首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
The chenopod Beta macrocarpa Guss (wild Swiss chard) is known for its salt tolerance, but the mechanisms involved are still debated. In order to elucidate the processes involved, we grew wild Swiss chard exposed to three salinity levels (0, 100 and 200 mm NaCl) for 45 days, and determined several physiological parameters at the end of this time. All plants survived despite reductions in growth, photosynthesis and stomatal conductance in plants exposed to salinity (100 and 200 mm NaCl). As expected, the negative effects of salinity were more pronounced at 200 mm than at 100 mm NaCl: (i) leaf apoplastic water content was maintained or increased despite a significant reduction in leaf water potential, revealing the halophytic character of B. macrocarpa; (ii) osmotic adjustment occurred, which presumably enhanced the driving force for water extraction from soil, and avoided toxic build up of Na+ and Cl in the mesophyll apoplast of leaves. Osmotic adjustment mainly occurred through accumulation of inorganic ions and to a lesser extent soluble sugars; proline was not implicated in osmotic adjustment. Overall, two important mechanisms of salt tolerance in B. macrocarpa were identified: osmotic and apoplastic water adjustment.  相似文献   

2.
The accumulation of inorganic and organic osmolytes and their role in osmotic adjustment were investigated in roots and leaves of vetiver grass (Vetiveria zizanioides) seedlings stressed with 100, 200, and 300 mM NaCl for 9 days. The results showed that, although the contents of inorganic (K+, Na+, Ca2+, Mg2+, Cl, NO3, SO42− and H2PO3)) and organic (soluble sugar, organic acids, and free amino acids) osmolytes all increased with NaCl concentration, the contribution of inorganic ions (mainly Na+, K+, and Cl) to osmotic adjustment was higher (71.50–80.56% of total) than that of organic solutes (19.43–28.50%). The contribution of inorganic ions increased and that of organic solutes decreased in roots with the enhanced NaCl concentration, whereas the case in leaves was opposite. On the other hand, the osmotic adjustment was only effective for vetiver grass seedlings under moderate saline stress (less than 200 mM NaCl).  相似文献   

3.
Hordeum maritimum (Poacea) is a facultative halophyte potentially useful for forage production in saline zones. Here, we assessed whether moderate NaCl-salinity can modify the plant response to phosphorus (P) shortage. Plants were cultivated for 55 days under low or sufficient P supply (5 or 60 μmol plant−1 week−1 KH2PO4, respectively), with or without 100 mM NaCl. When individually applied, salinity and P deficiency significantly restricted whole-plant growth, with a more marked effect of the latter stress. Plants subjected to P deficiency showed a significant increase in root growth (as length and dry weight) and root/shoot DW ratio. Enhanced root growth and elongation presumably correspond to the well-known root adaptive response to mineral deficiency. However, leaf relative water content, leaf P concentration, and leaf gas exchange parameters were significantly restricted. The interactive effects of salinity and P deficiency were not added one to another neither on whole plant biomass nor on plant nutrient uptake. Indeed, 100 mM NaCl-addition to P-deficient plants significantly restored the plant growth and improved CO2 assimilation rate, root growth, K+/Na+ ratio and leaf proline and soluble sugar concentrations. It also significantly enhanced leaf total antioxidant capacity and leaf anthocyanin concentration. This was associated with significantly lower leaf osmotic potential, leaf Na+ and malondialdehyde (MDA) concentration. Taken together, these results suggest that mild salinity may mitigate the adverse effects of phosphorus deficiency on H. maritimum by notably improving the plant photosynthetic activity, the osmotic adjustment capacity, the selective absorption of K+ over Na+ and antioxidant defence.  相似文献   

4.
To elucidate the osmotic adjustment characteristics of mangrove plants, inorganic ion and organic solute contents of intermediate leaves were investigated in 3-month-old Kandelia candel (L.) Druce seedlings during 45 days of NaCl treatments (0, 200, and 500 mM NaCl). The contents of Na+, Cl, total free amino acids, proline, total soluble sugars, pinitol and mannitol increased to different degree by salinity, whereas, K+ content decreased by salinity compared with control. NaCl treatment induced an increase of inorganic ion contribution while a decrease of organic solute contribution. It was concluded that accumulating a large amount of inorganic ions was used as the main osmotic adjustment mechanism under salinity treatment. However, accumulation of organic osmolytes might be considered to play much more important role in osmoregulation under severe salinity (500 mM NaCl) than under moderate salinity (200 mM NaCl), thus the damage caused by high toxic ions (Na+ and Cl) concentration in K. candel leaves could be avoided.  相似文献   

5.
Atriplex (Halimione) portulacoides is a halophyte with potential interest for saline soil reclamation and phytoremediation. Here, we assess the impact of salinity reaching up to two-fold seawater concentration (0–1000 mM NaCl) on the plant growth, leaf water status and ion uptake and we evaluate the contribution of inorganic and organic solutes to the osmotic adjustment process. A. portulacoides growth was optimal at 200 mM NaCl but higher salinities (especially 800 and 1000 mM NaCl) significantly reduced plant growth. Na+ and Cl contents increased upon salt exposure especially in the leaves compared to the roots. Interestingly, no salt-induced toxicity symptoms were observed and leaf water content was maintained even at the highest salinity level. Furthermore, leaf succulence and high instantaneous water use efficiency (WUEi) under high salinity significantly contributed to maintain leaf water status of this species. Leaf pressure–volume curves showed that salt-challenged plants adjusted osmotically by lowering osmotic potential at full turgor (Ψπ100) along with a decrease in leaf cell elasticity (values of volumetric modulus elasticity (ε) increased). As a whole, our findings indicate that A. portulacoides is characterized by a high plasticity in terms of salt-response. Preserving leaf hydration and efficiently using Na+ for the osmotic adjustment especially at high salinities (800–1000 mM NaCl), likely through its compartmentalization in leaf vacuoles, are key determinants of such a performance. The selective absorption of K+ over Na+ in concomitance with an increase in the K+ use efficiency also accounted for the overall plant salt tolerance.  相似文献   

6.
A creep extensiometer technique was used to provide direct evidence that short (20 min) and long-term (3d) exposures of roots to growth inhibitory levels of salinity (100mol m-3 NaCl) induce reductions in the irreversible extension capacity of cell walls in the leaf elongation zone of intact maize seedlings (Zea mays L.). The long-term inhibition of cell wall extension capacity was reversed within 20 min of salt withdrawal from the root medium. Inhibited elongation of leaf epidermal tissues was also reversed after salt removal. The salt-induced changes in wall extension capacity were detected using in vivo and in vitro assays (shortly after localized freeze/thaw treatment of the basal elongation zone). The rapid reversal of the inhibition of wall extensibility and leaf growth after salt removal from root medium of long-term salinized plants, suggested that neither deficiencies in growth essential mineral nutrients nor toxic effects of NaCl on plasmamembrane viability were directly involved in the inhibition of leaf growth. There was consistent agreement between the scale, direction and timing of salinity-induced changes in leaf elongation growth and wall extension capacity. Rapid metabolically regulated changes in the physical properties of growing cell walls, caused by osmotic (or other) effects, appear to be a factor regulating maize leaf growth responses to root salinization.  相似文献   

7.
The effects of nitrogen (N) nutrition on growth, N uptake and leaf osmotic potential of rice plants (Oryza sativa L. ev. IR 36) during simulated water stress were determined. Twenty-one-day-old seedlings in high (28.6 × 10 ?4M) and low (7.14 × 10 4M) N levels were exposed to decreased nutrient solution water potentials by addition of polyethylene glycol 6000. The roots were separated from the solution by a semi-permeable membrane. Nutrient solution water potential was ?0.6 × 105 Pa and was lowered stepwise to ?1 × 105, ?2 × 105, ?4 × 105 and ?6 × 105 Pa at 2-day intervals. Plant height, leaf area and shoot dry weight of high and low nitrogen plants were reduced by lower osmotic potentials of the root medium. Osmotic stress caused greater shoot growth reduction in high N than in low N plants. Stressed and unstressed plants in 7.14 × 104M N had more root dry matter than the corresponding plants in 28.6 × 104M N. Dawn leaf water potential of stressed plants was 1 × 105 to 5.5 × 105 Pa lower than nutrient solution water potential. Nitrogen-deficient water-stressed plants, however, maintained higher dawn leaf water potential than high nitrogen water-stressed plants. It is suggested that this was due to higher root-to-shoot ratios of N deficient plants. The osmotic potentials of leaves at full turgor for control plants were about 1.3 × 105 Pa higher in 7.14 × 10?4M than in 28.6 × 10?4M N and osmotic adjustment of 2.6 × 105 and 4.3 × 105 Pa was obtained in low and high N plants, respectively. The nitrogen status of plants, therefore, affected the ability of the rice plant to adjust osmotically during water stress. Plant water stress decreased transpiration and total N content in shoots of both N treatments. Reduced shoot growth as a result of water stress caused the decrease in amount of water transpired. Transpiration and N uptake were significantly correlated. Our results show that nitrogen content is reduced in water-stressed plants by the integrated effects of plant water stress per se on accumulation of dry matter and transpiring leaf area as well as the often cited changes in soil physical properties of a drying root medium.  相似文献   

8.
Summary The relationship between osmotic adjustment and mineral retention by different plant parts were examined for two varieties of tomato (Lycopersicum esculentum L): Pritchard and Rogygross.Plants were grown in solution cultures and exposed at each stage of development either gradually to 0.05M NaCl increments for 6 hours each until 0.20M, or abruptly to increased NaCl levels for 24 hours.Both varieties of tomato survived gradual exposure to NaCl increments at all stages of development, while unable to survive abrupt exposure to 0.20M, and even Pritchard to 0.15M NaCl during the vegetative stage. With abrupt exposure to 0.15M and 0.20M NaCl both varieties showedi nitial wilting followed by rapid recovery during flowering.Although Pritchard showed lower tolerance with abrupt exposure it exhibited similar osmotic adjustment as Rogygross variety upon the gradual exposure to NaCl increments.Increased NaCl concentration in the root medium induced a gradual uptake of Na with a concomitant partial replacement of K, which was associated with increased Ca retention in the aerial parts. Gradual exposure increased the retention of the osmoregulatory cations K and Ca.It was suggested that gradual rather than abrupt changes in the internal osmotic pressure, which was associated with the increased retention of osmoregulatory cations, being itself not restrictive for essential metabolic processes.  相似文献   

9.
Ramos  José  López  María Jesús  Benlloch  Manuel 《Plant and Soil》2004,259(1-2):163-168
Atriplex nummularia plants are able to grow well in the absence of significant amounts of Na+. Medium levels of salinity (100 mM NaCl or KCl) did not cause substantial inhibition of growth but increasing concentrations of salt induced a progressive decline in length and weight of the plants. This inhibition was significantly higher in KCl grown plants than in NaCl grown plants. In addition, although it has been proposed that both K+ and Na+ are involved in the osmotic adjustment of plants in response to high soil salinity, we show that Na+ ions contribute more efficiently than K+ ions to perform this function. Our results also indicate that most of the osmotic adjustment of the plant was due to the accumulation of inorganic ions. The strong inhibition of Rb+ transport caused by internal sodium suggests that this cation could be efficiently used by the plant and, as a consequence, the transport of other monovalent cations is down-regulated.  相似文献   

10.
The effects of varying CaSO4 and NaCl levels on the nutrient content ofLeucaena leucocephala were established by examining the concentrations of Na, Ca, Cl, K and Mg in leucaena roots, stems and leaves. Leucaena was grown in nutrient solution at four levels of CaSO4 (0.5, 1.0, 2.5 and 5.0 mM) and NaCl (1, 25, 50 and 100 mM), in randomized blocks with five replications. Leucaena excluded sodium from stems and leaves when NaCl concentration was 50 mM or less. Sodium uptake decreased as CaSO4 concentration increased. Calcium uptake was affected by NaCl concentration when substrate CaSO4 concentration was 0.5 mM. At this level, 100 mM NaCl caused a marked decrease in leaf calcium and a marked increase in leaf Cl. In all other treatments, Cl uptake was not affected by CaSO4 concentration. Potassium uptake was strongly depressed as NaCl concentration increased at low Ca concentration, but this effect was offset at high Ca. Magnesium uptake decreased as CaSO4 levels increased.  相似文献   

11.
Changes in leaf solute contents in response to saline (NaCl) and osmotic (polyethylene glycol, PEG, 6000) stresses were measured in three different salt tolerant cultivars of Lycopersicon esculentum (L.) Mill. (Pera, P-73 and Volgogradskij), and its wild relative L. pennellii (Correll) D'Arcy accession PE-47. Iso-osmotic stresses (–0. 5 MPa) of NaCl (140 mM) and PEG 6000 (150 g l-1) were applied to one-month old plants for 3 weeks. Decreasing leaf dry weight was similar in L. pennellii or L. esculentum cv. P-73 and Volgogradskij under both stresses, while leaf dry weight of L. esculentum cv. Pera decreased more under PEG stress than under NaCl stress. Water contents decreased in all the PEG treated populations, while their calculated solute potential (Ψs increased. Under osmotic stress, the total ion contents decreased in relation to control, whereas organic solutes (sugars, amino acids and organic acids) markedly increased in both tomato species, specially in the tomato cultivars, where these solutes represented 50% of the Ψ5 calculated. Soluble sugar increase was three times higher in leaves of L. esculentum than in the leaves of L. pennellii. Free proline increased under both stresses and its content was highest in L. esculentum and in L. pennellii, respectively, under NaCl and PEG stresses. Nevertheless, the contribution of this metabolite to Ψs did not exceed 5%, irrespective of treatment and species. The greater organic solute accumulation in L. esculentum than in L. pennellii– which was not reflected in their Ψ5 values – was not correlated with the tolerances of the two species to osmotic stress. Therefore, osmotic adjustment may not be the only process influencing salt and drought tolerances in tomato; the ability of plants to regulate their metabolic and physiological functions could also play an important role under these harmful conditions. The possible roles of inorganic solutes and metabolites in osmotic adjustment, energetic metabolism and redox regulation are discussed  相似文献   

12.
B. Demmig  K. Winter 《Planta》1986,168(3):421-426
Concentrations of four major solutes (Na+, K+, Cl-, proline) were determined in isolated, intact chloroplasts from the halophyte Mesembryanthemum crystallinum L. following long-term exposure of plants to three levels of NaCl salinity in the rooting medium. Chloroplasts were obtained by gentle rupture of leaf protoplasts. There was either no or only small leakage of inorganic ions from the chloroplasts to the medium during three rapidly performed washing steps involving precipitation and re-suspension of chloroplast pellets. Increasing NaCl salinity of the rooting medium resulted in a rise of Na+ und Cl- in the total leaf sap, up to approximately 500 and 400 mM, respectively, for plants grown at 400 mM NaCl. However, chloroplast levels of Na+ und Cl- did not exceed 160–230 and 40–60 mM, respectively, based upon a chloroplast osmotic volume of 20–30 l per mg chlorophyll. At 20 mM NaCl in the rooting medium, the Na+/K+ ratio of the chloroplasts was about 1; at 400 mM NaCl the ratio was about 5. Growth at 400 mM NaCl led to markedly increased concentrations of proline in the leaf sap (8 mM) compared with the leaf sap of plants grown in culture solution without added NaCl (proline 0.25 mM). Although proline was fivefold more concentrated in the chloroplasts than in the total leaf sap of plants treated with 400 mM NaCl, the overall contribution of proline to the osmotic adjustment of chloroplasts was small. The capacity to limit chloroplast Cl- concentrations under conditions of high external salinity was in contrast to an apparent affinity of chloroplasts for Cl- under conditions of low Cl- availability.Abbreviation Chl chlorophyll  相似文献   

13.
Effects and interactions of varying CaSO4 and NaCl levels on growth and nitrogen fixation ofLeucaena leucocephala K8 were examined. Leucaena was grown in nutrient solution at four levels of CaSO4 (0.5, 1.0, 2.5 and 5.0 mM) and NaCl (1, 25, 50 and 100 mM) in randomized blocks with five replications. While NaCl significantly reduced plant growth, additions of CaSO4 increased plant height, leaf number, and biomass of salt treated plants. For the nonsaline treatments, high CaSO4 levels slightly depressed growth, which contradicts suggestions that Leucaena has a high calcium requirement. A significant calcium/sodium interaction was not seen for nodule number or weight. Nodule number was significantly depressed by 100 mM NaCl and nodule weight of the salt stressed plants significantly increased as CaSO4 concentration increased from 0.5 to 2.5 mM. Effects of NaCl and CaSO4 on nitrogen content of plant parts were inconclusive. The promotion of Leucaena salinity tolerance by addition of CaSO4 may be attributed to the effect of calcium in maintaing the selective permeability of membranes.  相似文献   

14.
Carrot cells (Daucus carota L.) in suspension culture exposed to medium containing 150 mM NaCl plasmolyzed immediately and deplasmolyzed within 35 to 40 hr. Three days after exposure to NaCl the cells resumed proliferation. Accommodation to salinity and renewal of growth was accompanied by absorption of Na+ from the external medium. On completion of deplasmolysis, K+ concentration in the cytosol doubled and Na+ concentration approximated that of K+. The vacuolar K+ concentration was practically unchanged while Na+ accumulated to a concentration double that of K+. Cl−- accumulation started later and eventually exceeded that of Na+ plus K+. Malate was redistributed during accommodation to salinity and eventually returned to its initial level. Amino acid content in the cytosol increased fivefold, while in the vacuole it remained unchanged. These results show that: 1) recovery from osmotic shock requires absorption of easily penetrating solute, mainly Na+; 2) distribution of solutes, absorbed or synthesized in cells exposed to salinity, is a dynamic process; 3) cells could grow and proliferate in high NaCl content in the cytosol; 4) red beet root cells grown in the presence of NaCl contain higher cytoplasmic Na+ than K+; and 5) during adjustment to salinity small spherical carrot cells survive the osmotic shock and do not show any detectable damage.  相似文献   

15.
Sorghum bicolor L. Moench, RS 610, was grown in liquid media salinized with NaCl, KCl, Na2SO4, K2SO4 or with variable mixtures of either NaCl/KCl or Na2SO4/K2SO4 at osmotic potentials ranging from 0 to -0.8 MPa. The purpose was to study the effects of different types and degrees of salinity in growth media on growth and solute accumulation. In 14-day-old plants the severity of leaf growth inhibition at any one level of osmotic potential in the medium increased according to the following order: NaCl < Na2SO4 < KCl = K2SO4. Inhibition of growth by mixtures of Na+ and K+ salts was the same as by K+ salts alone. Roots responded differently. Root growth was not affected by Na+ salts in the range of 0 to -0.2 MPa while it was stimulated by K+ salts. The major cation of leaves was K+ because S. bicolor is a Na+-excluder, while Na+ was the major cation in roots except at low Na+/K+ ratios in media. Anions increased in tissues linearly in relation to total monovalent cation, but not with a constant anion/cation ratio. This ratio increased as the cation concentrations in tissues increased. Sucrose in leaf tissue increased 75 fold in Chloride-plants (plants growing in media in which the only anion of the salinizing salts was Cl?) and 50 fold in Sulphate-plants (the only anion of the salinizing salts was SO42-). Proline increased 60 and 18 fold in Chloride- and Sulphate-plants, respectively, as growth media potentials decreased from 0 to -0.8 MPa. The concentrations of both sucrose and proline were directly proportional to the amount of total monovalent cation in the tissue. Sucrose concentrations began increasing when total monovalent cations exceeded 100 μmol (g fresh weight)?1 (the monovalent cation level in non-stressed plants), but proline did not start accumulating until monovalent cation concentrations exceeded 200 μmol (g fresh weight)?1. Therefore, sucrose seemed to be the solute used for osmotic adjustment under mild conditions of saline stress while proline was involved in osmotic adjustment under more severe conditions of stress. Concentrations of inorganic phosphate, glucose, fructose, total amino acids and malic acid fluctuated in both roots and leaves in patterns that could be somewhat correlated with saline stress and, sometimes, with particular salts in growth media. However, the changes measured were too small (at most a 2–3 fold increase) to be of importance in osmotic adjustment.  相似文献   

16.
In vitro-grown cells of Sesuvium portulacastrum L., an important ‘salt accumulator’ mangrove associate, were incubated on a medium containing different levels of salt, including 0, 100, 200, or 400 mM NaCl, in order to evaluate biochemical, physiological, and growth responses. A significant decrease in callus growth, water status, and cell membrane damage was observed under salt stress. Osmotic adjustment was revealed by the accumulation of inorganic ions, such as sodium (Na+), and organic osmolytes (proline, glycine betaine, and total soluble sugars) in NaCl-treated calli compared to control. However, accretion of osmolytes and inorganic ions did not support growth of calli under NaCl stress conditions. The observed reduced growth rate in calli subjected to stress, up to 200 mM NaCl, was coupled with lower catalase and ascorbate peroxidase activities and with a significantly higher superoxide dismutase activity. These findings suggested that S. portulacastrum cell cultures exhibited higher osmotic adjustment to salt stress.  相似文献   

17.
The short time response to salt stress was studied in Cakile maritima. Plants were exposed to different salt concentrations (0, 100, 200 and 400 mM NaCl) and harvested after 4, 24, 72 and 168 h of treatment. Before harvesting plants, tissue hydration, osmotic potential, inorganic and organic solute contents, and ornithine-δ-aminotransferase activity were measured. Plants of C. maritima maintained turgor and tissue hydration at low osmotic potential mainly at 400 mM NaCl. The results showed that, in leaves and stems, Na+ content increased significantly after the first 4 h of treatment. However, in roots, the increase of Na+ content remained relatively unchanged with increasing salt. The K+ content decreased sharply at 200 and 400 mM NaCl with treatment duration. This decrease was more pronounced in roots. The content of proline and amino acids increased with increasing salinity and treatment duration. These results indicated that the accumulation of inorganic and organic compounds was a central adaptive mechanism by which C. maritima maintained intracellular ionic balance under saline conditions. However, their percentage contribution to total osmotic adjustment varies from organ to organ; for example, Na+ accumulation mainly contributes in osmotic adjustment of stem tissue (60%). Proline contribution to osmotic adjustment reached 36% in roots. In all organs, proline as well as δ-OAT activity increased with salt concentration and treatment duration. Under normal growth conditions, δ-OAT is mainly involved in the mobilization of nitrogen required for plant growth. However, the highly significant positive correlation between proline and δ-OAT activity under salt-stress conditions suggests that ornithine pathway contributed to proline synthesis.  相似文献   

18.
Broccoli (Brassica oleracea L. var. Italica) is a recognised health-promoting vegetable, which is moderately sensitive to salinity. In this study, the primary response of broccoli plants (cv. Marathon) to salinity has been characterised. For this, leaf water relations, nutrient composition, root hydraulic conductivity (L 0) and the effect of mercury (an aquaporin blocker) on L 0 were determined for plants grown with 0, 20, 40, 60, 80 or 100 mM NaCl for 2 weeks. During the 2 weeks of treatment, the plants showed a two-phase growth response to salinity. During the first phase (1 week), growth reduction was high, probably related to water stress as no osmotic adjustment occurred and reductions of L 0, the mercury effect and Gs were observed. After 2 weeks, the growth reduction could have resulted from internal injury caused by Na+ or Cl, since osmotic adjustment was achieved and water relations plus the mercury effect were re-established to a high degree, indicating high aquaporin functionality. The fact that aquaporin functionality fits well with the overall water relations response is very relevant, since the two-phase adaptation to salinity may imply two types of aquaporin regulation.  相似文献   

19.
该文选择从西沙东岛采集蒭雷草,通过分株繁殖挑选健壮植株作为材料,模拟热带珊瑚岛生境设置不同浓度NaCl处理,研究不同程度的盐胁迫对其植株叶片丙二醛(MDA)、抗氧化酶以及渗透调节物质的影响.结果表明:(1)短期(28 d)盐胁迫下,NaCl浓度的增加并未加速蒭雷草叶片细胞发生膜脂过氧化作用,MDA含量增加幅度较小;随着...  相似文献   

20.
《Experimental mycology》1990,14(2):136-144
Osmotic adjustment in the ascomyceteNeocosmospora vasinfecta was investigated by determining intramycelial water, mycelial solutes, and total mycelial osmolality. Major organic and inorganic solutes as well as proline and glycine betaine were determined under conditions of osmotic stress and shock, imposed by 0.5M KCl. Comparison to glucose as a nonelectrolytic osmoticum was also made. Results quantitatively implicated the polyhydric alcohols as the osmotic adjusters. Changes in amino acids were due to growth and were not osmoregulatory in nature. The osmoticum was not utilized for osmotic adjustment. The growth ofN. vasinfecta in the presence of KCl indicated that this organism is moderately sensitive to osmotic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号