首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W. Solarz, K. Najberek, A. Pociecha & E. Wilk‐Wo?niak ( 2017 , Diversity and Distributions, 23 , 113–117) published a letter in Diversity and Distributions debating our view that waterbirds are important vectors of alien species (C. Reynolds, N. A. F. Miranda & G. S. Cumming, 2015 Diversity and Distributions, 21 , 744–754; A. J. Green, 2016 Diversity and Distributions, 22 , 239–247) and question whether future research into the mechanisms under‐pinning this phenomenon can be advantageous for the practical management of alien species. Additionally, Solarz et al. suggest that human activities are the primary source of all alien species introductions and that waterbirds may only act as vectors of secondary dispersal. In this letter, we respond to several arguments raised by the authors surrounding the relevance of waterbird‐mediated dispersal in the introduction and spread of alien species. We emphasize the partly deterministic nature of waterbird dispersal and the significance of long‐distance dispersal events (and hence the potential for primary introductions of new alien species across political boundaries). Finally, we reaffirm the importance of further research into dispersal by birds to improve our capacity to foresee and manage invasions of those alien species with strong capacity to spread via avian vectors.  相似文献   

2.
Many ephemeral mudflat species, which rely on a soil seed bank to build up the next generation, are endangered in their natural habitat due to the widespread regulation of rivers. The aim of the present study was to elucidate the role of the soil seed bank and dispersal for the maintenance of genetic diversity in populations of near‐natural river habitats and anthropogenic habitats created by traditional fish farming practices using Cyperus fuscus as a model. Using microsatellite markers, we found no difference in genetic diversity levels between soil seed bank and above‐ground population and only moderate differentiation between the two fractions. One possible interpretation is the difference in short‐term selection during germination under specific conditions (glasshouse versus field) resulting in an ecological filtering of genotypes out of the reservoir in the soil. River populations harbored significantly more genetic diversity than populations from the anthropogenic pond types. We suggest that altered levels and patterns of dispersal together with stronger selection pressures and historical bottlenecks in anthropogenic habitats are responsible for the observed reduction in genetic diversity. Dispersal is also supposed to largely prohibit genetic structure across Europe, although there is a gradient in private allelic richness from southern Europe (high values) to northern, especially north‐western, Europe (low values), which probably relates to postglacial expansion out of southern and/or eastern refugia.  相似文献   

3.
Aim Long‐distance dispersal is important for plant population dynamics at larger spatial scales, but our understanding of this phenomenon is mostly based on computer modelling rather than field data. This paper, by combining field data and a simulation model, quantifies the fraction of the seed of the alien species Heracleum mantegazzianum that needs to disperse over a long distance for successful invasion. Location Central Europe, Czech Republic. Methods To assess the role of random dispersal in long‐term population dynamics of the studied species, we combined longitudinal data covering 50 years of the invasion of this plant from its very start, inferred from a series of aerial photographs of 60‐ha plots, with data on population dynamics at a fine scale of 10‐m2 plots. Results A simulation model based on field data indicates that the fraction of seed that is dispersed from source plants not described by the short‐distance dispersal kernel ranges from 0.1 to 7.5% of the total seed set. The fraction of long‐distance dispersed seed that provides the best prediction of the observed spread was significantly negatively correlated with the percentage of habitats suitable for invasion. Main conclusions Our results indicate that the fraction of seeds that needed to be dispersed over long distances to account for the observed invasion dynamics decreased with increasing proportion of invasible habitats, indicating that the spatial pattern of propagule pressure differs in landscapes prone to invasion. Long‐distance dispersal is an important component of the population dynamics of an invasive species even at relatively small scales.  相似文献   

4.
5.
6.
7.
8.
9.
Aim The biogeography of the tropical plant family Monimiaceae has long been thought to reflect the break‐up of West and East Gondwana, followed by limited transoceanic dispersal. Location Southern Hemisphere, with fossils in East and West Gondwana. Methods We use phylogenetic analysis of DNA sequences from 67 of the c. 200 species, representing 26 of the 28 genera of Monimiaceae, and a Bayesian relaxed clock model with fossil prior constraints to estimate species relationships and divergence times. Likelihood optimization is used to infer switches between biogeographical regions on the highest likelihood tree. Results Peumus from Chile, Monimia from the Mascarenes and Palmeria from eastern Australia/New Guinea form a clade that is sister to all other Monimiaceae. The next‐deepest split is between the Sri Lankan Hortonia and the remaining genera. The African Monimiaceae, Xymalos monospora, then forms the sister clade to a polytomy of five clades: (I) Mollinedia and allies from South America; (II) Tambourissa and allies from Madagascar and the Mascarenes; (III) Hedycarya, Kibariopsis and Leviera from New Zealand, New Caledonia and Australia; (IV) Wilkiea, Kibara, Kairoa; and (V) Steganthera and allies, all from tropical Australasia. Main conclusions Tree topology, fossils, inferred divergence times and ances‐tral area reconstruction fit with the break‐up of East Gondwana having left a still discernible signature consisting of sister clades in Chile and Australia. There is no support for previous hypotheses that the break‐up of West Gondwana (Africa/South America) explains disjunctions in the Monimiaceae. The South American Mollinedia clade is only 28–16 Myr old, and appears to have arrived via trans‐Pacific dispersal from Australasia. The clade apparently spread in southern South America prior to the Andean orogeny, fitting with its first‐diverging lineage (Hennecartia) having a southern‐temperate range. The crown ages of the other major clades (II–V) range from 20 to 29 Ma, implying over‐water dispersal between Australia, New Caledonia, New Zealand, and across the Indian Ocean to Madagascar and the Mascarenes. The endemic genus Monimia on the Mascarenes provides an interesting example of an island lineage being much older than the islands on which it presently occurs.  相似文献   

10.

Aim

The hypotheses proposed to explain the high percentage of bipolar lichens in Antarctica have never been explicitly tested. We used the strictly bipolar, coastal lichenized fungus Mastodia tessellata (Verrucariaceae, Ascomycota) and its photobionts (Prasiola, Trebouxiophyceae, Chlorophyta) as model species to discern whether this extraordinary disjunction originated from vicariance or long‐distance dispersal.

Location

Coasts of Antarctica, Tierra del Fuego (Chile), Alaska (USA) and British Columbia (Canada).

Methods

Based on a comprehensive geographical (315 specimens and 16 populations from Antarctica, Tierra del Fuego and North America) and molecular sampling (three and four loci for the fungus and algae respectively), we implemented explicit Bayesian methods to compare alternative hypotheses of speciation and migration, and performed dating analyses for the fungal and algal partner, in order to infer the timing of the colonization events and the direction of gene flow among distant, disjunct areas.

Results

Mastodia tessellata comprises two fungal species which in turn associate with three photobiont lineages along the studied distribution range. Independent estimation of divergence ages for myco‐ and photobionts indicated a middle to latest Miocene species split in the Southern Hemisphere, and a late Miocene to Pleistocene acquisition of the bipolar distribution. Comparison of migration models and genetic diversity patterns suggested an austral origin for the bipolar species.

Main conclusions

The complex evolutionary history of Mastodia tessellata s.l. can be explained by a combination of vicariant and long‐distance dispersal mechanisms. We provide novel evidence of a pre‐Pleistocene long‐term evolution of lichens in Antarctica as well as for bipolar distributions shaped by Southern to Northern Hemisphere migratory routes without the need for stepping stones.  相似文献   

11.
Questions: The assembly of arable weed communities is the result of local filtering by agricultural management and crop competition. Therefore, soil seed banks can reflect the effects of long‐term cumulative field management and crop sequences on weed communities. Moreover, soil seed banks provide strong estimates of future weed problems but also of potential arable plant diversity and associated ecological functions. For this, we evaluated the effects of different long‐term farming systems under the same crop rotation sequence on the abundance, diversity and community assembly of weed seed bank, as well as on the functional diversity and composition. Location: DOK (biodynamic [D], bioorganic [O], conventional [K]) long‐term trial, Therwil, Switzerland. Methods: The effects of long‐term contrasted farming systems (i.e., biodynamic, organic, conventional, mineral and unfertilised systems) and last crop sown (i.e., wheat and maize) were evaluated on different indicators of species and functional diversity and composition of the weed soil seed bank. Results: The results showed significant influences of 40 years of contrasted farming systems on the diversity and composition of the seed bank, with higher diversities being found in unfertilised and organic farming systems, but also higher abundances than those found under conventional systems. Organic farming also allowed higher functional richness, dispersion and redundancy. Different farming systems triggered shifts in species and functional assemblies. Conclusions: The results highlight the importance of organic management for the maintenance of a diverse arable plant community and its functions. However, such results emphasise the need for appropriate yearly management to reduce the abundance of settled weediness and prevent affecting crop production. The farm management filtered community composition based on functional traits. Although the soil seed bank buffers the long‐term farming and crop sequence, the last crop sown and, thus, the yearly management were important determinants of seed bank composition.  相似文献   

12.
It is well accepted that the shape of the dispersal kernel, especially its tail, has a substantial effect on the genetic structure of species. Theory predicts that dispersal by fat‐tailed kernels reshuffles genetic material, and thus, preserves genetic diversity during colonization. Moreover, if efficient long‐distance dispersal is coupled with random colonization, an inverse isolation effect is predicted to develop in which increasing genetic diversity per colonizer is expected with increasing distance from a genetically variable source. By contrast, increasing isolation leads to decreasing genetic diversity when dispersal is via thin‐tailed kernels. Here, we use a well‐established model group for dispersal biology (peat mosses: genus Sphagnum) with a fat‐tailed dispersal kernel, and the natural laboratory of the Stockholm archipelago to study the validity of the inverse isolation hypothesis in spore‐dispersed plants in island colonization. Population genetic structure of three species (Sphagnum fallax, Sphagnum fimbriatum and Sphagnum palustre) with contrasting life histories and ploidy levels were investigated on a set of islands using microsatellites. Our data show (, amova , IBD) that dispersal of the two most abundant species can be well approximated by a random colonization model. We find that genetic diversity per colonizer on islands increases with distance from the mainland for S. fallax and S. fimbriatum. By contrast, S. palustre deviates from this pattern, owing to its restricted distribution in the region, affecting its source pool strength. Therefore, the inverse isolation effect appears to hold in natural populations of peat mosses and, likely, in other organisms with small diaspores.  相似文献   

13.
14.
15.
Although the distribution ranges and abundance of many plant species have declined dramatically in recent decades, detailed analysis of these changes and their cause have only become possible following the publication of second‐ and third‐generation national distribution atlases. Decline can now be compared both between species and in different parts of species' ranges. We extracted data from distribution atlases to compare range persistence of 736 plant species common to both the UK and Estonia between survey periods encompassing almost the same years (1969 and 1999 in the UK and 1970 and 2004 in Estonia). We determined which traits were most closely associated with variation in species persistence, whether these were the same in each country, and the extent to which they explained differences in persistence between the countries. Mean range size declined less in Estonia than in the UK (24.3% vs. 30.3%). One‐third of species in Estonia (239) maintained >90% of their distribution range compared with one‐fifth (141) in the UK. In Estonia, 99 species lost >50% of their range compared with 127 species in the UK. Persistence was very positively related to original range in both countries. Major differences in species persistence between the studied countries were primarily determined by biogeographic (affiliation to floristic element) and ecoevolutionary (plant strategy) factors. In contrast, within‐country persistence was most strongly determined by tolerance of anthropogenic activities. Decline of species in the families Orchidaceae and Potamogetonaceae was significantly greater in the UK than in Estonia. Almost all of the 736 common and native European plant species in our study are currently declining in their range due to pressure from anthropogenic activities. Those species with low tolerance of human activity, with biotic pollination vectors and in the families referred to above are the most vulnerable, especially where human population density is high.  相似文献   

16.
Understanding the factors determining genetic diversity and structure in peripheral populations is a long‐standing goal of evolutionary biogeography, yet little empirical information is available for tropical species. In this study, we combine information from nuclear microsatellite markers and niche modelling to analyse the factors structuring genetic variation across the southernmost populations of the tropical oak Quercus segoviensis. First, we tested the hypothesis that genetic variability decreases with population isolation and increases with local habitat suitability and stability since the Last Glacial Maximum (LGM). Second, we employed a recently developed multiple matrix regression with randomisation (MMRR) approach to study the factors associated with genetic divergence among the studied populations and test the relative contribution of environmental and geographic isolation to contemporary patterns of genetic differentiation. We found that genetic diversity was negatively correlated with average genetic differentiation with other populations, indicating that isolation and limited gene flow have contributed to erode genetic variability in some populations. Considering the relatively small size of the study area (<120 km), analyses of genetic structure indicate a remarkable inter‐population genetic differentiation. Environmental dissimilarity and differences in current and past climate niche suitability and their additive effects were not associated with genetic differentiation after controlling for geographic distance, indicating that local climate does not contribute to explain spatial patterns of genetic structure. Overall, our data indicate that geographic isolation, but not current or past climate, is the main factor determining contemporary patterns of genetic diversity and structure within the southernmost peripheral populations of this tropical oak.  相似文献   

17.
The carbon‐sink strength of temperate and boreal forests at midlatitudes of the northern hemisphere is decreased by ozone pollution, but knowledge on subtropical evergreen broadleaved forests is missing. Taking the dataset from Chinese studies covering temperate and subtropical regions, effects of elevated ozone concentration ([O3]) on growth, biomass, and functional leaf traits of different types of woody plants were quantitatively evaluated by meta‐analysis. Elevated mean [O3] of 116 ppb reduced total biomass of woody plants by 14% compared with control (mean [O3] of 21 ppb). Temperate species from China were more sensitive to O3 than those from Europe and North America in terms of photosynthesis and transpiration. Significant reductions in chlorophyll content, chlorophyll fluorescence parameters, and ascorbate peroxidase induced significant injury to photosynthesis and growth (height and diameter). Importantly, subtropical species were significantly less sensitive to O3 than temperate ones, whereas deciduous broadleaf species were significantly more sensitive than evergreen broadleaf and needle‐leaf species. These findings suggest that carbon‐sink strength of Chinese forests is reduced by present and future [O3] relative to control (20–40 ppb). Given that (sub)‐tropical evergreen broadleaved species dominate in Chinese forests, estimation of the global carbon‐sink constraints due to [O3] should be re‐evaluated.  相似文献   

18.
19.
20.
Aim To address the relative role of adjacent land use, distance to forest edge, forest size and their interactions on understorey plant species richness and composition in perimetropolitan forests. Location The metropolitan area of Barcelona, north‐eastern Spain. Methods Twenty sampling sites were distributed in two forest size‐categories: small forest patches (8–90 ha) and large forest areas (> 18,000 ha). For each forest‐size category, five sites were placed adjacent to crops and five sites adjacent to urban areas. Vascular plant species were recorded and human frequentation was scored visually in 210 10 × 10 m plots placed at 10, 50 and 100 m from the forest edge, and additionally at 500 m in large forest areas. Plant species were grouped according to their ecology and rarity categories. A nonmetric multidimensional scaling (NMS) ordination was carried out to detect patterns of variation in species assemblage, and to explore the relationships between these patterns and the richness of the species groups and the studied factors. Factorial anovas were used to test the significance of the studied factors on the richness of species groups. Relationships between human frequentation and the studied variables were assessed through contingency tables. Results Forest‐size category was the main factor affecting synanthropic species (i.e. those thriving in man‐made or man‐disturbed habitats). Synanthropic species richness decreased with increasing distance from the forest edge and, when forests were adjacent to crops, it was higher in small forest patches than in large forest areas. Richness of rare forest species was lower in small forest patches than in large forest areas when forests were adjacent to urban areas. Richness of common forest species and of all forest species together were higher close to the forest edge than far from it when forests were adjacent to urban areas. Forests adjacent to urban areas were more likely to experience high human frequentation, particularly in those plots nearest to the forest edge. Main conclusions Forest‐size category and adjacent land use were the most important factors determining species richness and composition. The preservation of large forests adjacent to crops in peri‐urban areas is recommended, because they are less frequented by humans, are better buffered against the percolation of nonforest species and could favour the persistence of rare forest species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号