首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein tyrosine phosphatase 1B (PTP1B) plays an important role in the negative regulation of insulin and leptin signaling. The development of small molecular inhibitors targeting PTP1B has been validated as a potential therapeutic strategy for Type 2 diabetes (T2D). In this work, we have identified a series of compounds containing dihydropyridine thione and particular chiral structure as novel PTP1B inhibitors. Among those, compound 4b showed moderate activity with IC50 value of 3.33 μM and meanwhile with good selectivity (>30-fold) against TCPTP. The further MOA study of PTP1B demonstrated that compounds 4b is a substrate-competitive inhibitor. The binding mode analysis suggested that compound 4b simultaneously occupies the active site and the second phosphotyrosine (pTyr) binding site of PTP1B. Furthermore, the cell viability assay of compound 4b showed tolerable cytotoxicity in L02 cells, thus 4b may be prospectively used to further in vivo study.  相似文献   

2.
Serotonin (5-HT) is a monoamine originally purified from blood as a vasoactive agent. In nonneuronal tissues, its presence is linked with the expression of tryptophan hydroxylase 1 (TPH1) that catalyzes the rate-limiting step of its synthesis. Targeted disruption in mice of the TPH1 gene results in very low levels of circulating 5-HT. Previous analysis of the TPH1 knockout (TPH1−/−) mouse revealed that they develop a phenotype of macrocytic anemia with a reduced half-life of their circulating red blood cells (RBC). In this study, to establish whether the observed reduced half-life of TPH1−/− RBC is an intrinsic or an extrinsic characteristic, we compared their survival to RBC isolated from wild-type mice. Both in vivo and in vitro data converge to demonstrate an extrinsic protective effect of 5-HT since presence of 5-HT in the RBC environment protects RBC from senescence. The protective effect played by 5-HT is not mediated through activation of a classical pharmacological pathway as no 5-HT receptors were detected on isolated RBC. Rather, 5-HT acts as an effective antioxidant since reduction of 5-HT circulating levels are associated with a decrease in the plasma antioxidant capacity. We further demonstrate a link between oxidation and the removal of damaged RBC following transfusion, as supplementation with 5-HT improves RBC post-transfusion survival in a mouse model of blood banking.  相似文献   

3.
A series of N-(2-(3,4,5-trimethoxybenzyl)-benzoxazole-5-yl)benzamide derivatives (3a–3n) was synthesized and evaluated for its in vitro inhibitory activity against COX-1 and COX-2. The compounds with considerable in vitro activity (IC50 < 1 µM), were evaluated in vivo for their anti-inflammatory and ulcerogenic potential. Out of the fourteen newly synthesized compounds; 3b, 3d, 3e, 3h, 3l and 3m were found to be most potent COX-2 inhibitors in in vitro enzymatic assay with IC50 in the range of 0.14–0.69 µM. In vivo anti-inflammatory activity of these six compounds (3b, 3d, 3e, 3h, 3l and 3m) was assessed by carrageenan induced rat paw edema method. The compound 3b (79.54%), 3l (75.00%), 3m (72.72%) and 3d (68.18%) exhibited significant anti-inflammatory activity than standard drug ibuprofen (65.90%). Ulcerogenic activity with histopathological studies was performed, and the screened compounds demonstrated significant gastric tolerance than ibuprofen. Molecular Docking study was also performed with resolved crystal structure of COX-2 to understand the interacting mechanisms of newly synthesized inhibitors with the active site of COX-2 enzyme and the results were found to be in line with the biological evaluation studies of the compounds.  相似文献   

4.
We initiated our structure-activity relationship (SAR) studies for novel ACC1 inhibitors from 1a as a lead compound. Our initial SAR studies of 1H-Pyrrolo[3,2-b]pyridine-3-carboxamide scaffold revealed the participation of HBD and HBA for ACC1 inhibitory potency and identified 1-methyl-1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative 1c as a potent ACC1 inhibitor. Although compound 1c had physicochemical and pharmacokinetic (PK) issues, we investigated the 1H-pyrrolo[3,2-b]pyridine core scaffold to address these issues. Accordingly, this led us to discover a novel 1-isopropyl-1H-pyrrolo[3,2-b]pyridine-3-carboxamide derivative 1k as a promising ACC1 inhibitor, which showed potent ACC1 inhibition as well as sufficient cellular potency. Since compound 1k displayed favorable bioavailability in mouse cassette dosing PK study, we conducted in vivo Pharmacodynamics (PD) studies of this compound. Oral administration of 1k significantly reduced the concentration of malonyl-CoA in HCT-116 xenograft tumors at a dose of 100 mg/kg. Accordingly, our novel series of potent ACC1 inhibitors represent useful orally-available research tools, as well as potential therapeutic agents for cancer and fatty acid related diseases.  相似文献   

5.
6.
TGF-β type I receptor (also known as activin-like kinase 5 or ALK5) plays a critical role in the progression of fibrotic diseases and tumor invasiveness and metastasis, as well. The development of small inhibitors targeting ALK5 has been validated as a potential therapeutic strategy for fibrotic diseases and cancer. Here, we developed various 4-((1-cyclopropyl-3-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl) oxy) pyridine-2-yl) amino derivatives as ALK5 inhibitors. The optimization led to identification of potent and selective ALK5 inhibitors 12r. The compound 12r exhibited strong inhibitory activity both in vitro and in vivo, and pharmacokinetics study showed an oral bioavailability of 57.6%. Thus, compound 12r may provide as new therapeutic option as ALK5 TGF-βR1 inhibitor.  相似文献   

7.
The new aminoalkyl-substituted derivatives of known CK2 inhibitors 4,5,6,7-tetrabromo-1H-benzimidazole (TBBi) and 4,5,6,7-tetrabromo-1H-benzotriazole (TBBt) were synthesized, and their influence on the activity of recombinant human CK2 α, CK2 holoenzyme and PIM1 kinases was evaluated. All derivatives inhibited the activity of studied kinases and the most efficient were aminopropyl-derivatives 8b and 14b. These compounds also exerted inhibition of cancer cell lines – CCRF-CEM (acute lymphoblastoid leukemia), MCF-7 (human breast cancer), and PC-3 (prostate cancer) proliferation and their EC50 is comparable with the value for clinically studied CK2 inhibitor CX-4945. Preliminary structure activity relationship analysis indicated that the spacer length affected antitumor potency, and two to three methylene units were more favorable. The complex of CK2 α1-335/8b was crystallized, both under high-salt conditions and under low-salt conditions giving crystals which diffracted X-rays to about 2.4 Å resolution, what enabled the determination of the corresponding 3D-structures.  相似文献   

8.
The objective of this work was to obtain and evaluate anti-inflammatory in vitro, in vivo and in silico potential of novel indole-N-acylhydrazone derivatives. In total, 10 new compounds (3aj) were synthesized in satisfactory yields, through a condensation reaction in a single synthesis step. In the lymphoproliferation assay, using mice splenocytes, 3a and 3b showed inhibition of lymphocyte proliferation of 62.7% (±3.5) and 50.7% (±2), respectively, while dexamethasone presented an inhibition of 74.6% (±2.4). Moreover, compound 3b induced higher Th2 cytokines production in mice splenocytes cultures. The results for COX inhibition assays showed that compound 3b is a selective COX-2 inhibitor, but with less potency when compared to celecoxib, and compound 3a not presented selectivity towards COX-2. The molecular docking results suggest compounds 3a and 3b interact with the active site of COX-2 in similar conformations, but not with the active site of COX-1, and this may be the main reason to the COX-2 selectivity of compound 3b. In vivo carrageenan-induced paw edema assays were adopted for the confirmation of the anti-inflammatory activity. Compound 3b showed better results in suppressing edema at all tested concentrations and was able to induce an edema inhibition of 100% after 5?h of carrageenan injection at the 30?mg?kg?1 dosage, corroborating with the COX inhibition and lymphoproliferation results. I addition to our experimental results, in silico analysis suggest that compounds 3a and 3b present a well-balanced profile between pharmacodynamics and pharmacokinetics. Thus, our preliminary results revealed the potentiality of a new COX-2 selective derivative in the modulation of the inflammatory process.  相似文献   

9.
The design and synthesis of a new series of 1,4-dihydroquinazolin-3(2H)-yl benzamide derivatives (4a–o) as anti-inflammatory and analgesic agents and COX-1/2 inhibitors are reported. The target compounds (4a–o) were synthesized using a two-step scheme, and their chemical structures were confirmed with 1H NMR, 13C NMR, and mass spectra and elemental analysis. Compounds 4b, 4d, 4h, 4l, 4n and 4o showed the best in vitro COX-2 inhibitory activity (IC50 0.04–0.07 μM), which was nearly the same as that of the reference drug celecoxib (IC50 0.049 μM), but had a lower selectivity index, as dictated in our target design. In the in vivo anti-inflammatory inhibition assay, compounds 4b, 4c, 4e, 4f, 4m and 4o showed better oedema inhibition percentages, ranging from 38.1% to 54.1%, than did diclofenac sodium (37.8%). An in vivo analgesic assay revealed that compounds 4b and 4n had a potential analgesic effect 4- to 21-fold more potent than that of indomethacin and diclofenac sodium. All the tested compounds showed an improved ulcerogenic index when compared to indomethacin. In the synthesized series, compound 4b showed the best biological activity in all the experiments. The docking study results agreed with the in vitro COX inhibition assay results. Moreover, the predicted in silico studies of all the compounds support their potential as drug candidates.  相似文献   

10.
Several 3′,5′-cyclic nucleotide phosphodiesterases (PDEs) have been validated as good drug targets for a large variety of diseases. Trypanosoma brucei PDEB1 (TbrPDEB1) has been designated as a promising drug target for the treatment of human African trypanosomiasis. Recently, the first class of selective nanomolar TbrPDEB1 inhibitors was obtained by targeting the parasite specific P-pocket. However, these biphenyl-substituted tetrahydrophthalazinone-based inhibitors did not show potent cellular activity against Trypanosoma brucei (T. brucei) parasites, leaving room for further optimization. Herein, we report the discovery of a new class of potent TbrPDEB1 inhibitors that display improved activities against T. brucei parasites. Exploring different linkers between the reported tetrahydrophthalazinone core scaffold and the amide tail group resulted in the discovery of alkynamide phthalazinones as new TbrPDEB1 inhibitors, which exhibit submicromolar activities versus T. brucei parasites and no cytotoxicity to human MRC-5 cells. Elucidation of the crystal structure of alkynamide 8b (NPD-048) bound to the catalytic domain of TbrPDEB1 shows a bidentate interaction with the key-residue Gln874 and good directionality towards the P-pocket. Incubation of trypanosomes with alkynamide 8b results in an increase of intracellular cAMP, validating a PDE-mediated effect in vitro and providing a new interesting compound series for further studies towards selective TbrPDEB1 inhibitors with potent phenotypic activity.  相似文献   

11.
《Life sciences》1995,57(24):PL373-PL380
Nefazodone HCl (Serzone®) is a new antidepressant with a chemical structure unrelated to selective serotonin reuptake inhibitors (SSRIs), tricyclics, tetracyclics, or monoamine oxidase inhibitors (MAOIs). Nefazodone is active in a number of preclinical tests for antidepressant activity and shows clinical efficacy in the treatment of depression with a more favorable side-effect profile than the structurally similar antidepressant trazodone. Previous studies have shown that nefazodone is a potent antagonist of 5-HT2A receptors and binds to the serotonin transporter in vitro and in vivo. Nefazodone also binds to the norepinephrine transporter in vitro and in acute ex vivo studies. To further investigate the ability of nefazodone to modify serotonergic transmission, the ability of systemically administered nefazodone to inhibit the serotonin transporter was assessed by investigating the ability of nefazodone to prevent p-chloroamphetamine- (PCA) induced depletions of cortical 5-HT concentrations. In addition, the ability of acute and subchronic nefazodone administration to inhibit ex vivo [3H]-5-HT uptake was assessed. Acute administration of nefazodone (30, 100, and 150 mg/kg) antagonized PCA-induced depletion of cortical 5-HT concentrations in a dose-dependent manner at 1,2, and 3 hours post-treatment. This effect was directly correlated with serum nefazodone concentrations. Both 100 mg/kg and 150 mg/kg of nefazodone were equipotent with fluoxetine (10 mg/kg) over the course of the experiment with respect to sparing of 5-HT depletion. Acute administration of nefazodone (100 and 150 mg/kg s.c.) significantly increased the Km, for [3H]-5-HT uptake in rat cortical synaptosomes from 60 nmol/L in controls to 230 and 242 nmol/L in nefazodone-treated rats, respectively. Subchronic administration of nefazodone (100 and 150 mg/kg, s.c., b.i.d. × 5.5 days) reduced [3H]-5-HT uptake by 24% and 29%, respectively. Sub-chronic dosing with fluoxetine (5 mg/kg, s.c., b.i.d. × 5.5 days) reduced [3H]-5-HT uptake by 65% These experiments confirm and extend previous reports concerning the ability of nefazodone to inhibit the 5-HT transporter in vivo.  相似文献   

12.
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are promising drug development targets due to their implications in pathologies such as cancer and neurodegenerative diseases. The search for IDO1 inhibitor has been intensely pursued but there is a paucity of potent TDO and IDO1/TDO dual inhibitors. Natural product tryptanthrin has been confirmed to bear IDO1 and/or TDO inhibitory activities. Herein, twelve novel tryptanthrin derivatives were synthesized and evaluated for the IDO1 and TDO inhibitory potency. All of the compounds were found to be IDO1/TDO dual inhibitors, in particular, compound 9a and 9b bore IDO1 inhibitory activity similar to that of INCB024360, and compound 5a and 9b had remarkable TDO inhibitory activity superior to that of the well-known TDO inhibitor LM10. This work enriches the collection of IDO1/TDO dual inhibitors and provides chemical molecules for potential development into drugs.  相似文献   

13.
The superbug infection caused by New Delhi metallo-β-lactamase (NDM-1) has grown into an emerging threat, labelling and inhibition of NDM-1 has proven challenging due to its shuttling between pathogenic bacteria. Here, we report a potent covalent scaffold, ebsulfur, for targeting the protein in vitro and in vivo. Enzymatic kinetic study indicated that eighteen ebsulfurs gained except 1ab and 1f inhibited NDM-1, exhibiting an IC50 value ranging of 0.16–9 μM, and 1g was found to be the best, dose- and time-dependent inhibitor with an IC50 of 0.16 μM. Also, these ebsulfurs effectively restored the antibacterial activity of cefazolin against E. coli expressing NDM-1, and the best effect was observed to be from 1g, 1i and 1n, resulting in an 256-fold reduction in MIC of the antibiotic at a dose of 16 μg/mL. The equilibrium dialysis study implied that the ebsulfur disrupted the coordination of one Zn(II) ion at active site of NDM-1. Labelling of NDM-1 using a constructed fluorescent ebsulfur Ebs-R suggested that the inhibitor covalently bound to the target through SDS-PAGE analysis in vitro. Also, labelling NDM-1 in living E. coli cells with Ebs-R by confocal microscopic imaging showed the real-time distribution change process of intracellular recombinant protein NDM-1. Moreover, the cytotoxicity of these ebsulfurs against L929 mouse fibroblastic cells was tested, and their capability to restore antibacterial activity of antibiotic against clinical strains E. coli EC08 producing NDM-1 was determined. The ebsulfur scaffold proposed here is valuable for development of the covalent irreversible inhibitors of NDM-1, and also for labelling the target in vitro and in vivo.  相似文献   

14.
We identified novel potent inhibitors of p38 MAP kinase using structure-based design strategy. X-ray crystallography showed that when p38 MAP kinase is complexed with TAK-715 (1) in a co-crystal structure, Phe169 adopts two conformations, where one interacts with 1 and the other shows no interaction with 1. Our structure-based design strategy shows that these two conformations converge into one via enhanced protein-ligand hydrophobic interactions. According to the strategy, we focused on scaffold transformation to identify imidazo[1,2-b]pyridazine derivatives as potent inhibitors of p38 MAP kinase. Among the herein described and evaluated compounds, N-oxide 16 exhibited potent inhibition of p38 MAP kinase and LPS-induced TNF-α production in human monocytic THP-1 cells, and significant in vivo efficacy in rat collagen-induced arthritis models. In this article, we report the discovery of potent, selective and orally bioavailable imidazo[1,2-b]pyridazine-based p38 MAP kinase inhibitors with pyridine N-oxide group.  相似文献   

15.
The design and synthesis of a novel class of low-absorbable SGLT1 inhibitors are described. To achieve low absorption in the new series, we performed an optimization study based on a strategy to increase TPSA. Fortunately, the optimization of an aglycon moiety and a side chain of the distal aglycon moiety led to the identification of compound 30b as a potent and low-absorbable SGLT1 inhibitor. Compound 30b showed a desirable PK profile in Sprague-Dawley (SD) rats and a favorable glucose-lowering effect in diabetic rats.  相似文献   

16.
The present study includes design and synthesis of new molecular hybrids of 2-methylthiobenzimidazole linked to various anti-inflammatory pharmacophores through 2-aminothiazole linker, to investigate the effect of such molecular variation on cyclooxygenase (COX) and 15-lipoxygenase (15-LOX) enzymes inhibition as well as in vivo anti-inflammatory activity. The chemical structures of new hybrids were confirmed using different spectroscopic tools and elemental analyses. Benzimidazole-thiazole hybrids linked to acetyl moiety 13, phenyl thiosemicarbazone 14, 1,3-thiazolines 15a-c and 4-thiazolidinone 16 exhibited significant COX-2 inhibition (IC50 = 0.045–0.075 µM) with significant COX-2 selectivity indices (SI = 142–294). All hybrids revealed potent 15-LOX inhibitory activity (IC50 = 1.67–6.56 µM). Benzimidazole-thiazole hybrid 15b was the most potent dual COX-2 (IC50 = 0.045 µM, SI = 294) inhibitor approximate to celecoxib (COX-2; IC50 = 0.045 µM, SI = 327), with double inhibitory activity versus 15-LOX enzyme (IC50 = 1.67 µM) relative to quercetin (IC50 = 3.34 µM). Three hybrids (14, 15b & 16) were selected for in vivo screening using carrageenan-induced paw edema method. Benzimidazole-thiazole hybrid linked to 4-thiazolidinone 16 showed the maximum edema inhibition at both 3 h and 4 h intervals as well (~119% and 102% relative to indomethacin, respectively). The gastric ulcerogenic effect of benzimidazole-thiazole hybrid 16 was estimated compared with indomethacin showing superior gastrointestinal safety profile. In bases of molecular modeling; all new active hybrids were subjected to docking simulation into active sites of COX-2 and 15-LOX enzymes to study the binding mode of these novel potent dual COX-2/15-LOX inhibitors.  相似文献   

17.
A series of eighteen pyrano[4,3-b][1]benzopyranone derivatives (1a-9b) were synthesized, and structure-activity relationships of their monoamine oxidase (MAO) A and B, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) inhibitory activities were evaluated. Most of the synthesized compounds exhibited weak inhibitory activity toward MAO-A, whereas compounds 2a, 2b, 4a, 4b, 5a, 5b, 6a, 6b, 8a and 8b showed potent inhibitory activities toward MAO-B. Intriguingly, compounds 5a, 5b, and 8a showed inhibitory activities comparable to pargylin, used as a positive control for MAO-B. Substitution of butoxy at the C3 position or of chlorine at the C8 position of pyrano[4,3-b][1]benzopyranone increased the inhibitory activity of the compound toward MAO-B. The results of a molecular docking study supported this structural effect. Most of the compounds exhibited no or slight inhibitory activity toward AChE and BChE, with exo type compounds bearing a butoxy group, such as compounds 2b, 5b and 8b, showing weak but distinct inhibitory activities toward BChE. This report is the first to identify pyrano[4,3-b][1]benzopyranone derivatives as potent and selective MAO-B inhibitors. 3-Butoxy-8-chloro-pyrano[4,3-b][1]benzopyranone (5b) may be useful as a lead compound for the development of MAO-B inhibitors.  相似文献   

18.
Described herein is the synthesis and biological evaluation of a series of non-carboxylic inhibitors of Protein Tyrosine Phosphatase 1B designed using bioisosteric replacement strategy. Six N-(3-(1H-tetrazol-5-yl)phenyl)acetamide derivatives designed employing the aforementioned strategy were synthesized and screened for PTP1B inhibitory activity. Among the synthesized compounds, compound NM-03 exhibited the most potent inhibitory activity with IC50 value of 4.48 µM. Docking studies with NM-03 revealed the key interactions with desired amino acids in the binding site of PTP1B. Furthermore, compound NM-03 also elicited good in vivo activity. Taken together, the results of this study establish N-(3-(1H-tetrazole-5-yl)phenyl)-2-(benzo[d]oxazol-2-ylthio)acetamide (NM-03) as a valuable lead molecule with great potential for PTP1B inhibitor development targeting diabetes.  相似文献   

19.
The (Z)-fluoro-olefin amide bioisosteric replacement is an effective tool for addressing various shortcomings of the parent amide. In an effort to fine tune ADME properties of BACE1 preclinical candidate AM-6494, a series of structurally distinct (Z)-fluoro-olefin containing analogs was developed that culminated in compound 15. Herein, we detail design considerations, synthetic challenges, structure activity relationship (SAR) studies, and in vivo properties of an advanced compound in this novel series of BACE1 inhibitors.  相似文献   

20.
Ubiquitin-activating enzyme (E1), which catalyzes the activation of ubiquitin in the initial step of the ubiquitination cascade, is a potential therapeutic target in multiple myeloma and breast cancer treatment. However, only a few E1 inhibitors have been reported to date. Moreover, there has been little medicinal chemistry research on the three-dimensional structure of E1. Therefore, in the present study, we attempted to identify novel E1 inhibitors using structure-based drug design. Following the rational design, synthesis, and in vitro biological evaluation of several such compounds, we identified a reversible E1 inhibitor (4b). Compound 4b increased p53 levels in MCF-7 breast cancer cells and inhibited their growth. These findings suggest that reversible E1 inhibitors are potential anticancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号