首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ERCC1 (excision repair cross complementing‐group 1) is a mammalian endonuclease that incises the damaged strand of DNA during nucleotide excision repair and interstrand cross‐link repair. Ercc1?/Δ mice, carrying one null and one hypomorphic Ercc1 allele, have been widely used to study aging due to accelerated aging phenotypes in numerous organs and their shortened lifespan. Ercc1?/Δ mice display combined features of human progeroid and cancer‐prone syndromes. Although several studies report cellular senescence and apoptosis associated with the premature aging of Ercc1?/Δ mice, the link between these two processes and their physiological relevance in the phenotypes of Ercc1?/Δ mice are incompletely understood. Here, we show that ERCC1 depletion, both in cultured human fibroblasts and the skin of Ercc1?/Δ mice, initially induces cellular senescence and, importantly, increased expression of several SASP (senescence‐associated secretory phenotype) factors. Cellular senescence induced by ERCC1 deficiency was dependent on activity of the p53 tumor‐suppressor protein. In turn, TNFα secreted by senescent cells induced apoptosis, not only in neighboring ERCC1‐deficient nonsenescent cells, but also cell autonomously in the senescent cells themselves. In addition, expression of the stem cell markers p63 and Lgr6 was significantly decreased in Ercc1?/Δ mouse skin, where the apoptotic cells are localized, compared to age‐matched wild‐type skin, possibly due to the apoptosis of stem cells. These data suggest that ERCC1‐depleted cells become susceptible to apoptosis via TNFα secreted from neighboring senescent cells. We speculate that parts of the premature aging phenotypes and shortened health‐ or lifespan may be due to stem cell depletion through apoptosis promoted by senescent cells.  相似文献   

2.
The retinal degeneration 7 (rd7) mouse, lacking expression of the Nr2e3 gene, exhibits retinal dysplasia and a slow, progressive degeneration due to an abnormal production of blue opsin-expressing cone cells. In this study we evaluated three strains of mice to identify alleles that would slow or ameliorate the retinal degeneration observed in Nr2e3 rd7/rd7 mice. Our studies reveal that genetic background greatly influences the expression of the Nr2e3 rd7/rd7 phenotype and that the inbred mouse strains CAST/EiJ, AKR/J, and NOD.NON-H2 nb1 carry alleles that confer resistance to Nr2e3 rd7/rd7 -induced retinal degeneration. B6.Cg-Nr2e3 rd7/rd7 mice were outcrossed to each strain and the F1 progeny were intercrossed to produce F2 mice. In each intercross, 20–24% of the total F2 progeny were homozygous for the Nr2e3 rd7/rd7 mutation in a mixed genetic background; approximately 28–48% of the Nr2e3 rd7/rd7 homozygotes were suppressed for the degenerative retina phenotype in a mixed genetic background. The suppressed mice had no retinal spots and normal retinal morphology with a normal complement of blue opsin-expressing cone cells. An initial genome scan revealed a significant association of the suppressed phenotype with loci on chromosomes 8 and 19 with the CAST/EiJ background, two marginal loci on chromosomes 7 and 11 with the AKR/J background, and no significant QTL with the NOD.NON-H2 nb1 background. We did not observe any significant epistatic effects in this study. Our results suggest that there are several genes that are likely to act in the same or parallel pathway as NR2E3 that can rescue the Nr2e3 rd7/rd7 phenotype and may serve as potential therapeutic targets. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Fierce (frc) mice are deleted for nuclear receptor 2e1 (Nr2e1), and exhibit cerebral hypoplasia, blindness, and extreme aggression. To characterize the Nr2e1 locus, which may also contain the mouse kidney disease (kd) allele, we compared sequence from human, mouse, and the puffer fish Fugu rubripes. We identified a novel gene, c222389, containing conserved elements in noncoding regions. We also discovered a novel vertebrate gene conserved across its length in prokaryotes and invertebrates. Based on a dramatic upregulation in lactating breast, we named this gene lactation elevated-1 (LACE1). Two separate 100-bp elements within the first NR2E1 intron were virtually identical between the three species, despite an estimated 450 million years of divergent evolution. These elements represent strong candidates for functional NR2E1 regulatory elements in vertebrates. A high degree of conservation across NR2E1 combined with a lack of interspersed repeats suggests that an array of regulatory elements embedded within the gene is required for proper gene expression.  相似文献   

4.
5.
Rett syndrome (RTT) is a regressive developmental disorder characterized by motor and breathing abnormalities, anxiety, cognitive dysfunction and seizures. Approximately 95% of RTT cases are caused by more than 200 different mutations in the X‐linked gene encoding methyl‐CpG‐binding protein 2 (MeCP2). While numerous transgenic mice have been created modeling common mutations in MeCP2, the behavioral phenotype of many of these male and, especially, female mutant mice has not been well characterized. Thorough phenotyping of additional RTT mouse models will provide valuable insight into the effects of Mecp2 mutations on behavior and aid in the selection of appropriate models, ages, sexes and outcome measures for preclinical trials. In this study, we characterize the phenotype of male and female mice containing the early truncating MeCP2 R168X nonsense point mutation, one of the most common in RTT individuals, and compare the phenotypes to Mecp2 null mutants. Mecp2R168X mutants mirror many clinical features of RTT. Mecp2R168X/y males exhibit impaired motor and cognitive function and reduced anxiety. The behavioral phenotype is less severe and with later onset in Mecp2R168X/+ females. Seizures were noted in 3.7% of Mecp2R168X mutant females. The phenotype in Mecp2R168X/y mutant males is remarkably similar to our previous characterizations of Mecp2 null males, whereas Mecp2R168X/+ females exhibit a number of phenotypic differences from females heterozygous for a null Mecp2 mutation. This study describes a number of highly robust behavioral paradigms that can be used in preclinical drug trials and underscores the importance of including Mecp2 mutant females in preclinical studies .  相似文献   

6.
7.
Contactin-5 (Cntn5) is an immunoglobulin cell adhesion molecule that is exclusively expressed in the central nervous system. In view of its association with neurodevelopmental disorders, particularly autism spectrum disorder (ASD), this study focused on Cntn5-positive areas in the forebrain and aimed to explore the morphological and behavioral phenotypes of the Cntn5 null mutant (Cntn5?/?) mouse in relation to these areas and ASD symptomatology. A newly generated antibody enabled us to elaborately describe the spatial expression pattern of Cntn5 in P7 wild type (Cntn5+/+) mice. The Cntn5 expression pattern included strong expression in the cerebral cortex, hippocampus and mammillary bodies in addition to described previously brain nuclei of the auditory pathway and the dorsal thalamus. Thinning of the primary somatosensory (S1) cortex was found in Cntn5?/? mice and ascribed to a misplacement of Cntn5-ablated cells. This phenotype was accompanied by a reduction in the barrel/septa ratio of the S1 barrel field. The structure and morphology of the hippocampus was intact in Cntn5?/? mice. A set of behavioral experiments including social, exploratory and repetitive behaviors showed that these were unaffected in Cntn5?/? mice. Taken together, these data demonstrate a selective role of Cntn5 in development of the cerebral cortex without overt behavioral phenotypes.  相似文献   

8.
The nmf193 mutant was generated by a large-scale ENU mutagenesis screen and originally described as having a dominantly inherited phenotype characterized by fundus abnormalities. We determined that nmf193 mice exhibit outer-segment defects and progressive retinal degeneration. Clinical examination revealed retinal spotting apparent at 6 weeks of age. Histologic analysis of homozygous mutant mice at 6 weeks indicated an absence of outer segments (OS) and a 50% reduction of photoreceptor cells which progressed to complete loss of photoreceptors by 10 months. Mice heterozygous for the nmf193 mutation had a less severe phenotype of shortened outer segments at 2 months with progressive loss of photoreceptor cells to 50% by 10 months. A positional cloning approach using a DNA pooling strategy was performed to identify the causative mutation in nmf193 mice. The nmf193 mutation was linked to chromosome 17 and fine mapped to an interval containing the peripherin/rds (Prph2) gene. Mutation analysis identified a single base change in Prph2 that causes aberrant splicing between exons 1 and 2. Interestingly, a comparative histologic analysis demonstrated that Prph2 nmf193/+ mutants have similar photoreceptor degeneration to that of Nr2e3 rd7/rd7 . We show that Prph2 mRNA and protein levels are reduced in the Nr2e3 rd7/rd7 mutant compared to control littermates. Chromatin immunoprecipitation analysis shows that Prph2 is a direct target of NR2E3. In addition, the downregulation of Prph2 gene expression is similar in both the Nr2e3 rd7/rd7 and Prph2 nmf193/+ mutants, suggesting that the reduction of Prph2 may contribute to the degenerative pathology seen in Nr2e3 rd7/rd7 .  相似文献   

9.
10.
The CDK inhibitor p27kip1 is a critical regulator of cell cycle progression, but the mechanisms by which p27kip1 controls cell proliferation in vivo are still not fully elucidated. We recently demonstrated that the microtubule destabilizing protein stathmin is a relevant p27kip1 binding partner. To get more insights into the in vivo significance of this interaction, we generated p27kip1 and stathmin double knock-out (DKO) mice. Interestingly, thorough characterization of DKO mice demonstrated that most of the phenotypes of p27kip1 null mice linked to the hyper-proliferative behavior, such as the increased body and organ weight, the outgrowth of the retina basal layer and the development of pituitary adenomas, were reverted by co-ablation of stathmin. In vivo analyses showed a reduced proliferation rate in DKO compared to p27kip1 null mice, linked, at molecular level, to decreased kinase activity of CDK4/6, rather than of CDK1 and CDK2. Gene expression profiling of mouse thymuses confirmed the phenotypes observed in vivo, showing that DKO clustered with WT more than with p27 knock-out tissue. Taken together, our results demonstrate that stathmin cooperates with p27kip1 to control the early phase of G1 to S phase transition and that this function may be of particular relevance in the context of tumor progression.  相似文献   

11.
The three adducin proteins (α, β, and γ) share extensive sequence, structural, and functional homology. Heterodimers of α‐ and β‐adducin are vital components of the red cell membrane skeleton, which is required to maintain red cell elasticity and structural integrity. In addition to anemia, targeted deletion of the α‐adducin gene (Add1) reveals unexpected, strain‐dependentnon‐erythroid phenotypes. On an inbred 129 genetic background, Add1 null mice show abnormal inward curvature of the cervicothoracic spine with complete penetrance. More surprisingly, a subset of 129‐Add1 null mice develop severe megaesophagus, while examination of peripheral nerves reveals a reduced number of axons in 129‐Add1 null mice at four months of age. These unforeseen phenotypes, described here, reveal new functions for adducin and provide new models of mammalian disease. genesis 50:882–891, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
To expand, analyze and extend published behavioral phenotypes relevant to autism spectrum disorder (ASD), we present a study of three ASD genetic mouse models: Feng's Shank3tm2Gfng model, hereafter Shank3/F, Jiang's Shank3tm1Yhj model, hereafter Shank3/J and the Cacna1c deletion model. The Shank3 models mimick gene mutations associated with Phelan–McDermid Syndrome and the Cacna1c model recapitulates the deletion underlying Timothy syndrome. This study utilizes both standard and novel behavioral tests with the same methodology used in our previously published companion report on the Cntnap2 null and 16p11.2 deletion models. We found that some but not all behaviors replicated published findings and those that did replicate, such as social behavior and overgrooming in Shank3 models, tended to be milder than reported elsewhere. The Shank3/F model, and to a much lesser extent, the Shank3/J and Cacna1c models, showed hypoactivity and a general anxiety‐like behavior triggered by external stimuli which pervaded social interactions. We did not detect deficits in a cognitive procedural learning test nor did we observe perseverative behavior in these models. We did, however, find differences in exploratory patterns of Cacna1c mutant mice suggestive of a behavioral effect in a social setting. In addition, only Shank3/F showed differences in sensory‐gating. Both positive and negative results from this study will be useful in identifying the most robust and replicable behavioral signatures within and across mouse models of autism. Understanding these phenotypes may shed light of which features to study when screening compounds for potential therapeutic interventions.  相似文献   

13.
Neural stem/progenitor cell (NSPC) proliferation and self‐renewal, as well as insult‐induced differentiation, decrease markedly with age. The molecular mechanisms responsible for these declines remain unclear. Here, we show that levels of NAD+ and nicotinamide phosphoribosyltransferase (Nampt), the rate‐limiting enzyme in mammalian NAD+ biosynthesis, decrease with age in the hippocampus. Ablation of Nampt in adult NSPCs reduced their pool and proliferation in vivo. The decrease in the NSPC pool during aging can be rescued by enhancing hippocampal NAD+ levels. Nampt is the main source of NSPC NAD+ levels and required for G1/S progression of the NSPC cell cycle. Nampt is also critical in oligodendrocytic lineage fate decisions through a mechanism mediated redundantly by Sirt1 and Sirt2. Ablation of Nampt in the adult NSPCs in vivo reduced NSPC‐mediated oligodendrogenesis upon insult. These phenotypes recapitulate defects in NSPCs during aging, giving rise to the possibility that Nampt‐mediated NAD+ biosynthesis is a mediator of age‐associated functional declines in NSPCs.  相似文献   

14.
The binding of spermine and ifenprodil to the amino terminal regulatory (R) domain of the N‐methyl‐D ‐aspartate receptor was studied using purified regulatory domains of the NR1, NR2A and NR2B subunits, termed NR1‐R, NR2A‐R and NR2B‐R. The R domains were over‐expressed in Escherichia coli and purified to near homogeneity. The Kd values for binding of [14C]spermine to NR1‐R, NR2A‐R and NR2B‐R were 19, 140, and 33 μM, respectively. [3H]Ifenprodil bound to NR1‐R (Kd, 0.18 μM) and NR2B‐R (Kd, 0.21 μM), but not to NR2A‐R at the concentrations tested (0.1–0.8 μM). These Kd values were confirmed by circular dichroism measurements. The Kd values reflected their effective concentrations at intact NR1/NR2A and NR1/NR2B receptors. The results suggest that effects of spermine and ifenprodil on NMDA receptors occur through binding to the regulatory domains of the NR1, NR2A and NR2B subunits. The binding capacity of spermine or ifenprodil to a mixture of NR1‐R and NR2A‐R or NR1‐R and NR2B‐R was additive with that of each individual R domain. Binding of spermine to NR1‐R and NR2B‐R was not inhibited by ifenprodil and vice versa, indicating that the binding sites for spermine and ifenprodil on NR1‐R and NR2B‐R are distinct.  相似文献   

15.
The nuclear receptor COUP TFI (also known as Nr2f1) plays major roles in specifying distinct neuronal subtypes during patterning of the neocortical motor and somatosensory cortex, as well as in regulating the longitudinal growth of the hippocampus during development. In humans, mutations in the NR2F1 gene lead to a global developmental delay and intellectual disabilities. While more than 30% of patients show behavioral features of autism spectrum disorder, 16% of haploinsufficient children show signs of hyperactivity and impulsivity. Loss of COUP‐TFI in the cortical mouse primordium results in altered area organization and serotonin distribution, abnormal coordination of voluntary movements and learning and memory deficits. Here, we asked whether absence of COUP‐TFI affects locomotor activity, anxiety, as well as depression. Mice mutant for COUP‐TFI have normal motor coordination, but significant traits of hyperactivity, which does not seem to respond to N‐Methyl‐D‐aspartate (NMDA) antagonists. However, no changes in anxiety, despite increased locomotor performances, were observed in the open field task. On the contrary, elevated plus maze and dark‐light test explorations indicate a decreased anxiety‐like behavior in COUP‐TFI mutant mice. Finally, significantly reduced immobility in the forced swim test and no changes in anhedonia in the sucrose preference task suggest no particular depressive behaviors in mutant mice. Taken together, our study shows that loss of COUP‐TFI leads to increased locomotor activity but less anxiety and contributes in further deciphering the pathophysiology of patients haploinsufficient for NR2F1.  相似文献   

16.
Cortactin is an F‐actin binding protein that has been suggested to play key roles in various cellular functions. Here, we generated mice carrying floxed alleles of the cortactin (Cttn) gene (Cttnflox/flox mice). Expression of Cre recombinase in mouse embryonic fibroblasts (MEFs) isolated from Cttnflox/flox embryos depleted cortactin within days, without disturbing F‐actin distribution and localization of multiple actin‐binding proteins. Cre‐mediated deletion of Cttn also did not affect cell migration. To obtain mice with a Cttn null allele, we next crossed Cttnflox/flox mice with transgenic mice that express Cre recombinase ubiquitously. Western blot and immunocytochemical analysis confirmed complete elimination of cortactin expression in MEFs carrying homozygously Cttn null alleles. However, we found no marked alteration of F‐actin organization and cell migration in Cttn null‐MEFs. Thus, our results indicate that depletion of cortactin in MEFs does not profoundly influence actin‐dependent cell motility. genesis 47:638–646, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
We aimed to explore the interaction among lncRNA MALAT1, miR‐129 and SOX2. Besides, we would investigate the effect of MALAT1 on the proliferation of glioma stem cells and glioma tumorigenesis. Differentially expressed lncRNAs in glioma cells and glioma stem cells were screened out with microarray analysis. The targeting relationship between miR‐129 and MALAT1 or SOX2 was validated by dual‐luciferase reporter assay. The expressions of MALAT1, miR‐129 and SOX2mRNA in both glioma non‐stem cells and glioma stem cells were examined by qRT‐PCR assay. The impact of MALAT1 and miR‐129 on glioma stem cell proliferation was observed by CCK‐8 assay, EdU assay and sphere formation assay. The protein expression of SOX2 was determined by western blot. The effects of MALAT1 and miR‐129 on glioma tumour growth were further confirmed using xenograft mouse model. The mRNA expression of MALAT1 was significantly up‐regulated in glioma stem cells compared with non‐stem cells, while miR‐129 was significantly down‐regulated in glioma stem cells. MALAT1 knockdown inhibited glioma stem cell proliferation via miR‐129 enhancement. Meanwhile, miR‐129 directly targeted at SOX2 and suppressed cell viability and proliferation of glioma stem cells by suppressing SOX2 expression. The down‐regulation of MALAT1 and miR‐129 overexpression both suppressed glioma tumour growth via SOX2 expression promotion in vivo. MALAT1 enhanced glioma stem cell viability and proliferation abilities and promoted glioma tumorigenesis through suppressing miR‐129 and facilitating SOX2 expressions.  相似文献   

18.
Thyroid cancer (TC) is a prevalent endocrine malignant cancer whose pathogenic mechanism remains unclear. The aim of the study was to investigate the roles of long non‐coding RNA (lncRNA) NR2F1‐AS1/miRNA‐338‐3P/CCND1 axis in TC progression. Differentially expressed lncRNAs and mRNAs in TC tissues were screened out and visualized by R program. Relative expression of NR2F1‐AS1, miRNA‐338‐3p and cyclin D1 (CCND1) was determined by quantitative real time polymerase chain reaction. In addition, Western blot analysis was adopted for evaluation of protein expression of CCND1. Targeted relationships between NR2F1‐AS1 and miRNA‐338‐3p, as well as miRNA‐338‐3p and CCND1 were predicted using bioinformatics analysis and validated by dual‐luciferase reporter gene assay. Besides, tumour xenograft assay was adopted for verification of the role of NR2F1‐AS1 in TC in vivo. NR2F1‐AS1 and CCND1 were overexpressed, whereas miRNA‐338‐3p was down‐regulated in TC tissues and cell lines. Down‐regulation of NR2F1‐AS1 and CCND1 suppressed proliferation and migration of TC cells yet greatly enhanced cell apoptotic rate. Silence of NR2F1‐AS1 significantly suppressed TC tumorigenesis in vivo. NR2F1‐AS1 sponged miRNA‐338‐3p to up‐regulate CCND1 expression to promote TC progression. Our study demonstrated that up‐regulation of NR2F1‐AS1 accelerated TC progression through regulating miRNA‐338‐3P/CCND1 axis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号