首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Studies on habitat fragmentation of insect communities mostly ignore the impact of the surrounding landscape matrix and treat all species equally. In our study, on habitat fragmentation and the importance of landscape context, we expected that habitat specialists are more affected by area and isolation, and habitat generalists more by landscape context. Location and methods The study was conducted in the vicinity of the city of Göttingen in Germany in the year 2000. We analysed butterfly communities by transect counts on thirty‐two calcareous grasslands differing in size (0.03–5.14 ha), isolation index (2100–86,000/edge‐to‐edge distance 55–1894 m), and landscape diversity (Shannon–Wiener: 0.09–1.56), which is correlated to percentage grassland in the landscape. Results A total of 15,185 butterfly specimens belonging to fifty‐four species are recorded. In multiple regression analysis, the number of habitat specialist (n = 20) and habitat generalist (n = 34) butterfly species increased with habitat area, but z‐values (slopes) of the species–area relationships for specialists (z = 0.399) were significantly steeper compared with generalists (z = 0.096). Generalists, but not specialists, showed a marginally significant increase with landscape diversity. Effects of landscape diversity were scale‐dependent and significant only at the smallest scale (landscape context within a 250 m radius around the habitat). Habitat isolation was not related to specialist and generalist species numbers. In multiple regression analysis the density of specialists increased significantly with habitat area, whereas generalist density increased only marginally. Habitat isolation and landscape diversity did not show any effects. Main conclusions Habitat area was the most important predictor of butterfly community structure and influenced habitat specialists more than habitat generalists. In contrast to our expectations, habitat isolation had no effect as most butterflies could cope with the degree of isolation in our study region. Landscape diversity appeared to be important for generalist butterflies only.  相似文献   

2.
Habitat loss and fragmentation are known to reduce patch sizes and increase their isolation, consequently leading to modifications in species richness and community structure. Calcareous grasslands are among the richest ecosystems in Europe for insect species. About 10% (1,150 ha) of the total area of a calcareous ridge region (Calestienne, Belgium) and its butterfly community was analysed over a timeframe of about 100 years. Since 1905 to present day (2005), the Calestienne region has undergone both calcareous grassland loss and fragmentation: not only did calcareous grassland size decrease and isolation increase, but also, the number of calcareous grassland patches within the landscape increased until 1965, and subsequently decreased, clearly reflecting the effects of fragmentation. These processes have had a profound effect on the butterfly community: extinction and rarefaction affected significantly more often specialist species, which means that generalist species are more and more overrepresented. This ecological drift, i.e. the replacement of specialists by generalists in species assemblages is likely to be a general effect of habitat loss and fragmentation on natural communities.  相似文献   

3.
Aim The aim of this study was to analyse whether, and how, the inclusion of habitat specialists and edge‐preferring species modifies the species–area relationship predictions of the island biogeography theory for an insect group (ground beetles, Coloptera: Carabidae) living in natural fragments. Species–habitat island area relationships applied to terrestrial habitat islands can be distorted by the indiscriminate inclusion of all species occurring in the fragments. Matrices surrounding terrestrial habitat fragments can provide colonists that do not necessarily distinguish the fragment from the matrix and can survive and reproduce there. Edge‐preferring species can further distort the expected relationship, as smaller fragments have larger edge:core ratios. Location Nineteen forest fragments were studied in the Bereg Plain, Hungary, and SW Ukraine. This area contains natural forest patches, mainly of oak and hornbeam, and supports a mountain entomofauna. Methods Ground beetles (Carabidae) present in the 19 forest patches were categorized into generalists, forest specialists and edge‐preferring species. We analysed the relationship between species richness and fragment area using species richness in the different categories. Results The assemblages contained a high share of generalist species (species that occur also in the surrounding matrix). Forest patch size and the number of generalist species showed a marginally significant negative relationship, indicating that generalist species were more important in smaller patches. Forest specialist species richness was correlated positively with patch area. Edge‐preferring species were shown to influence the species–area relationship: the number of edge‐preferring species increased with the edge:area ratio. Main conclusions Both generalist and edge‐preferring species can considerably distort the species–area relationship. Island biogeography theory can be applied to habitat islands only if the habitat islands are defined correctly from the viewpoint of the target species.  相似文献   

4.
Gaigher  R.  Pryke  J. S.  Samways  M. J. 《Biodiversity and Conservation》2021,30(13):4089-4109

Habitat loss threatens insect diversity globally. However, complementary vegetation types in remaining habitat increases opportunities for species survival. We assess the extent to which indigenous forest patches moderate the impact of exotic commercial afforestation on grassland butterflies. Butterflies were sampled in grassland along uncorrelated gradients of landscape-scale indigenous forest and plantation cover, while controlling for variation in local vegetation composition. We separately assessed responses by butterfly groups differing in habitat preference, larval diet, and mobility. There was no effect of landscape- or local-scale variables on species richness, but there was a strong interactive effect of forest and plantation cover on butterfly assemblage structure. The effect varied according to species traits. When forest cover was high, assemblages did not differ at different levels of plantation cover. However, plantation cover significantly influenced assemblage structure when forest cover was low. Grassland with limited forest cover in the protected area supported unique assemblages with high frequency of less mobile, specialized species with herbaceous larval host plants, whereas grassland with low forest cover near plantations had a prevalence of mobile, generalist species. A positive association between forest cover and butterflies with woody larval host plants suggests that indigenous forest patches improved the suitability of fragmented grassland for a subset of butterflies, emphasising the value of natural heterogeneity in transformed areas. However, certain butterfly traits associated with large, open grassland were under-represented in grassland between plantations, underscoring the importance of open areas in the broader landscape to conserve the full diversity of species.

  相似文献   

5.
Ockinger E  Smith HG 《Oecologia》2006,149(3):526-534
During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6–10 ha) and one small (0.5–2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km2 landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at preserving landscapes with high proportions of the focal habitat.  相似文献   

6.
1. Movement mediates the response of populations and communities to landscape and habitat spatial structure, yet movement capability may itself be modified by selection pressures accompanying landscape change. Insect flight morphology can be affected by both the landscape surrounding habitat patches and the distribution of resources within habitat patches. 2. This study investigated the relative influence of local habitat patch conditions and surrounding landscape structure on variation in morphological traits associated with flight in the bog copper (Lycaena epixanthe), a butterfly endemic to temperate Nearctic peatlands. 3. Eight habitat patches were sampled to assess the influence of the surrounding landscape (connectivity of potential habitat and matrix composition) and patch size (an integrated proxy of resource density and spatial distribution) on investment into flight, measured by thorax and abdomen mass, and wing area. 4. The results revealed an effect of both local habitat conditions and landscape structure on flight‐related morphological traits. Increasing forest cover in the surrounding landscape, indicative of increased habitat patch isolation, corresponded with less mobile phenotypes in both sexes. Surrounding landscapes with more water were also generally associated with less mobile phenotypes. Investment into flight was greater in smaller peatlands in which host plant density is higher and more homogeneously distributed. 5. The present study highlights that morphological traits associated with mobility may be responding to both local habitat patch characteristics and surrounding landscape structure. It also supports the hypothesis that local habitat conditions contribute to morphological variation in butterflies.  相似文献   

7.
Temporal dynamics of insect communities in terrestrial habitat fragments have been rarely studied. Here it was tested whether immigration, extinction, and turnover of butterfly species change with area and isolation of 31 calcareous grasslands. The area ranged from 0.03 to 5.14 ha, the isolation index from 2,100 to 86,000 (edge-to-edge distance 55–1,894 m). In both study years (1996, 2000), the total number of individuals (16,466, 15,101) and species (60, 54) sampled across all sites were similar and number of species increased with area in both years indicating an equilibrium. Rates of extinction (38% for habitat specialists vs. 20% for generalists) and turnover (51% vs. 35%) were higher, and rates of immigration (11% vs. 30%) were lower for habitat specialists than for generalists. Extinction and turnover rates decreased with increasing fragment size for both specialist (n =25 species) and generalist (n =36) butterflies, but specialists showed a significantly steeper decrease with increasing fragment size than generalists. Immigration rates increased with area. As a result, species number of habitat specialists declined in small habitats but not in large habitats between 1996 and 2000. No significant impact of habitat isolation on the butterfly community was found. The data suggest that large habitat fragments are of special importance for the conservation of the specialized, most endangered butterfly species. Habitat isolation appears to be less important, as butterflies can cope with the habitat mosaic in our study region.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

8.
We analyzed the butterfly communities in the newly designed city parks (area C), “newly opened habitat islands”, of Tsukuba City, central Japan. The area constituted a natural ecological experiment on the mainland for clarifying the pattern and process of faunal immigration. We compared butterfly communities in area C with those in two other areas in the light of the theory of island biogeography and the concept of generalist/specialist. Our results showed the following: (1) Fewer species were found in area C than in other areas, due largely to the absence of many specialist types, restricted and habitat specialists, and/or low density species in the area. Generalist types, widespread and habitat generalists, and/or high density species predominated in area C. (2) The difference in the species numbers among the three sections within area C could be explained by the habitat structure in and around the respective sections. (3) The densities of many species were low in area C, probably due to its man-modified habitat structure. In particular, several species occurred at extremely low densities in area C, but at high densities in other areas. (4) The internal structure of the habitat island butterfly community in area C was almost perfectly consistent with that of “quasi-equilibrium” communities that appear during the colonization of an island. Our results demonstrate that the synergetic application of the generalist/specialist concept and the island biogeography theory is effective for the understanding of the patterns and structures of habitat island communities.  相似文献   

9.
The influence of irregular or incomplete fragmentation and increasing degradation of natural rain forest on diurnal raptor community was studied in the northern part of the western Ghâts in southwestern India A census of mainly territorial breeding pairs on 400 ha sample quadrats was associated with a measure of the percent cover of the main habitat types and a degree of forest fragmentation including irregular patch shape and habitat heterogeneity
Four groups of 3-4 species were defined according to their decreasing tolerance to forest fragmentation and disturbance, from mostly open grassland species to interior forest specialists Habitat selection, density and sensitivity to landscape structure were investigated The community composition and dynamic of each habitat were the sum of these specific reactions The distribution of species along the succession of increasing fragmentation and forest degradation was thus found to be non random, but did not follow a nested subset pattern The density of forest species declined with forest patch size possibly because of the irregular patch shape, the increased edge effects and the consequent increase of linear distance for a bird to cover within its territory However, sensitivity to habitat structure and disturbance was found to be even higher than sensitivity to area per se The need to conserve the largest patches of little disturbed forest is emphasized, as well as the conservation value of woodlots-open habitat mosaics that are suitable for a different set of species  相似文献   

10.
Habitat loss and fragmentation affect species richness in fragmented habitats and can lead to immediate or time‐delayed species extinctions. Asynchronies in extinction and extinction debt between interacting species may have severe effects on ecological networks. However, these effects remain largely unknown. We evaluated the effects of habitat patch and landscape changes on antagonistic butterfly larvae–plant trophic networks in Mediterranean grasslands in which previous studies had shown the existence of extinction debt in plants but not in butterflies. We sampled current species richness of habitat‐specialist and generalist butterflies and vascular plants in 26 grasslands. We assessed the direct effects of historical and current patch and landscape characteristics on species richness and on butterfly larvae–plant trophic network metrics and robustness. Although positive species‐ and interactions–area relationships were found in all networks, structure and robustness was only affected by patch and landscape changes in networks involving the subset of butterfly specialists. Larger patches had more species (butterflies and host plants) and interactions but also more compartments, which decreased network connectance but increased network stability. Moreover, most likely due to the rescue effect, patch connectivity increased host‐plant species (but not butterfly) richness and total links, and network robustness in specialist networks. On the other hand, patch area loss decreased robustness in specialist butterfly larvae–plant networks and made them more prone to collapse against host plant extinctions. Finally, in all butterfly larvae–plant networks we also detected a past patch and landscape effect on network asymmetry, which indicates that there were different extinction rates and extinction debts for butterflies and host plants. We conclude that asynchronies in extinction and extinction debt in butterfly–plant networks provoked by patch and landscape changes caused changes in species richness and network links in all networks, as well as changes in network structure and robustness in specialist networks.  相似文献   

11.
We analysed the relationship between three life history characteristics (mobility, length of flight period and body size) and niche breadth (larval host plant specificity and adult habitat breadth), resource availability (distribution and abundance of host plants) and range position (distance between the northernmost distribution record and southernmost point of Finland) of the butterfly fauna of Finland. The data is based on literature and questionnaires. Often in across species studies phylogeny may create spurious relationships between life-history and ecological variables. We took the phylogenetic relatedness of butterfly species into account by analysing the data with phylogenetically independent contrasts (CAIC method). Butterfly mobility was positively related to the niche breadth, resource availability and range position. The length of the flight period was negatively related to the range position, indicating that the species at the northern edge of their distribution range have shorter flight period than species which are further way from the range edge. After controlling for the phylogenetic relatedness we found no significant correlations between body size and niche breadth, resource availability or range position. We suggest that the relationship between the length of the flight period and range position may arise as a consequence of lower hatching asynchrony in edge species as a result of lower environmental variance in larval growth conditions. Our results on the mobility suggest that there is selection pressure towards lower migration rate in species that have restricted niche breadth, low resource availability and in species that are on the northern edge of their geographical distribution range. In such species, selection against mobile individuals is likely to result from the decreased probability of finding another habitat patch suitable for egg laying.  相似文献   

12.
The alteration and fragmentation of native tallgrass prairie in the Midwestern United States has created a need to identify other land types with the ability to support grassland butterfly species. This study examines butterfly usage of marginal grasslands, which consist of semi-natural grasslands existing within in a larger agricultural matrix, compared to grasslands managed for conservation of prairie species. Using generalized linear mixed models we analyzed how land purpose (marginal vs. conservation grasslands) affected butterfly abundance. We found grassland butterfly species to be significantly more common on conservation grasslands, whereas generalist species were significantly more common on marginal grasslands. Results of ordination analyses indicated that while many species used both types of habitats, butterfly species assemblages were distinct between habitat types and that edge to interior ratio and the floristic quality index of sites were important habitat characteristics driving this distinction. Within conservation grasslands we examined the relationship between butterfly abundance and the planting diversity used in restoring each site. We found higher diversity restorations hosted more individuals of butterflies considered habitat generalists, as well as species considered to be of conservation concern.  相似文献   

13.
Mobility is crucial for the maintenance of viable metapopulations, but quantitative data to evaluate risks due to insufficient individual mobility of focal insect species are mostly lacking. We selected the butterfly Brenthis ino, a species typically confined to wet fallow grasslands in Central Europe and performed a mark–release–recapture study in a 3.2 ha study area with one big and one small patch of suitable habitat from 22 June to 23 July 2010. The position of each butterfly capture was measured with a GPS and transferred into a GIS. In total, we marked 984 individuals in 1,545 capture events and estimated that the cumulative population size was 2,400 individuals. The initial increase of adult males proceeded much faster than for females, similar to the protandrous population build-up known from other butterflies. Moved distances for both sexes usually did not exceed 80 m, and about 40 % of all individuals used less than 2 % of the available suitable habitat. All individuals switching to the other patch returned later to their patch of origin, confirming that B. ino is highly philopatric. We conclude that low effective mobility in B. ino produces much smaller home ranges than suggested by merely observing flight activities in the field, and that low tendencies towards long-distance movements significantly hamper the maintenance of metapopulations when patch density decreases due to landscape fragmentation.  相似文献   

14.
Although butterfly declines have been reported across Europe, no assessment based on detailed quantitative data has ever been made for any extensive area in the Mediterranean Basin. In 1994, a Butterfly Monitoring Scheme was launched in Catalonia (NE Spain), and in 2005 a similar, albeit much smaller, scheme started in the neighbouring Pyrenean country of Andorra. Here we provide a first thorough assessment of butterfly trends in both areas for the last 15 years. Several patterns emerged, above all a worrying decline of a substantial part of the fauna. It was also evident that habitat specialists are experiencing greater declines than habitat generalists, thereby butterfly communities becoming progressively dominated by common species. However, habitat indicators based on characteristic species also revealed that trends are actually associated with habitat types, grassland and scrub specialists declining strongly but woodland specialists showing a marginal increase. These differences are certainly related to profound landscape changes, mainly a dramatic reduction of semi-natural grasslands and open Mediterranean scrub, and a major increase in woodlands. The general effect of climatic warming on butterfly populations was investigated by using the temperature community index (CTI) approach. The thermal structure of butterfly communities remained very stable over time, except in one case where, contrary to the expectations, a significant negative trend in the CTI was noted. However, this surprising result can be explained by taking into account the above-reported pattern of butterfly communities becoming dominated by common species, characterized by low thermal indices in comparison with declining Mediterranean specialists.  相似文献   

15.
We compared bird community responses to the habitat transitions of rainforest‐to‐pasture conversion, consequent habitat fragmentation, and post‐agricultural regeneration, across a landscape mosaic of about 600 km2 in the eastern Australian subtropics. Birds were surveyed in seven habitats: continuous mature rainforest; two size classes of mature rainforest fragment (4–21 ha and 1–3 ha); regrowth forest patches dominated by a non‐native tree (2–20 ha, 30–50 years old); two types of isolated mature trees in pasture; and treeless pasture, with six sites per habitat. We compared the avifauna among habitats and among sites, at the levels of species, functional guilds, and community‐wide. Community‐wide species richness and abundance of birds in pasture sites were about one‐fifth and one‐third, respectively, of their values in mature rainforest (irrespective of patch size). Many measured attributes changed progressively across a gradient of increased habitat simplification. Rainforest specialists became less common and less diverse with decreased habitat patch size and vegetation maturity. However, even rainforest fragments of 1–3 ha supported about half of these species. Forest generalist species were largely insensitive to patch size and successional stage. Few species reached their greatest abundance in either small rainforest fragments or regrowth. All pastures were dominated by bird species whose typical native habitats were grassland, wetland, and open eucalypt forest, while pasture trees modestly enhanced local bird communities. Overall, even small scattered patches of mature and regrowth forest contributed substantial bird diversity to local landscapes. Therefore, maximizing the aggregate rainforest area is a useful regional conservation strategy.  相似文献   

16.
Losses of both habitat area and connectivity have been identified as important drivers of species richness declines, but little theoretical and empirical work exists that addresses the effect of fragmentation on relative commonness of highly mobile species such as pollinating insects. With a large dataset of wild bee and butterfly abundances collected across Europe, we first tested the effect of habitat area and connectivity on evenness in pollinator communities using a large array of indexes that give different weight to dominance and rarity. Second, we tested if traits related to mobility and diet breadth could explain the observed evenness patterns. We found a clear negative effect of area and a weaker, but positive effect of connectivity on evenness. Communities in small habitat fragments were mainly composed of mobile and generalist species. The higher evenness in small fragments could thereby be generated by highly mobile species that maintain local populations with frequent inter‐fragment movements. Trait analysis suggested an increasing importance of dispersal over local recruitment, as we move from large to small fragments and from less to more connected fragments. Species richness and evenness were negatively correlated indicating that the two variables responded differently to habitat area and connectivity, although the mechanisms underlying the observed patterns are difficult to isolate. Even though habitat area and connectivity often decrease simultaneously due to habitat fragmentation, an interesting practical implication of the contrasting effect of the two variables is that the resulting community composition will depend on the relative strength of these two processes.  相似文献   

17.
Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i) habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height); (ii) factors associated with habitat spatial structure (patch size, patch isolation and fragmentation); and (iii) features of patch surroundings (100-m buffers around patches) that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and more fragmented ones, including those with relatively low resource availability, because such habitat fragments have an important role to play for specialist species.  相似文献   

18.
Population fluctuations and synchrony influence population persistence; species with larger fluctuations and more synchronised population fluctuations face higher extinction risks. Here, we analyse the effect of diet specialisation, mobility, length of the flight period, and distance to the northern edge of the species’ distribution in relation to between-year population fluctuations and synchrony of butterfly species. All butterfly species associated with grasslands were surveyed over five successive years at 19 grassland sites in a forest-dominated landscape (50 km2) in southern Sweden. At both the local and regional level, we found larger population fluctuations in species with longer flight periods. Population fluctuations were more synchronous among localities in diet specialists. Species with a long flight period might move more to track nectar resources compared to species with shorter flight period, and if nectar sources vary widely between years and localities it may explain that population fluctuations increase with increasing flight length. Diet generalists can use different resources (in this case host plants) at different localities and this can explain the lower synchrony in population fluctuations among generalist species. Higher degree of synchrony is one possible explanation for the higher extinction risks that have been observed for more specialised species. Therefore, diet specialists are more often threatened and require more conservation efforts than generalists.  相似文献   

19.
Recent studies on the determinants of distribution and abundance of animals at landscape level have emphasized the usefulness of the metapopulation approach, in which patch area and habitat connectivity have often proved to explain satisfactorily existing patch occupancy patterns. A different approach is needed to study the common situation in which suitable habitat is difficult to determine or does not occur in well‐defined habitat patches. We applied a landscape ecological approach to study the determinants of distribution and abundance of the threatened clouded apollo Parnassius mnemosyne butterfly within an area of 6 km2 of agricultural landscape in south‐western Finland. The relative role of 24 environmental variables potentially affecting the distribution and abundance of the butterfly was studied using a spatial grid system with 2408 grid squares of 0.25 ha, of which 349 were occupied by the clouded apollo. Both the probability of butterfly presence and abundance in a 0.25 ha square increased with the presence of the larval host plant Corydalis solida the cover of semi‐natural grassland, the amount of solar radiation and spalial autocorrelation in butterfly occurrence. Additionally, butterfly abundance increased with overall mean patch size and decreased with maximum slope angle and wind speed. Two advantages of the employment of a spatial grid system included the avoidance of a subjective definition of suitable habitat patches and an evaluation of the relative significance of different components of habitat quality at the same time with habitat availability and connectivity. The large variation in habitat quality was influenced by the abundance of the larval host plant and adult nectar sources but also by climatological. topographical and structural factors. The application of a spatial grid system as used here has potential for a wide use in studies on landscape‐level distribution and abundance patterns in species with complex habitat requirements and habitat availability patterns.  相似文献   

20.
对同一网络斑块中金堇蛱蝶(Euphydryas aurinia)和大网蛱蝶(Meiltaea phoebe)雌性成虫的产卵地进行了调查,以确定影响它们斑块质量的因素.结果表明,2种网蛱蝶雌性成虫均选择体积大的寄主植物、周围植被高度低、开放的区域产卵,它们的卵块主要分布在温暖向阳的坡面.金堇蛱蝶的卵块距离农田边缘为3.55±0.33 m (n=246),且集中分布在<3 m区域内;大网蛱蝶卵块距离农田边缘为7.34±1.53 m (n=25),但在<3 m区域内的数量少.研究表明,由于这2种网蛱蝶雌性成虫对产卵地要求的特异性,评价它们斑块质量以及对其制定保护管理措施时均应有所不同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号