首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anaphase-promoting complex/cyclosome (APC/C) is the ubiquitin ligase essential to mitosis, which ensures that specific proteins are degraded at specific times to control the order of mitotic events. The APC/C coactivator, Cdc20, is targeted by the spindle assembly checkpoint (SAC) to restrict APC/C activity until metaphase, yet early substrates, such as cyclin A, are degraded in the presence of the active checkpoint. Cdc20 and the cyclin-dependent kinase cofactor, Cks, are required for cyclin A destruction, but how they enable checkpoint-resistant destruction has not been elucidated. In this study, we answer this problem: we show that the N terminus of cyclin A binds directly to Cdc20 and with sufficient affinity that it can outcompete the SAC proteins. Subsequently, the Cks protein is necessary and sufficient to promote cyclin A degradation in the presence of an active checkpoint by binding cyclin A–Cdc20 to the APC/C.  相似文献   

2.
The spindle assembly checkpoint (SAC) is required to block sister chromatid separation until all chromosomes are properly attached to the mitotic apparatus. The SAC prevents cells from entering anaphase by inhibiting the ubiquitylation of cyclin B1 and securin by the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase. The target of the SAC is the essential APC/C activator Cdc20. It is unclear how the SAC inactivates Cdc20 but most current models suggest that Cdc20 forms a stable complex with the Mad2 checkpoint protein. Here we show that most Cdc20 is not in a complex with Mad2; instead Mad2 is required for Cdc20 to form a complex with another checkpoint protein, BubR1. We further show that during the SAC, the APC/C ubiquitylates Cdc20 to target it for degradation. Thus, ubiquitylation of human Cdc20 is not required to release it from the checkpoint complex, but to degrade it to maintain mitotic arrest.  相似文献   

3.
The metaphase-to-anaphase transition is triggered by the Anaphase-Promoting Complex (APC), an E3 ubiquitin ligase that targets proteins for degradation, leading to sister chromatid separation and mitotic exit. The function of APC is controlled by the spindle checkpoint that delays anaphase onset in the presence of any chromosome that has not established bipolar attachment to the mitotic spindle. In this way, the checkpoint ensures accurate chromosome segregation. The spindle checkpoint is mostly activated from kinetochores that are not attached to microtubules or not under tension that is normally generated from bipolar attachment. These kinetochores recruit several spindle checkpoint proteins to assemble an inhibitory complex composed of checkpoint proteins Mad2, Bub3, and Mad3/BubR1. This complex binds and inhibits Cdc20, an activator and substrate adaptor for APC. In addition, the checkpoint complex promotes Cdc20 degradation, thus lowering Cdc20 protein level upon checkpoint activation. This dual inhibition on Cdc20 likely ensures that the spindle checkpoint is sustained even when the cell contains only a single unattached kinetochore.  相似文献   

4.
In Drosophila cells cyclin B is normally degraded in two phases: (a) destruction of the spindle-associated cyclin B initiates at centrosomes and spreads to the spindle equator; and (b) any remaining cytoplasmic cyclin B is degraded slightly later in mitosis. We show that the APC/C regulators Fizzy (Fzy)/Cdc20 and Fzy-related (Fzr)/Cdh1 bind to microtubules in vitro and associate with spindles in vivo. Fzy/Cdc20 is concentrated at kinetochores and centrosomes early in mitosis, whereas Fzr/Cdh1 is concentrated at centrosomes throughout the cell cycle. In syncytial embryos, only Fzy/Cdc20 is present, and only the spindle-associated cyclin B is degraded at the end of mitosis. A destruction box-mutated form of cyclin B (cyclin B triple-point mutant [CBTPM]-GFP) that cannot be targeted for destruction by Fzy/Cdc20, is no longer degraded on spindles in syncytial embryos. However, CBTPM-GFP can be targeted for destruction by Fzr/Cdh1. In cellularized embryos, which normally express Fzr/Cdh1, CBTPM-GFP is degraded throughout the cell but with slowed kinetics. These findings suggest that Fzy/Cdc20 is responsible for catalyzing the first phase of cyclin B destruction that occurs on the mitotic spindle, whereas Fzr/Cdh1 is responsible for catalyzing the second phase of cyclin B destruction that occurs throughout the cell. These observations have important implications for the mechanisms of the spindle checkpoint.  相似文献   

5.
The initiation of anaphase and exit from mitosis depend on the activation of the anaphase-promoting complex/cyclosome (APC/C), a multicomponent, ubiquitin-protein ligase. The WD-repeat protein called p55(CDC)(Cdc20) directly binds to and activates APC/C. By using yeast two-hybrid screening, we found that cyclin A, a critical cell cycle regulator in the S and G2/M phases, specifically interacts with p55(CDC). Ectopically expressed p55(CDC) and cyclin A form a stable protein complex in mammalian cells. The p55(CDC)-cyclin A interaction occurs through the region containing the WD repeats of p55(CDC) and the region between the destruction box and the cyclin box of cyclin A. In addition to the physical interaction, p55(CDC) is phosphorylated by cyclin A-associated kinase. These findings suggest that the function of p55(CDC) is mediated or regulated by its complex formation with cyclin A.  相似文献   

6.
Cyclin destruction in mitosis: a crucial task of Cdc20   总被引:11,自引:0,他引:11  
Irniger S 《FEBS letters》2002,532(1-2):7-11
Proteolytic destruction of cyclins is a fundamental process for cell division. At the end of mitosis, degradation of mitotic cyclins results in the inactivation of cyclin-dependent kinases. Cyclin proteolysis is triggered by the anaphase-promoting complex/cyclosome (APC/C), a multi-subunit complex which contains ubiquitin ligase activity. Recent data in yeast demonstrated that a partial degradation of the mitotic cyclin Clb2, mediated by APC/C and its activator protein Cdc20, is essential and sufficient for the mitotic exit. Remarkably, a complete inactivation of cyclin-dependent kinases seems to be not essential. This review discusses recent novel insights into cyclin destruction and its implications for the mitotic exit.  相似文献   

7.
The spindle checkpoint delays anaphase until all chromosomes are properly attached to spindle microtubules. When the spindle checkpoint is activated at unattached kinetochores, the checkpoint proteins BubR1, Bub3 and Mad2 bind and inhibit Cdc20, an activator of the anaphase-promoting complex (APC). Here, we show that Xenopus laevis Cdc20 is phosphorylated at Ser 50, Thr 64, Thr 68 and Thr 79 during mitosis and that mitogen-activated protein kinase (MAPK) contributes to the phosphorylation at Thr 64 or Thr 68. Cdc20 mutants that are phosphorylation-deficient are able to activate the APC in X. laevis egg extracts. However, Cdc20 mutants in which any of the four phosphorylation sites were altered to Ala or Val failed to respond to the spindle checkpoint signal, owing to their reduced affinity for the spindle checkpoint proteins. This study demonstrates that the spindle checkpoint stops anaphase by inhibiting fully-phosphorylated Cdc20. Our results also have implications for the spindle checkpoint silencing mechanism.  相似文献   

8.
9.
Properly regulated cyclin proteolysis is critical for normal cell cycle progression. A nine-amino acid peptide motif called the destruction box (D box) is present at the N terminus of the yeast mitotic cyclins. This short sequence is required for cyclin ubiquitination and subsequent proteolysis. The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit E3 required for cyclin ubiquitination. We have tested the D box of five mitotic cyclins for interaction with six APC/C subunits. The APC/C subunit Cdc23, but not five other subunits tested, interacted by two-hybrid analysis with the N terminus of wild-type Clb2. None of these subunits interacted with the N termini of the cyclins Clb1, Clb3, or Clb5. Mutations in the D box sequences of Clb2 inhibited interaction with Cdc23 both in vivo and in vitro. Our results provide the first evidence for a direct interaction between an APC/C substrate (Clb2) and an APC/C subunit (Cdc23).  相似文献   

10.
The checkpoint protein Mad2 inhibits the activity of the anaphase promoting complex by sequestering Cdc20 until all chromosomes are aligned at the metaphase plate. We report the solution structure of human Mad2 and its interaction with Cdc20. Mad2 possesses a novel three-layered alpha/beta fold with three alpha-helices packed between two beta-sheets. Using deletion mutants we identified the minimal Mad2-binding region of human Cdc20 as a 40-residue segment immediately N-terminal to the WD40 repeats. Mutagenesis and NMR titration experiments show that a C-terminal flexible region of Mad2 is required for binding to Cdc20. Mad2 and Cdc20 form a tight 1:1 heterodimeric complex in which the C-terminal segment of Mad2 becomes folded. These results provide the first structural insight into mechanisms of the spindle assembly checkpoint.  相似文献   

11.
Identification of physiological substrates for Cdc2/cyclin B is crucial for understanding the functional link between mitotic events and Cdc2/cyclin B activation. A human homologue of the Drosophila warts tumor suppressor, termed WARTS, is a serine/threonine kinase and a dynamic component of the mitotic apparatus. We have found that Cdc2/cyclin B forms a complex with a fraction of WARTS in the centrosome and phosphorylates the Ser613 site of WARTS during mitosis. Immunocytochemical analysis has shown that the S613-phosphorylated WARTS appears in the spindle poles at prometaphase and disappears at telophase. Our findings suggest that Cdc/cyclin B regulates functions of WARTS on the mitotic apparatus.  相似文献   

12.
The execution of meiotic divisions in Saccharomyces cerevisiae is regulated by anaphase-promoting complex/cyclosome (APC/C)-mediated protein degradation. During meiosis, the APC/C is activated by association with Cdc20p or the meiosis-specific activator Ama1p. We present evidence that, as cells exit from meiosis II, APC/C(Ama1) mediates Cdc20p destruction. APC/C(Ama1) recognizes two degrons on Cdc20p, the destruction box and destruction degron, with either domain being sufficient to mediate Cdc20p destruction. Cdc20p does not need to associate with the APC/C to bind Ama1p or be destroyed. Coimmunoprecipitation analyses showed that the diverged amino-terminal region of Ama1p recognizes both Cdc20p and Clb1p, a previously identified substrate of APC/C(Ama1). Domain swap experiments revealed that the C-terminal WD region of Cdh1p, when fused to the N-terminal region of Ama1p, could direct most of Ama1p functions, although at a reduced level. In addition, this fusion protein cannot complement the spore wall defect in ama1Δ strains, indicating that substrate specificity is also derived from the WD repeat domain. These findings provide a mechanism to temporally down-regulate APC/C(Cdc20) activity as the cells complete meiosis II and form spores.  相似文献   

13.
The spindle assembly checkpoint (SAC) is an important mechanism that prevents the separation of sister chromatids until the microtubules radiating from the spindle poles are correctly attached to the kinetochores. Cdc20, an activator of the Anaphase Promoting Complex/Cyclosome (APC/C), is known as a major downstream target for inhibition by the SAC through the binding of mitotic checkpoint proteins, such as Mad2 and BubR1. Here, we report that the SAC also negatively regulates the stability of Cdc20 by targeting it for proteasome-dependent degradation. Once the checkpoint is activated by spindle poisons, a major population of Cdc20 is degraded via APC/C, an event that requires the binding of Cdc20 to Mad2. We propose that the degradation of Cdc20 represents a critical control mechanism to ensure inactivation of APC/CCdc20 in response to the SAC.  相似文献   

14.
15.
Interaction between Mad2 and Cdc20 (cell division cycle 20) is a key event during spindle assembly checkpoint activation. In the past, an N-terminal peptide containing amino acid residues 111-150 of Cdc20 was shown to bind Mad2 much better than the full-length Cdc20 protein. Using co-localization, co-immunoprecipitation and peptide inhibition analysis with different deletion mutants of Cdc20, we identified another Mad2-binding domain on Cdc20 from amino acids 342-355 within the WD repeat region. An intervening region between these two domains interferes with its Mad2 binding when present individually with any of these two Mad2-binding sites. We suggest that these three domains together determine the overall strength of Mad2 binding with Cdc20. Functional analysis suggests that an optimum Mad2 binding efficiency of Cdc20 is required during checkpoint arrest and release. Further, we have identified a unique polyhistidine motif with metal binding property adjacent to this second binding domain that may be important for maintaining the overall conformation of Cdc20 for its binding to Mad2.  相似文献   

16.
17.
Genomic instability is a hallmark of human cancers. Spindle assembly checkpoint (SAC) is a critical cellular mechanism that prevents chromosome missegregation and therefore aneuploidy by blocking premature separation of sister chromatids. Thus, SAC, much like the DNA damage checkpoint, is essential for genome stability. In this study, we report the generation and analysis of mice carrying a Cdc20 allele in which three residues critical for the interaction with Mad2 were mutated to alanine. The mutant Cdc20 protein (AAA-Cdc20) is no longer inhibited by Mad2 in response to SAC activation, leading to the dysfunction of SAC and aneuploidy. The dysfunction could not be rescued by the additional expression of another Cdc20 inhibitor, BubR1. Furthermore, we found that Cdc20AAA/AAA mice died at late gestation, but Cdc20+/AAA mice were viable. Importantly, Cdc20+/AAA mice developed spontaneous tumors at highly accelerated rates, indicating that the SAC-mediated inhibition of Cdc20 is an important tumor-suppressing mechanism.  相似文献   

18.
Proteolysis of the yeast G(1) cyclins is triggered by their Cdc28-dependent phosphorylation. Phosphorylated Cln1 and Cln2 are ubiquitinated by the SCF-Grr1 complex and then degraded by the 26 S proteasome. In this study, we identified a cak1 allele in a genetic screen for mutants that stabilize the yeast G(1) cyclins. Further characterization showed that Cln2HA was hypophosphorylated, unable to bind Cdc28, and stabilized in cak1 mutants at the restrictive temperature. Hypophosphorylation of Cln2HA could thus explain its stabilization. To test this possibility, we expressed a Cak1-independent mutant of Cdc28 (Cdc28-43244) in cak1 mutants and found that Cln2HA phosphorylation was restored, but surprisingly, the phospho-Cln2HA was stabilized. When bound to Cdc28-43244, Cln2HA was recognized and polyubiquitinated by SCF-Grr1. The Cdc28-43244 mutant thus reveals an unexpected complexity in the degradation of polyubiquitinated Cln2HA by the proteasome.  相似文献   

19.
The spindle assembly checkpoint (SAC), an evolutionarily conserved surveillance pathway, prevents chromosome segregation in response to conditions that disrupt the kinetochore-microtubule attachment. Removal of the checkpoint-activating stimulus initiates recovery during which spindle integrity is restored, kinetochores become bi-oriented, and cells initiate anaphase. Whether recovery ensues passively after the removal of checkpoint stimulus, or requires mediation by specific effectors remains uncertain. Here, we report two unrecognized functions of yeast Cdk1 required for efficient recovery from SAC-induced arrest. We show that Cdk1 promotes kinetochore bi-orientation during recovery by restraining premature spindle elongation thereby extinguishing SAC signalling. Moreover, Cdk1 is essential for sustaining the expression of Cdc20, an activator of the anaphase promoting complex/cyclosome (APC/C) required for anaphase progression. We suggest a model in which Cdk1 activity promotes recovery from SAC-induced mitotic arrest by regulating bi-orientation and APC/C activity. Our findings provide fresh insights into the regulation of mitosis and have implications for the therapeutic efficacy of anti-mitotic drugs.  相似文献   

20.
The balance between cell cycle progression and apoptosis is important for both surveillance against genomic defects and responses to drugs that arrest the cell cycle. In this report, we show that the level of the human anti‐apoptotic protein Mcl‐1 is regulated during the cell cycle and peaks at mitosis. Mcl‐1 is phosphorylated at two sites in mitosis, Ser64 and Thr92. Phosphorylation of Thr92 by cyclin‐dependent kinase 1 (CDK1)–cyclin B1 initiates degradation of Mcl‐1 in cells arrested in mitosis by microtubule poisons. Mcl‐1 destruction during mitotic arrest requires proteasome activity and is dependent on Cdc20/Fizzy, which mediates recognition of mitotic substrates by the anaphase‐promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. Stabilisation of Mcl‐1 during mitotic arrest by mutation of either Thr92 or a D‐box destruction motif inhibits the induction of apoptosis by microtubule poisons. Thus, phosphorylation of Mcl‐1 by CDK1–cyclin B1 and its APC/CCdc20‐mediated destruction initiates apoptosis if a cell fails to resolve mitosis. Regulation of apoptosis, therefore, is linked intrinsically to progression through mitosis and is governed by a temporal mechanism that distinguishes between normal mitosis and prolonged mitotic arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号