首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GHG mitigation by bioenergy crops depends on crop type, management practices, and the input of residue carbon (C) to the soil. Perennial grasses may increase soil C compared to annual crops because of more extensive root systems, but it is less clear how much soil C is derived from above‐ vs. belowground inputs. The objective of this study was to synthesize the existing knowledge regarding soil C inputs from above‐ and belowground crop residues in regions cultivated with sugarcane, corn, and miscanthus, and to predict the impact of residue removal and tillage on soil C stocks. The literature review showed that aboveground inputs to soil C (to 1‐m depth) ranged from 70% to 81% for sugarcane and corn vs. 40% for miscanthus. Modeled aboveground C inputs (to 30 cm depth) ranged from 54% to 82% for sugarcane, but were 67% for miscanthus. Because 50% of observed miscanthus belowground biomass is below 30 cm depth, it may be necessary to increase the depth of modeled soil C dynamics to reconcile modeled belowground C inputs with measured. Modeled removal of aboveground corn residue (25–100%) resulted in C stock reduction in areas of corn–corn–soybean rotation under conventional tillage, while no‐till management lessoned this impact. In sugarcane, soil C stocks were reduced when total aboveground residue was removed at one site, while partial removal of sugarcane residue did not reduce soil C stocks in either area. This study suggests that aboveground crop residues were the main C‐residue source to the soil in the current bioethanol sector (corn and sugarcane) and the indiscriminate removal of crop residues to produce cellulosic biofuels can reduce soil C stocks and reduce the environmental benefits of bioenergy. Moreover, a switch to feedstocks such as miscanthus with more allocation to belowground C could increase soil C stocks at a much faster rate.  相似文献   

2.
Insect herbivores are important drivers of ecosystem processes in grasslands, and can mediate the grassland's response to environmental change. For example, recent evidence shows that above‐ and belowground herbivory, individually and in combination, can modify how a plant community responds to nitrogen (N) eutrophication, an important driver of global change. However, knowledge about how such effects extend to the associated soil food web is lacking. In a mesocosm experiment, we investigated how communities of soil nematodes – an abundant and functionally important group of soil organisms – responded to above‐ and belowground insect herbivory at contrasting N levels. We found that the strongest influence of above‐ and belowground herbivory on the nematode community appeared at elevated N. The abundance of root‐feeding nematodes increased when either above‐ or belowground insect herbivores were present at elevated N, but when applied together the two herbivore types cancelled out one another's effect. Additionally, at elevated N aboveground herbivory increased the abundance of fungal‐feeders relative to bacterial‐feeders, which indicates changes in decomposition pathways induced by N and herbivory. Belowground herbivory increased the abundance of omnivorous nematodes. The shifts in both the herbivorous and detrital parts of the soil food web demonstrate that above‐ and belowground herbivory does not only mediate the response of the plant community to N eutrophication, but in extension also the soil food web sustained by the plant community. We conclude that feedbacks between effects of above‐ and belowground herbivory mediate the response of the grassland ecosystem to N eutrophication.  相似文献   

3.
Question: Do above‐ and belowground insects differentially impact plant community structure and function in a diverse native grassland? Location: Rough fescue prairie in Alberta, Canada. Methods: Above‐ and belowground insects were suppressed with insecticides for 5 years using a randomised block design. During this experiment, a severe drought began in 2001 and ended in 2003. Aboveground plant growth was measured as cover and biomass from 2001 to 2005. Root demography was measured in 2002 using a minirhizotron. Mixed models and repeated measures ANOVA were used to determine treatment effects on a number of response variables. MRBP were used to test for treatment effects on community composition. Results: Five years of insect suppression had few significant effects on plant growth, species richness or community composition, and were limited primarily to the severe drought in 2002. During the drought, insect attack increased root mortality, reduced plant cover, and altered community composition. Following the drought, plant responses were unaffected by insecticide application for the remainder of the experiment. Conclusions: Five years of insect suppression had only minor effects on community structure and function in this diverse native grassland. There was no indication that these effects increased over time. The results are counter to studies conducted in productive old‐field communities that revealed large effects of insects on community structure. We suggest that the unique features of this system, such as high species evenness, abundance of generalist herbivores, and a lack of competition for light among plants, limited the potential for insects to greatly impact community‐level processes.  相似文献   

4.
There has been a growing recent interest in how foliar herbivory may indirectly affect the belowground sub-system, but little is known about the belowground consequences of the identity, species composition or diversity of foliar herbivores. We performed an experiment, utilising model grassland communities containing three plant species, in which treatments consisted of addition of each of eight aphid species in single and in two- four- and eight-species combinations, as well as an aphid-free treatment. While aphid species treatments did not affect total plant biomass or productivity, aphid species identity had important effects on the relative abundance of the three plant species. This in turn affected the abundances of each of three groups of secondary consumers in the soil food web (bacterial- and fungal-feeding nematodes, and enchytraeids) but not primary consumers (microbes, herbivorous nematodes) or tertiary consumers (predatory nematodes). The fact that some trophic levels responded to treatments while others did not is consistent with trophic dynamic theory. Aphid species treatments also affected the community composition within each of the herbivorous, microbe-feeding and top predatory nematode groups, as well as diversity within the first two of these groups. However, aphid species diversity per se had few effects. There were specific instances in which specific aboveground and belowground response variables in two aphid species combinations differed significantly from those in both of the corresponding single aphid species treatments (apparently as a consequence of resource use complementarity between coexisting aphid species), but no instance in which increasing aphid diversity beyond two species had any effect. Our results provide evidence that the identity of aboveground consumers can have effects that propagate through multiple trophic levels in soil food webs in terms of consumer abundance, and composition and diversity within trophic levels.  相似文献   

5.
Urbanisation and agriculture cause declines for many wildlife, but some species benefit from novel resources, especially food, provided in human‐dominated habitats. Resulting shifts in wildlife ecology can alter infectious disease dynamics and create opportunities for cross‐species transmission, yet predicting host–pathogen responses to resource provisioning is challenging. Factors enhancing transmission, such as increased aggregation, could be offset by better host immunity due to improved nutrition. Here, we conduct a review and meta‐analysis to show that food provisioning results in highly heterogeneous infection outcomes that depend on pathogen type and anthropogenic food source. We also find empirical support for behavioural and immune mechanisms through which human‐provided resources alter host exposure and tolerance to pathogens. A review of recent theoretical models of resource provisioning and infection dynamics shows that changes in host contact rates and immunity produce strong non‐linear responses in pathogen invasion and prevalence. By integrating results of our meta‐analysis back into a theoretical framework, we find provisioning amplifies pathogen invasion under increased host aggregation and tolerance, but reduces transmission if provisioned food decreases dietary exposure to parasites. These results carry implications for wildlife disease management and highlight areas for future work, such as how resource shifts might affect virulence evolution.  相似文献   

6.
Orchids typically depend on fungi for establishment from seeds, forming mycorrhizal associations with basidiomycete fungal partners in the polyphyletic group rhizoctonia from early stages of germination, sometimes with very high specificity. This has raised important questions about the roles of plant and fungal phylogenetics, and their habitat preferences, in controlling which fungi associate with which plants. In this issue of Molecular Ecology, Martos et al. (2012) report the largest network analysis to date for orchids and their mycorrhizal fungi, sampling a total of over 450 plants from nearly half the 150 tropical orchid species on Reunion Island, encompassing its main terrestrial and epiphytic orchid genera. The authors found a total of 95 operational taxonomic units of mycorrhizal fungi and investigated the architecture and nestedness of their bipartite networks with 73 orchid species. The most striking finding was a major ecological barrier between above‐ and belowground mycorrhizal fungal networks, despite both epiphytic and terrestrial orchids often associating with closely related taxa across all three major lineages of rhizoctonia fungi. The fungal partnerships of the epiphytes and terrestrial species involved a diversity of fungal taxa in a modular network architecture, with only about one in ten mycorrhizal fungi partnering orchids in both groups. In contrast, plant and fungal phylogenetics had weak or no effects on the network. This highlights the power of recently developed ecological network analyses to give new insights into controls on plant–fungal symbioses and raises exciting new hypotheses about the differences in properties and functioning of mycorrhiza in epiphytic and terrestrial orchids.  相似文献   

7.
  1. Land management is known to have consequences for biodiversity; however, our synthetic understanding of its effects is limited due to highly variable results across studies, which vary in the focal taxa and spatial grain considered, as well as the response variables reported. Such synthetic knowledge is necessary for management of agroecosystems for high diversity and function.
  2. To fill this knowledge gap, we investigated the importance of scale‐dependent effects of land management (LM) (pastures vs. meadows), on plant and soil microbe diversity (fungi and bacteria) across 5 study sites in Central Germany. Analyses included diversity partitioning of species richness and related biodiversity components (i.e., density of individuals, species‐abundance distribution, and spatial aggregation) at two spatial grains (α‐ and γ‐scale, 1 m2 and 16 km2, respectively).
  3. Our results show scale‐dependent patterns in response to LM to be the norm rather than the exception and highlight the importance of measuring species richness and its underlying components at multiple spatial grains.
  4. Our outcomes provide new insight to the complexity of scale‐dependent responses within and across taxonomic groups. They suggest that, despite close associations between taxa, LM responses are not easily extrapolated across multiple spatial grains and taxa. Responses of biodiversity to LM are often driven by changes to evenness and spatial aggregation, rather than by changes in individual density. High‐site specificity of LM effects might be due to a variety of context‐specific factors, such as historic land management, identity of grazers, and grazing regime.
  5. Synthesis and applications: Our results suggest that links between taxa are not necessarily strong enough to allow for generalization of biodiversity patterns. These findings highlight the importance of considering multiple taxa and spatial grains when investigating LM responses, while promoting management practices that do the same and are tailored to local and regional conditions.
  相似文献   

8.
The role of climatic legacies in regulating community assembly of above‐ and belowground species in terrestrial ecosystems remains largely unexplored and poorly understood. Here, we report on two separate regional and continental empirical studies, including >500 locations, aiming to identify the relative importance of climatic legacies (climatic anomaly over the last 20,000 years) compared to current climates in predicting the relative abundance of ecological clusters formed by species strongly co‐occurring within two independent above‐ and belowground networks. Climatic legacies explained a significant portion of the variation in the current community assembly of terrestrial ecosystems (up to 15.4%) that could not be accounted for by current climate, soil properties, and management. Changes in the relative abundance of ecological clusters linked to climatic legacies (e.g., past temperature) showed the potential to indirectly alter other clusters, suggesting cascading effects. Our work illustrates the role of climatic legacies in regulating ecosystem community assembly and provides further insights into possible winner and loser community assemblies under global change scenarios.  相似文献   

9.
Nitrogen (N) enrichment often increases aboveground net primary productivity (ANPP) of the ecosystem, but it is unclear if belowground net primary productivity (BNPP) track responses of ANPP. Moreover, the frequency of N inputs may affect primary productivity but is rarely studied. To assess the response patterns of above‐ and belowground productivity to rates of N addition under different addition frequencies, we manipulated the rate (0–50 g N m?2 year?1) and frequency (twice vs. monthly additions per year) of NH4NO3 inputs for six consecutive years in a temperate grassland in northern China and measured ANPP and BNPP from 2012 to 2014. In the low range of N addition rates, BNPP showed the greatest negative response and ANPP showed the greatest positive responses with increases in N addition (<10 g N m?2 year?1). As N addition increased beyond 10 g N m?2 year?1, increases in ANPP dampened and decreases in BNPP ceased altogether. The response pattern of net primary productivity (combined above‐ and belowground; NPP) corresponded more closely to ANPP than to BNPP. The N effects on BNPP and BNPP/NPP (fBNPP) were not dependent on N addition frequency in the range of N additions typically associated with N deposition. BNPP was more sensitive to N addition frequency than ANPP, especially at low rates of N addition. Our findings provide new insights into how plants regulate carbon allocation to different organs with increasing N rates and changing addition frequencies. These root response patterns, if incorporated into Earth system models, may improve the predictive power of C dynamics in dryland ecosystems in the face of global atmospheric N deposition.  相似文献   

10.
Ecotones between distinct ecosystems have been the focus of many studies as they offer valuable insights into key drivers of community structure and ecological processes that underpin function. While previous studies have examined a wide range of above‐ground parameters in ecotones, soil microbial communities have received little attention. Here we investigated spatial patterns, composition, and co‐occurrences of archaea, bacteria, and fungi, and their relationships with soil ecological processes across a woodland‐grassland ecotone. Geostatistical kriging and network analysis revealed that the community structure and spatial patterns of soil microbiota varied considerably between three habitat components across the ecotone. Woodland samples had significantly higher diversity of archaea while the grassland samples had significantly higher diversity of bacteria. Microbial co‐occurrences reflected differences in soil properties and ecological processes. While microbial networks were dominated by bacterial nodes, different ecological processes were linked to specific microbial guilds. For example, soil phosphorus and phosphatase activity formed the largest clusters in their respective networks, and two lignolytic enzymes formed joined clusters. Bacterial ammonia oxidizers were dominant over archaeal oxidizers and showed a significant association (p < 0.001) with potential nitrification (PNR), with the PNR subnetwork being dominated by Betaproteobacteria. The top ten keystone taxa comprised six bacterial and four fungal OTUs, with Random Forest Analysis revealing soil carbon and nitrogen as the determinants of the abundance of keystone taxa. Our results highlight the importance of assessing interkingdom associations in soil microbial networks. Overall, this study shows how ecotones can be used as a model to delineate microbial structural patterns and ecological processes across adjoining land‐uses within a landscape.  相似文献   

11.
12.
Understanding the relationships between biodiversity and ecosystem functioning has major implications. Biodiversity–ecosystem functioning relationships are generally investigated at the interspecific level, although intraspecific diversity (i.e. within‐species diversity) is increasingly perceived as an important ecological facet of biodiversity. Here, we provide a quantitative and integrative synthesis testing, across diverse plant and animal species, whether intraspecific diversity is a major driver of community dynamics and ecosystem functioning. We specifically tested (i) whether the number of genotypes/phenotypes (i.e. intraspecific richness) or the specific identity of genotypes/phenotypes (i.e. intraspecific variation) in populations modulate the structure of communities and the functioning of ecosystems, (ii) whether the ecological effects of intraspecific richness and variation are strong in magnitude, and (iii) whether these effects vary among taxonomic groups and ecological responses. We found a non‐linear relationship between intraspecific richness and community and ecosystem dynamics that follows a saturating curve shape, as observed for biodiversity–function relationships measured at the interspecific level. Importantly, intraspecific richness modulated ecological dynamics with a magnitude that was equal to that previously reported for interspecific richness. Our results further confirm, based on a database containing more than 50 species, that intraspecific variation also has substantial effects on ecological dynamics. We demonstrated that the effects of intraspecific variation are twice as high as expected by chance, and that they might have been underestimated previously. Finally, we found that the ecological effects of intraspecific variation are not homogeneous and are actually stronger when intraspecific variation is manipulated in primary producers than in consumer species, and when they are measured at the ecosystem rather than at the community level. Overall, we demonstrated that the two facets of intraspecific diversity (richness and variation) can both strongly affect community and ecosystem dynamics, which reveals the pivotal role of within‐species biodiversity for understanding ecological dynamics.  相似文献   

13.
Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2‐year experiment in three US Great Plains grasslands – the C4‐dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3‐dominated northern mixed grass prairie (NMP; intermediate ANPP) – to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high‐rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11–13) small or (ii) fewer (3–5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3‐dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above‐ and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even within relatively homogeneous biomes such as grasslands.  相似文献   

14.
Chalk streams are among the most species-rich and productive of all temperate ecosystems. Despite this, a few keystone species have the potential to exert disproportionately powerful effects on community structure and ecosystem processes. Two of these are the bullhead Cottus gobio , a small benthic fish that is an extremely abundant, voracious predator, and the freshwater shrimp Gammarus pulex , which dominates the prey assemblage and is the principal detritivore. Field experiments detected a bullhead– Gammarus –detritus trophic cascade, with detrital processing rates slowed dramatically in the presence of the predator. In addition, survey data also revealed strong negative density-dependence between bullhead and brown trout, adding a further link in the cascade. However, although bullhead also depressed the abundance of a dominant grazer, the snail Potamopyrgus antipodarum , there was no cascading effect upon algal production, suggesting that autochthonous inputs were not controlled by top–down effects. This skewed effect of the predator upon autochthonous versus allochthonous basal resources stresses the need to consider both pathways of energy flux into the food web, whereas many previous studies have potentially overemphasized the importance of predator–herbivore–primary producer cascades. The wider community food web contained 142 species and 1383 feeding links. This complex network exhibited "small world" properties, such as high clustering (unlike many other food webs) and shortest path lengths between species were small (in common with many other food webs). In particular, each of the four members of the detrital cascade could be connected to any other species by three links or fewer. Our data revealed that powerful cascading effects can be imbedded within even very complex ecological networks.  相似文献   

15.
16.
Cryptic belowground organisms are difficult to observe and their responses to global changes are not well understood. Nevertheless, there is reason to believe that interactions among above- and belowground communities may mediate ecosystem responses to global change. We used grassland mesocosms to manipulate the abundance of one important group of soil organisms, arbuscular mycorrhizal (AM) fungi, and to study community and ecosystem responses to CO2 and N enrichment. Responses of plants, AM fungi, phospholipid fatty acids and community-level physiological profiles were measured after two growing seasons. Ecosystem responses were examined by measuring net primary production (NPP), evapotranspiration, total soil organic matter (SOM), and extractable mineral N. Structural equation modeling was used to examine the causal relationships among treatments and response variables. We found that while CO2 and N tended to directly impact ecosystem functions (evapotranspiration and NPP, respectively), AM fungi indirectly impacted ecosystem functions by influencing the community composition of plants and other root fungi, soil fungi and soil bacteria. We found that the mycotrophic status of the dominant plant species in the mesocosms determined whether the presence of AM fungi increased or decreased NPP. Mycotrophic grasses dominated the mesocosm communities during the first growing season, and the mycorrhizal treatments had the highest NPP. In contrast, nonmycotrophic forbs were dominant during the second growing season and the mycorrhizal treatments had the lowest NPP. The composition of the plant community strongly influenced soil N, and the community composition of soil organisms strongly influenced SOM accumulation in the mesocosms. These results show how linkages between above- and belowground communities can determine ecosystem responses to global change.  相似文献   

17.
Livestock grazing activities potentially alter ecosystem carbon (C) and nitrogen (N) cycles in grassland ecosystems. Despite the fact that numerous individual studies and a few meta‐analyses had been conducted, how grazing, especially its intensity, affects belowground C and N cycling in grasslands remains unclear. In this study, we performed a comprehensive meta‐analysis of 115 published studies to examine the responses of 19 variables associated with belowground C and N cycling to livestock grazing in global grasslands. Our results showed that, on average, grazing significantly decreased belowground C and N pools in grassland ecosystems, with the largest decreases in microbial biomass C and N (21.62% and 24.40%, respectively). In contrast, belowground fluxes, including soil respiration, soil net N mineralization and soil N nitrification increased by 4.25%, 34.67% and 25.87%, respectively, in grazed grasslands compared to ungrazed ones. More importantly, grazing intensity significantly affected the magnitude (even direction) of changes in the majority of the assessed belowground C and N pools and fluxes, and C : N ratio as well as soil moisture. Specifically,light grazing contributed to soil C and N sequestration whereas moderate and heavy grazing significantly increased C and N losses. In addition, soil depth, livestock type and climatic conditions influenced the responses of selected variables to livestock grazing to some degree. Our findings highlight the importance of the effects of grazing intensity on belowground C and N cycling, which may need to be incorporated into regional and global models for predicting effects of human disturbance on global grasslands and assessing the climate‐biosphere feedbacks.  相似文献   

18.
Food webs can respond in surprising and complex ways to temporary alterations in their species composition. When such a perturbation is reversed, food webs have been shown to either return to the pre‐perturbation community state or remain in the food web configuration that established during the perturbation. Here we report findings from a replicated whole‐lake experiment investigating food web responses to a perturbation and its consecutive reversal. We could identify three distinct community states in the food web that corresponded to the periods before, during and after the perturbation. Most importantly, we demonstrate the establishment of a distinct post‐perturbation food web configuration that differed from both the pre‐ and during‐perturbation communities in phytoplankton biomass and micro‐ and mesozooplankton species composition. We suggest that the pre‐ and post‐perturbation food web configurations may represent two alternative stable community states. We provide explanations for how each of the contrasting communities may be maintained through altered species interactions. These findings add to the discussion of how natural food webs react to environmental change and imply that the range of potential ecosystem dynamics in response to perturbations can be wider and more complex than is often recognized.  相似文献   

19.

Questions

Are factors influencing plant diversity in a fire‐prone Mediterranean ecosystem of southeast Australia scale‐dependent?

Location

Heathy woodland, Otways region, Victoria, southeast Australia

Methods

We measured patterns of above‐ground and soil seed bank vegetation diversity and associated them with climatic, biotic, edaphic, topographic, spatial and disturbance factors at multiple scales (macro to micro) using linear mixed effect and generalized dissimilarity modelling.

Results

At the macro‐scale, we found species richness above‐ground best described by climatic factors and in the soil seed bank by disturbance factors. At the micro‐scale we found species richness best described above‐ground and in the soil seed bank by disturbance factors, in particular time‐since‐last‐fire. We found variance in macro‐scale β‐diversity (species turnover) best explained above‐ground by climatic and disturbance factors and in the soil seed bank by climatic and biotic factors.

Conclusions

Regional climatic gradients interact with edaphic factors and fire disturbance history at small spatial scales to influence species richness and turnover in the studied ecosystem. Current fire management regimes need to incorporate key climatic–disturbance–diversity interactions to maintain floristic diversity in the studied system.
  相似文献   

20.
Gerlinde B. De Deyn 《Oikos》2017,126(4):497-507
The importance of above–belowground interactions for plant growth and community dynamics became clear in the last decades, whereas the numerous studies on plant life history improved our knowledge on eco‐evolutionary dynamics. However, surprisingly few studies have linked both research fields despite their potential to increase our mechanistic understanding of how above belowground interactions are governed. Here I briefly review studies on above–belowground interactions and plant life history and identify important research gaps. To advance our understanding of ecological strategies and eco‐evolutionary dynamics of plants and their associated organisms it is warranted to elucidate the interconnectivity and tradeoffs of plant life history traits of growth, defence, reproduction, nutrient cycling and the functional composition of above‐ and belowground heterotrophic communities. Using the concept of tradeoffs in growth, reproduction and defence we can postulate that plants in rich soil grow, reproduce and die fast whilst avoiding above‐ and belowground antagonists, whereas plants in poor soil grow slow, live and reproduce longer and invest in above‐ and belowground mutualists and defences. However, alternative scenarios are possible and depend on the selection pressure by above‐ and belowground mutualists and antagonists during plant ontogeny and via after‐life effects. To elucidate missing links between life history traits and above–belowground interactions, complementary modelling and empirical studies are needed that reveal the coupling between below‐ and aboveground plant traits of growth, defence and reproduction, their heritability and their cost/benefit relation. These cost/benefit analyses of defence should span from individuals to future generations, taking feedback effects via altered biotic communities and resource competition into account. The role of soil fertility in steering plant life history traits requires explicit testing of trans‐generational trait shifts in growth, defence, reproduction, cost/benefit of associations with mutualists and antagonists and soil feedbacks across plant genotypes/species with distinct life history traits, grown across soil fertility gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号