity. Maxent‐predicted increases in habitat use and subsequent intraspecific competition may have reduced beaver survival. Habitat suitability‐fitness relationships may be complex and, in part, contingent upon local animal abundance. Future studies of mechanistic SDMs incorporating local abundance and demographic rates are needed.  相似文献   

18.
Perennial bioenergy crops are considered an important feedstock for a growing bioeconomy. However, in the USA, production of biofuel from these dedicated, nonfood crops is lagging behind federal mandates and markets have yet to develop. Most studies on the economic potential of perennial biofuel crops have concluded that even high‐yielding bioenergy grasses are unprofitable compared to corn/soybeans, the prevailing crops in the United States Corn Belt. However, they did not account for opportunities precision agriculture presents to integrate perennials into agronomically and economically underperforming parts of corn/soybean fields. Using publicly available subfield data and market projections, we identified an upper bound to the areas in Iowa, United States, where the conversion from corn/soybean cropland to an herbaceous bioenergy crop, switchgrass, could be economically viable under different price, land tenancy, and yield scenarios. Assuming owned land, medium crop prices, and a biomass price of US$ 55 Mg?1, we showed that 4.3% of corn/soybean cropland could break even when converted to switchgrass yielding up to 10.08 Mg ha?1. The annualized change in net present value on each converted subfield patch ranged from just above US$ 0 ha?1 to 692 ha?1. In the three counties of highest economic opportunity, total annualized producer benefits from converting corn/soybean to switchgrass summed to US$ 2.6 million, 3.4 million, and 7.6 million, respectively. This is the first study to quantify an upper bound to the potential private economic benefits from targeted conversion of unfavorable corn/soybean cropland to switchgrass, leaving arable land already under perennial cover unchanged. Broadly, we conclude that areas with high within‐field yield variation provide highest economic opportunities for switchgrass conversion. Our results are relevant for policy design intended to improve the sustainability of agricultural production. While focused on Iowa, this approach is applicable to other intensively farmed regions globally with similar data availability.  相似文献   

19.
Crop residues are potential biofuel feedstocks, but residue removal may reduce soil carbon (C). The inclusion of a cover crop in a corn bioenergy system could provide additional biomass, mitigating the negative effects of residue removal by adding to stable soil C pools. In a no‐till continuous corn bioenergy system in the northern US Corn Belt, we used 13CO2 pulse labeling to trace plant C from a winter rye (Secale cereale) cover crop into different soil C pools for 2 years following rye cover crop termination. Corn stover left as residue (30% of total stover) contributed 66, corn roots 57, rye shoots 61, rye roots 50, and rye rhizodeposits 25 g C m?2 to soil. Five months following cover crop termination, belowground cover crop inputs were three times more likely to remain in soil C pools than were aboveground inputs, and much of the root‐derived C was in mineral‐associated soil fractions. After 2 years, both above‐ and belowground inputs had declined substantially, indicating that the majority of both root and shoot inputs are eventually mineralized. Our results underscore the importance of cover crop roots vs. shoots and the importance of cover crop rhizodeposition (33% of total belowground cover crop C inputs) as a source of soil C. However, the eventual loss of most cover crop C from these soils indicates that cover crops will likely need to be included every year in rotations to accumulate soil C.  相似文献   

20.
Growing cellulosic feedstock crops (e.g., switchgrass) for biofuel is more environmentally sustainable than corn‐based ethanol. Specifically, this practice can reduce soil erosion and water quality impairment from pesticides and fertilizer, improve ecosystem services and sustainability (e.g., serve as carbon sinks), and minimize impacts on global food supplies. The main goal of this study was to identify high‐risk marginal croplands that are potentially suitable for growing cellulosic feedstock crops (e.g., switchgrass) in the US Great Plains (GP). Satellite‐derived growing season Normalized Difference Vegetation Index, a switchgrass biomass productivity map obtained from a previous study, US Geological Survey (USGS) irrigation and crop masks, and US Department of Agriculture (USDA) crop indemnity maps for the GP were used in this study. Our hypothesis was that croplands with relatively low crop yield but high productivity potential for switchgrass may be suitable for converting to switchgrass. Areas with relatively low crop indemnity (crop indemnity <$2 157 068) were excluded from the suitable areas based on low probability of crop failures. Results show that approximately 650 000 ha of marginal croplands in the GP are potentially suitable for switchgrass development. The total estimated switchgrass biomass productivity gain from these suitable areas is about 5.9 million metric tons. Switchgrass can be cultivated in either lowland or upland regions in the GP depending on the local soil and environmental conditions. This study improves our understanding of ecosystem services and the sustainability of cropland systems in the GP. Results from this study provide useful information to land managers for making informed decisions regarding switchgrass development in the GP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号