首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb) was used as a model feedstock.

Results

Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein) respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively.

Conclusions

Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for significant ethanol cost reductions exist in increasing pentose fermentation efficiency and reducing biomass and enzyme costs. The results demonstrated the importance of addressing the tradeoffs in capital costs, pretreatment and downstream processing technologies.  相似文献   

2.

Background

Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol.

Results

Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material.

Conclusions

In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield.  相似文献   

3.

Background

Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G) or lignocellulosic (second generation; 2G) raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilization of the biomass can be achieved. It would, furthermore, decrease the energy demand of 2G ethanol production and also provide both 1G and 2G plants with heat and electricity. In the current study, steam-pretreated wheat straw (SPWS) was mixed with presaccharified wheat meal (PWM) and converted to ethanol in simultaneous saccharification and fermentation (SSF).

Results

Both the ethanol concentration and the ethanol yield increased with increasing amounts of PWM in mixtures with SPWS. The maximum ethanol yield (99% of the theoretical yield, based on the available C6 sugars) was obtained with a mixture of SPWS containing 2.5% water-insoluble solids (WIS) and PWM containing 2.5% WIS, resulting in an ethanol concentration of 56.5 g/L. This yield was higher than those obtained with SSF of either SPWS (68%) or PWM alone (91%).

Conclusions

Mixing wheat straw with wheat meal would be beneficial for both 1G and 2G ethanol production. However, increasing the proportion of WIS as wheat straw and the possibility of consuming the xylose fraction with a pentose-fermenting yeast should be further investigated.  相似文献   

4.

Purpose

Two different bioenergy systems using willow chips as raw material has been assessed in detail applying life cycle assessment (LCA) methodology to compare its environmental profile with conventional alternatives based on fossil fuels and demonstrate the potential of this biomass as a lignocellulosic energy source.

Methods

Short rotation forest willow plantations dedicated to biomass chips production for energy purposes and located in Southern Sweden were considered as the agricultural case study. The bioenergy systems under assessment were based on the production and use of willow-based ethanol in a flexi fuel vehicle blended with gasoline (85 % ethanol by volume) and the direct combustion of willow chips in an industrial furnace in order to produce heat for end users. The standard framework for LCA from the International Standards Organisation was followed in this study. The environmental profiles as well as the hot spots all through the life cycles were identified.

Results and discussion

According to the results, Swedish willow biomass production is energetically efficient, and the destination of this biomass for energy purposes (independently the sort of energy) presents environmental benefits, specifically in terms of avoided greenhouse gases emissions and fossil fuels depletion. Several processes from the agricultural activities were identified as hot spots, and special considerations should be paid on them due to their contribution to the environmental impact categories under analysis. This was the case for the production and use of the nitrogen-based fertilizer, as well as the diesel used in agricultural machineries.

Conclusions

Special attention should be paid on diffuse emissions from the ethanol production plant as well as on the control system of the combustion emissions from the boiler.  相似文献   

5.

Background

The production of fuel-grade ethanol from lignocellulosic biomass resources has the potential to increase biofuel production capacity whilst minimising the negative environmental impacts. These benefits will only be realised if lignocellulosic ethanol production can compete on price with conventional fossil fuels and if it can be produced commercially at scale. This paper focuses on lignocellulosic ethanol production in Europe. The hypothesis is that the eventual cost of production will be determined not only by the performance of the conversion process but by the performance of the entire supply-chain from feedstock production to consumption. To test this, a model for supply-chain cost comparison is developed, the components of representative ethanol supply-chains are described, the factors that are most important in determining the cost and profitability of ethanol production are identified, and a detailed sensitivity analysis is conducted.

Results

The most important cost determinants are the cost of feedstocks, primarily determined by location and existing markets, and the value obtained for ethanol, primarily determined by the oil price and policy incentives. Both of these factors are highly uncertain. The best performing chains (ethanol produced from softwood and sold as a low percentage blend with gasoline) could ultimately be cost competitive with gasoline without requiring subsidy, but production from straw would generally be less competitive.

Conclusion

Supply-chain design will play a critical role in determining commercial viability. The importance of feedstock supply highlights the need for location-specific assessments of feedstock availability and price. Similarly, the role of subsidies and policy incentives in creating and sustaining the ethanol market highlights the importance of political engagement and the need to include political risks in investment appraisal. For the supply-chains described here, and with the cost and market parameters selected, selling ethanol as a low percentage blend with gasoline will maximise ethanol revenues and minimise the need for subsidies. It follows, therefore, that the market for low percentage blends should be saturated before markets for high percentage blends.  相似文献   

6.

Background, aim, and scope

As a net oil importer, Thailand has a special interest in the development of biofuels, especially ethanol. At present, ethanol in the country is mainly a fermentation/distillery product of cane molasses, but cassava holds superior potential for the fuel. This study aims to assess the economics of cassava-based ethanol as an alternative transportation fuel in Thailand. The scope of the study includes the cassava cultivation/processing, the conversion to ethanol, the distribution of the fuel, and all transportation activities taking place within the system boundary.

Materials and methods

The life cycle cost assessment carried out follows three interrelated phases: data inventory, data analysis, and interpretation. The functional unit for the comparison between ethanol and gasoline is the specific distance that a car can travel on 1 L ethanol in the form of E10, a 10% ethanol blend in gasoline.

Results

The results of the analysis show, despite low raw material cost compared to molasses and cane-based ethanol, that cassava ethanol is still more costly than gasoline. This high cost has put an economic barrier to commercial application, leading to different opinions about government support for ethanol in the forms of tax incentives and subsidies.

Discussion

Overall, feedstock cost tends to govern ethanol’s production cost, thus, making itself and its 10% blend in gasoline less competitive than gasoline for the specific conditions considered. However, this situation can also be improved by appropriate measures, as discussed later.

Conclusions

To make ethanol cost-competitive with gasoline, the first possible measure is a combination of increasing crop yield and decreasing farming costs (chemical purchase and application, planting, and land preparation) so as to make a 47% reduction in the cost per tonne of cassava. This is modeled by a sensitivity analysis for the cost in the farming phase. In the industrial phase of the fuel production cycle, utilization of co-products and substitution of rice husk for bunker oil as process energy tend to reduce 62% of the price gap between ethanol and gasoline. The remaining 38% price gap can be eliminated with a 16% cut of raw material (cassava) cost, which is more practical than a 47% where no savings options in ethanol conversion phase are taken into account.

Recommendations and perspectives

The life cycle cost analysis helps identify the key areas in the ethanol production cycle where changes are required to improve cost performance. Including social aspects in an LCC analysis may make the results more favorable for ethanol.  相似文献   

7.

Purpose

The purpose of this study is to assess and calculate the potential impacts of climate change on the greenhouse gas (GHG) emissions reduction potentials of combined production of whole corn bioethanol and stover biomethanol, and whole soybean biodiesel and stalk biomethanol. Both fuels are used as substitutes to conventional fossil-based fuels. The product system includes energy crop (feedstock) production and transportation, biofuels processing, and biofuels distribution to service station.

Methods

The methodology is underpinned by life cycle thinking. Crop system model and life cycle assessment (LCA) model are linked in the analysis. The Decision Support System for Agrotechnology Transfer – crop system model (DSSAT-CSM) is used to simulate biomass and grain yield under different future climate scenarios generated using a combination of temperature, precipitation, and atmospheric CO2. Historical weather data for Gainesville, Florida, are obtained for the baseline period (1981–1990). Daily minimum and maximum air temperatures are projected to increase by +2.0, +3.0, +4.0, and +5.0 °C, precipitation is projected to change by ±20, 10, and 5 %, and atmospheric CO2 concentration is projected to increase by +70, +210, and +350 ppm. All projections are made throughout the growing season. GaBi 4.4 is used as primary LCA modelling software using crop yield data inputs from the DSSAT-CSM software. The models representation of the physical processes inventory (background unit processes) is constructed using the ecoinvent life cycle inventory database v2.0.

Results and discussion

Under current baseline climate condition, net greenhouse gas (GHG) emissions savings per hectare from corn-integrated biomethanol synthesis (CIBM) and soybean-integrated biomethanol synthesis (SIBM) were calculated as ?8,573.31 and ?3,441 kg CO2-eq. ha?1 yr?1, respectively. However, models predictions suggest that these potential GHG emissions savings would be impacted by changing climate ranging from negative to positive depending on the crop and biofuel type, and climate scenario. Increased atmospheric level of CO2 tends to minimise the negative impacts of increased temperature.

Conclusions

While policy measures are being put in place for the use of renewable biofuels driven by the desire to reduce GHG emissions from the use of conventional fossil fuels, climate change would also have impacts on the potential GHG emissions reductions resulting from the use of these renewable biofuels. However, the magnitude of the impact largely depends on the biofuel processing technology and the energy crop (feedstock) type.  相似文献   

8.

Background

Short rotation coppice willow is a potential lignocellulosic feedstock in the United Kingdom and elsewhere; however, research on optimising willow specifically for bioethanol production has started developing only recently. We have used the feedstock Salix viminalis × Salix schwerinii cultivar 'Olof' in a three-month pot experiment with the aim of modifying cell wall composition and structure within the stem to the benefit of bioethanol production. Trees were treated for 26 or 43 days with tension wood induction and/or with an application of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile that is specific to secondary cell walls. Reaction wood (tension and opposite wood) was isolated from material that had received the 43-day tension wood induction treatment.

Results

Glucan content, lignin content and enzymatically released glucose were assayed. All measured parameters were altered without loss of total stem biomass yield, indicating that enzymatic saccharification yield can be enhanced by both alterations to cell wall structure and alterations to absolute contents of either glucan or lignin.

Conclusions

Final glucose yields can be improved by the induction of tension wood without a detrimental impact on biomass yield. The increase in glucan accessibility to cell wall degrading enzymes could help contribute to reducing the energy and environmental impacts of the lignocellulosic bioethanol production process.  相似文献   

9.

Background

Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of streams is beneficial. Improved ethanol concentrations in the 2G production process lowers energy demand in distillation, improves overall energy efficiency and thus lower production cost. There is also a potential to reach higher ethanol yields, which is required in economically feasible ethanol production. Integrated process scenarios with addition of saccharified wheat meal (SWM) or fermented wheat meal (FWM) were investigated in simultaneous saccharification and (co-)fermentation (SSF or SSCF) of steam-pretreated wheat straw, while the possibility of recovering the valuable protein-rich fibre residue from the wheat was also studied.

Results

The addition of SWM to SSF of steam-pretreated wheat straw, using commercially used dried baker’s yeast, S. cerevisiae, resulted in ethanol concentrations of about 60 g/L, equivalent to ethanol yields of about 90% of the theoretical. The addition of FWM in batch mode SSF was toxic to baker’s yeast, due to the ethanol content of FWM, resulting in a very low yield and high accumulation of glucose. The addition of FWM in fed-batch mode still caused a slight accumulation of glucose, but the ethanol concentration was fairly high, 51.2 g/L, corresponding to an ethanol yield of 90%, based on the amount of glucose added.In batch mode of SSCF using the xylose-fermenting, genetically modified S. cerevisiae strain KE6-12, no improvement was observed in ethanol yield or concentration, compared with baker’s yeast, despite the increased xylose utilization, probably due to the considerable increase in glycerol production. A slight increase in xylose consumption was seen when glucose from SWM was fed at a low feed rate, after 48 hours, compared with batch SSCF. However, the ethanol yield and concentration remained in the same range as in batch mode.

Conclusion

Ethanol concentrations of about 6% (w/v) were obtained, which will result in a significant reduction in the cost of downstream processing, compared with SSF of the lignocellulosic substrate alone. As an additional benefit, it is also possible to recover the protein-rich residue from the SWM in the process configurations presented, providing a valuable co-product.
  相似文献   

10.

Background

The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low.

Results

Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases.

Conclusions

Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second-generation processes also increases the ethanol concentration, resulting in a reduction in the cost of the distillation step, thus improving the process economics.  相似文献   

11.

Background

Flow sheet options for integrating ethanol production from spent sulfite liquor (SSL) into the acid-based sulfite pulping process at the Sappi Saiccor mill (Umkomaas, South Africa) were investigated, including options for generation of thermal and electrical energy from onsite bio-wastes, such as bark. Processes were simulated with Aspen Plus® for mass- and energy-balances, followed by an estimation of the economic viability and environmental impacts. Various concentration levels of the total dissolved solids in magnesium oxide-based SSL, which currently fuels a recovery boiler, prior to fermentation was considered, together with return of the fermentation residues (distillation bottoms) to the recovery boiler after ethanol separation. The generation of renewable thermal and electrical energy from onsite bio-wastes were also included in the energy balance of the combined pulping-ethanol process, in order to partially replace coal consumption. The bio-energy supplementations included the combustion of bark for heat and electricity generation and the bio-digestion of the calcium oxide SSL to produce methane as additional energy source.

Results

Ethanol production from SSL at the highest substrate concentration was the most economically feasible when coal was used for process energy. However this solution did not provide any savings in greenhouse gas (GHG) emissions for the concentration-fermentation-distillation process. Maximizing the use of renewable energy sources to partially replace coal consumption yielded a satisfactory economic performance, with a minimum ethanol selling price of 0.83 US$/l , and a drastic reduction in the overall greenhouse gas emissions for the entire facility.

Conclusion

High substrate concentrations and conventional distillation should be used when considering integrating ethanol production at sulfite pulping mills. Bio-wastes generated onsite should be utilized at their maximum potential for energy generation in order to maximize the GHG emissions reduction.
  相似文献   

12.
The substitution of fossil by renewable energy sources is a major strategy in reducing CO2 emission and mitigating climate change. In the transport sector, which is still mainly dependent on liquid fuels, the production of second generation ethanol from lignocellulosic feedstock is a promising strategy to substitute fossil fuels. The main prerequisites on designated crops for increased biomass production are high biomass yield and optimized saccharification for subsequent use in fermentation processes. We tried to address these traits by the overexpression of a sucrose-phosphate synthase gene (SoSPS) from sugarcane (Saccharum officinarum) in the model grass Brachypodium distachyon. The resulting transgenic B. distachyon lines not only revealed increased plant height at early growth stages but also higher biomass yield from fully senesced plants, which was increased up to 52 % compared to wild-type. Additionally, we determined higher sucrose content in senesced leaf biomass from the transgenic lines, which correlated with improved biomass saccharification after conventional thermo-chemical pretreatment and enzymatic hydrolysis. Combining increased biomass production and saccharification efficiency in the generated B. distachyon SoSPS overexpression lines, we obtained a maximum of 74 % increase in glucose release per plant compared to wild-type. Therefore, we consider SoSPS overexpression as a promising approach in molecular breeding of energy crops for optimizing yields of biomass and its utilization in second generation biofuel production.  相似文献   

13.

Background

Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced.

Results

Evolutionary engineering was used to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial Saccharomyces cerevisiae strain carrying the heterologous genes for xylose and arabinose utilization pathways integrated in the genome. The evolved strain TMB3130 displayed an increased consumption rate of xylose and arabinose under aerobic and anaerobic conditions. Improved anaerobic ethanol production was achieved at the expense of xylitol and glycerol but arabinose was almost stoichiometrically converted to arabitol. Further characterization of the strain indicated that the selection pressure during prolonged continuous culture in xylose and arabinose medium resulted in the improved transport of xylose and arabinose as well as increased levels of the enzymes from the introduced fungal xylose pathway. No mutation was found in any of the genes from the pentose converting pathways.

Conclusion

To the best of our knowledge, this is the first report that characterizes the molecular mechanisms for improved mixed-pentose utilization obtained by evolutionary engineering of a recombinant S. cerevisiae strain. Increased transport of pentoses and increased activities of xylose converting enzymes contributed to the improved phenotype.  相似文献   

14.

Purpose

The two main reasons for producing biomethane as renewable fuel are reduction of climate impacts and depletion of fossil resources. Biomethane is expected to be sustainable, but how sustainable is it actually? This article contributes to the clarification. Therefore, the environmental impacts of several biomethane facilities all over Europe were assessed. A special focus is put on the differences between the facilities as they follow different production routes.

Methods

The method used for evaluation is life cycle assessment (LCA) applied in a well-to-wheel approach. This enables to show the overall performance in terms of global warming potential (GWP), acidification potential (AP), eutrophication potential (EP), photochemical ozone creation potential (POCP) and PE fossil. The system boundary includes the entire chain from biogas production to upgrading, distribution and use. For evaluating the different production routes several years of measuring data, calculating and improving the LCA models in close cooperation with the plant operators were carried out.

Results and discussion

The evaluation of the production routes shows a high reduction potential compared to fossil fuels. Regarding the depletion of fossil resources, the amounts vary between the sites, but the reduction is at least 50 % and reaches almost 100 % reductions at some sites. The reduction of GWP is at least 65 %, because waste flows free of environmental burdens are used almost exclusively as substrate. Other dominant factors are power and heat demand, methane losses to the environment and the use of by-products, e.g. fertilizer.

Conclusions

Despite this caveat, the evaluated systems demonstrate the possible positive results of renewable fuel production if done properly.  相似文献   

15.

Background, aim and scope

After China and India, Thailand is considered another emerging market for fuel ethanol in Asia. At present, ethanol in the country is mainly a fermentation/distillery product of cane molasses, although cassava and cane juice are considered other potential raw materials for the fuel. This study aims to evaluate the environmental impacts of substituting conventional gasoline (CG) with molasses-based gasohol in Thailand.

Materials and methods

The life cycle assessment (LCA) procedure carried out follows three interrelated phases: inventory analysis, characterization and interpretation. The functional unit for the comparison is 1 l gasoline equivalent consumed by a new passenger car to travel a specific distance.

Results

The results of the study show that molasses-based ethanol (MoE) in the form of 10% blend with gasoline (E10), along its whole life cycle, consumes less fossil energy (5.3%), less petroleum (8.1%) and provides a similar impact on acidification compared to CG. The fuel, however, has inferior performance in other categories (e.g. global warming potential, nutrient enrichment and photochemical ozone creation potential) indicated by increased impacts over CG.

Discussion

In most cases, higher impacts from the upstream of molasses-based ethanol tend to govern its net life cycle impacts relative to CG. This makes the fuel blend less environmentally friendly than CG for the specific conditions considered. However, as discussed later, this situation can be improved by appropriate changes in energy carriers.

Conclusions

The LCA procedure helps identify the key areas in the MoE production cycle where changes are required to improve environmental performance. Specifically, they are: (1) use of coal as energy source for ethanol conversion, (2) discharge of distillery spent wash into an anaerobic pond, and (3) open burning of cane trash in sugar cane production.

Recommendations and perspectives

Measures to improve the overall life cycle energy and environmental impacts of MoE are: (1) substituting biomass for fossil fuels in ethanol conversion, (2) capturing CH4 from distillery spent wash and using it as an energy supply, and (3) utilizing cane trash for energy instead of open burning in fields.  相似文献   

16.

Background

When scaling up lignocellulose-based ethanol production, the desire to increase the final ethanol titer after fermentation can introduce problems. A high concentration of water-insoluble solids (WIS) is needed in the enzymatic hydrolysis step, resulting in increased viscosity, which can cause mass and heat transfer problems because of poor mixing of the material. In the present study, the effects of mixing on the enzymatic hydrolysis of steam-pretreated spruce were investigated using a stirred tank reactor operated with different impeller speeds and enzyme loadings. In addition, the results were related to the power input needed to operate the impeller at different speeds, taking into account the changes in rheology throughout the process.

Results

A marked difference in hydrolysis rate at different impeller speeds was found. For example, the conversion was twice as high after 48 hours at 500 rpm compared with 25 rpm. This difference remained throughout the 96 hours of hydrolysis. Substantial amounts of energy were required to achieve only minor increases in conversion during the later stages of the process.

Conclusions

Impeller speed strongly affected both the hydrolysis rate of the pretreated spruce and needed power input. Similar conversions could be obtained at different energy input by altering the mixing (that is, energy input), enzyme load and residence time, an important issue to consider when designing large-scale plants.  相似文献   

17.

Purpose

The dairy sector covers multiple activities related to milk production and treatment for alimentary uses. Different dairy products are available in the markets, with yoghurt being the second most important in terms of production. The goal of this study was to analyse from a cradle-to-grave approach the environmental impacts and energy balance derived from the yoghurt (solid, stirred and drinking yoghurts) manufacture process in a specific dairy factory processing 100 % Portuguese raw milk.

Methods

The standard framework of life cycle assessment (LCA) was followed and inventory data were collected on site in the dairy factory and completed using the literature and databases. The following impact categories were evaluated adopting a CML method: abiotic depletion (ADP), acidification (AP), eutrophication (EP), global warming (GWP), ozone layer depletion (ODP), land competition (LC) and photochemical oxidants formation (POFP), with the energy analysis carried out based on the cumulative non-renewable fossil and nuclear energy demand (CED). A mass allocation approach was considered for the partitioning of the environmental burdens between the different products obtained since not only yoghurts are produced but also dairy fodder.

Results and discussion

The key processes from an environmental point of view were identified. Some of the potential results obtained were in line with other specific related studies where dairy systems were assessed from an LCA perspective. The production of the milk-based inputs (i.e. raw milk, concentrated and powdered milk) was the main factor responsible of the environmental loads and energy requirements, with remarkable contributions of 91 % of AP, 92 % of EP and 62 % of GWP. Other activities that have important environmental impacts include the production of the energy requirements in the dairy factory, packaging materials production and retailing. Potential alternatives were proposed in order to reduce the contributions to the environmental profile throughout the life cycle of the yoghurt. These alternatives were based on the minimisation of milk losses, reductions of distances travelled and energy consumption at retailing and household use, as well as changes to the formulation of the animal feed. All of these factors derived from light environmental reductions.

Conclusions

The main reductions of the environmental impact derived from yoghurt production can be primarily obtained at dairy farms, although important improvements could also be made at the dairy factory.  相似文献   

18.

Purpose

Municipal solid waste (MSW) can be handled with several traditional management strategies, including landfilling, incineration, and recycling. Ethanol production from MSW is a novel strategy that has been proposed and researched for practical use; however, MSW ethanol plants are not widely applied in practice. Thus, this study has been conducted to analyze and compare the environmental and economic performance of incineration and ethanol production as alternatives to landfilling MSW.

Methods

The ISO 14040 life cycle assessment framework is employed to conduct the environmental impact assessment of three different scenarios for the two MSW management strategies based on processing 1 ton of MSW as the functional unit. The first scenario models the process of incinerating MSW and recovering energy in the form of process heat; the second scenario also includes the process of incinerating MSW but yields in the recovery of energy in the form of electricity; and the third scenario models the process of converting MSW into ethanol. The economic impacts of each scenario are then assessed by performing benefit-to-cost ratio (BCR) and net present value (NPV) analyses.

Results and discussion

The results from the environmental impact assessment of each scenario reveal that scenario 2 has the highest benefits for resource availability while scenario 3 is shown to be the best alternative to avoid human health and ecosystems diversity impacts. Scenario 1 has the worst environmental performance with respect to each of these environmental endpoint indicators and has net environmental impacts. The results of the economic analysis indicate that the third scenario is the best option with respect to BCR and NPV, followed by scenarios 2 and 1, respectively. Furthermore, environmental and economic analysis results are shown to be sensitive to MSW composition.

Conclusions

It appears municipalities should prefer MSW incineration with electricity generation or MSW-to-ethanol conversion over MSW incineration with heat recovery as an alternative to landfilling. The contradiction between the environmental impact assessment results and economic analysis results demonstrates that the decision-making process is sensitive to a broad set of variables. Decisions for a specific MSW management system are subject to facility location and size, MSW composition, energy prices, and governmental policies.  相似文献   

19.

Purpose

This study aims to quantify greenhouse gases (GHGs) from the production, transportation and utilization of charcoal and to assess the possibilities of decreasing greenhouse gases (GHGs) from the charcoal industry in general in Uganda. It also aims to assess the emission intensity of the Ugandan “charcoal production” sector compared to that of some other major charcoal producing nations.

Methods

This work was done in accordance with ISO 14040 methodology for life-cycle assessment (LCA), using GABi 4.0—a software for life-cycle assessment. A cradle-to-grave study was conducted, excluding emissions arising from machinery use during biomass cultivation and harvesting. The distance from charcoal production locations to Kampala was estimated using ArcGIS 10.0 software and a GPS tool. Emission data from a modern charcoal production process (PYREG methane-free charcoal production equipment), which complies with the German air quality standards (TA-Luft), was compared with emissions from a traditional charcoal production process. Four coupled scenarios were modelled to account for differences in the quantity of greenhouse gases emitted from the “traditional charcoal production phase”, “improved charcoal production phase (biomass feedstock sourced sustainably and unsustainably)”, “transportation phase” and “utilization phase”. Data for this study was obtained via literature review and onsite measurements.

Results and discussion

The results showed that greenhouse gases emitted due to charcoal supply and use of traditional production technique in Kampala was 1,554,699 tCO2eq, with the transportation phase accounting for approximately 0.15 % of total greenhouse gases emitted. The utilization phase (charcoal cookstoves) emitted 723,985 tCO2eq (46.6 %), while the charcoal production phase emitted 828,316 tCO2eq (53.3 %). Changing the charcoal production technology from a traditional method to an improved production method (PYREG charcoal process) resulted in greenhouse gases reductions for the city of 230,747 tCO2eq; however, by using sustainably sourced biomass, this resulted in reductions of 801,817 tCO2eq.

Conclusions

This study showcased and quantified possible GHG emission reduction scenarios for the charcoal industry in Uganda. The result of 3 tCO2eq emitted per tonne of charcoal produced, using earth mound method, can be applied to other countries in Eastern Africa where similar charcoal production methods are used; this will allow for somewhat better regional estimates of the inventory of greenhouse gas emissions from the production of charcoal. The results of this study also suggests that the primary use of charcoal for cooking will lead to increases in GHG emissions and increases in deforestation on the long term, if legal frameworks are not made to ensure that biomass used for charcoal production is obtained via sustainable sources or if alternative cheap energy-generating technologies for cooking are not developed and deployed to the masses.  相似文献   

20.

Background, aim, and scope

Facing the threat of oil depletion and climate change, a shift from fossil resources to renewables is ongoing to secure long-term low carbon energy supplies. In view of the carbon dioxide reduction targets agreed upon in the Kyoto protocol, bioethanol has become an attractive option for one energy application, as transport fuel. Many studies on the LCA of fuel ethanol have been conducted, and the results vary to a large extent. In most of these studies, only one type of allocation is applied. However, the effect of allocation on outcomes is of crucial importance to LCA as a decision supporting tool. This is only addressed in a few studies to a limited extent. Moreover, most of the studies mainly focus on fossil energy use and GHG emissions. In this paper, a case study is presented wherein a more complete set of impact categories is used. Land use has been left out of account as only hectare data would be given which is obviously dominated by agriculture. Moreover, different allocation methods are applied to assess the sensitivity of the outcomes for allocation choices.

Materials and methods

This study focuses on the comparison of LCA results from the application of different allocation methods by presenting an LCA of gasoline and ethanol as fuels and with two types of blends of gasoline with ethanol, all used in a midsize car. As a main second-generation application growing fast in the USA, corn stover-based ethanol is chosen as a case study. The life cycles of the fuels include gasoline production, corn and stover agriculture, cellulosic ethanol production, blending ethanol with gasoline to produce E10 (10% of ethanol) and E85 (85% of ethanol), and finally the use of gasoline, E10, E85, and ethanol. In this study, a substantially broader set of eight environmental impacts is covered.

Results

LCA results appear to be largely dependent on the allocation methods rendered. The level of abiotic depletion and ozone layer depletion decrease when replacing gasoline by ethanol fuels, irrespective of the allocation method applied, while the rest of the impacts except global warming potential are larger. The results show a reduction of global warming potential when mass/energy allocation is applied; in the case of economic allocation, it gives contrary results. In the expanded systems, global warming potential is significantly reduced comparing to the ones from the allocated systems. A contribution analysis shows that car driving, electricity use for cellulase enzyme production, and ethanol conversion contribute largely to global warming potential from the life cycle of ethanol fuels.

Discussion

The reason why the results of global warming potential show a reverse trend is that the corn/stover allocation ratio shifts from 7.5 to 1.7 when shifting from economic allocation to mass/energy allocation. When mass/energy allocation is applied, both more credits (CO2 uptake) and more penalties (N2O emission) in agriculture are allocated to stover compared to the case of economic allocation. However, more CO2 is taken up than N2O (in CO2 eq.) emitted. Hence, the smaller the allocation ratio is between corn and stover, the lower the share of the overall global warming emissions being allocated to ethanol will be. In the system expansion approach, global warming potentials are significantly reduced, resulting in the negative values in all cases. This implies that the system expansion results are comparable to one another because they make the same cutoffs but not really to the results related to mass, energy, and economic value-based allocated systems.

Conclusions

The choice of the allocation methods is essential for the outcomes, especially for global warming potential in this case. The application of economic allocation leads to increased GWP when replacing gasoline by ethanol fuels, while reduction of GWP is achieved when mass/energy allocation is used as well as in the system where biogenic CO2 is excluded. Ethanol fuels are better options than gasoline when abiotic depletion and ozone layer depletion are concerned. In terms of other environmental impacts, gasoline is a better option, mainly due to the emissions of nutrients and toxic substances connected with agriculture. A clear shift of problems can be detected: saving fossil fuels at the expense of emissions related to agriculture, with GHG benefits depending on allocation choices. The overall evaluation of these fuel options, therefore, depends very much on the importance attached to each impact category.

Recommendations and perspectives

This study focuses only on corn stover-based ethanol as one case. Further studies may include other types of cellulosic feedstocks (i.e., switchgrass or wood), which require less intensive agricultural practice and may lead to better environmental performance of fuel ethanol. Furthermore, this study shows that widely used but different allocation methods determine outcomes of LCA studies on biofuels. This is an unacceptable situation from a societal point of view and a challenge from a scientific point of view. The results from applying just one allocation method are not sufficient for decision making. Comparison of different allocation methods is certainly of crucial importance. A broader approach beyond LCA for the analysis of biorefinery systems with regard to energy conservation, environmental impact, and cost–benefit will provide general indications on the sustainability of bio-based productions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号