首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sebacinales are common mycorrhizal associates of Ericaceae   总被引:3,自引:1,他引:2  
Previous reports of sequences of Sebacinales (basal Hymenomycetes) from ericoid mycorrhizas raised the question as to whether Sebacinales are common mycorrhizal associates of Ericaceae, which are usually considered to associate with ascomycetes. Here, we sampled 239 mycorrhizas from 36 ericoid mycorrhizal species across the world (Vaccinioideae and Ericoideae) and 361 mycorrhizas from four species of basal Ericaceae lineages (Arbutoideae and Monotropoideae) that do not form ericoid mycorrhizas, but ectendomycorrhizas. Sebacinales were detected using sebacinoid-specific primers for nuclear 28S ribosomal DNA, and some samples were investigated by transmission electron microscopy (TEM). Diverging Sebacinales sequences were recovered from 76 ericoid mycorrhizas, all belonging to Sebacinales clade B. Indeed, some intracellular hyphal coils had ultrastructural TEM features expected for Sebacinales, and occurred in living cells. Sebacinales belonging to clade A were found on 13 investigated roots of the basal Ericaceae, and TEM revealed typical ectendomycorrhizal structures. Basal Ericaceae lineages thus form ectendomycorrhizas with clade A Sebacinales, a clade that also harbours ectomycorrhizal fungi. This further supports the proposition that Ericaceae ectendomycorrhizas involve ectomycorrhizal fungal taxa. When ericoid mycorrhizas evolved secondarily in Ericaceae, a shift of mycobionts occurred to ascomycetes and clade B Sebacinales, hitherto not described as ericoid mycorrhizal fungi.  相似文献   

2.
Ericaceae are obligatory associated with symbiotic fungi forming several, distinctive categories of mycorrhizas. While ericoid, arbutoid, and monotropoid mycorrhizas are known since many years from ericads of the northern hemisphere and the ericoid mycorrhiza also from Australia, a further mycorrhizal category with hyphal sheath, Hartig net, and intracellular colonization was described by us recently and termed cavendishioid mycorrhiza because it was found on Cavendishia nobilis, a species belonging to the Andean clade (Vaccinioideae) of Ericaceae. As the previous findings indicated a correlation between the mycorrhizal category and the systematic position of Ericaceae, we tested the hypothesis that other ericads of the Andean clade might also form cavendishioid mycorrhizas, while ericads occurring in the same area but not belonging to the Andean clade might not. Mycorrhizas of 20 different ericaceous species, 15 belonging to the Andean clade and 5 to other Vaccinioideae or Ericoideae, were sampled in the tropical mountain rain forest area of South Ecuador and investigated by light and electron microscopy. All the 15 members of the Andean clade ericads displayed a hyphal sheath, as well as inter- and intracellular colonization by hyphae as was found on Cavendishia previously. The five species not belonging to the Andean clade ericads displayed only intracellular colonization by hyphae and hence were typical ericoid mycorrhizal. Ultrastructural studies revealed Sebacinales and ascomycetes as mycorrhiza formers in both associations even within one single cell. The results thus support the hypothesis that the Andean clade of Ericaceae forms mycorrhizas distinct from the arbutoid category and most likely presents an independent evolutionary line in the Ericaceae derived from the ericoid mycorrhizas, justifying the new term “cavendishioid mycorrhiza”.  相似文献   

3.
Usuki F  Narisawa K 《Mycorrhiza》2005,15(1):61-64
A resynthesis study was conducted to clarify the relationship between the root endophyte, Heteroconium chaetospira and the ericaceous plant, Rhododendron obtusum var. kaempferi. The host plant roots were recovered 2 months after inoculation, and the infection process and colonization pattern of the fungus were observed under a microscope. The hyphae of H. chaetospira developed structures resembling ericoid mycorrhizas, such as hyphal coils within the host epidermal cells. These structures were morphologically the same as previously reported ericoid mycorrhizal structures. The frequencies of hyphal coils within the epidermal cells of host roots ranged from 13 to 20%. H. chaetospira did not promote or reduce host plant growth. This is the first reported study that H. chaetospira is able to form structures resembling mycorrhizas within the roots of ericaceous plants.  相似文献   

4.
Most plant roots are associated with glomalean fungi forming arbuscular mycorrhizas (AM) and a wide range are also colonized by ascomycetous dark septate endophytes (DSE). Bromeliaceae species can be epiphytic, rupicolous or terrestrial but their mycorrhizal status is poorly studied. We examined the AM and DSE status of 5 epiphytic and 4 terrestrial Bromeliaceae from an arid area of Central Argentina. The terrestrial species were either dually associated (AM and DSE) or non-associated whereas the epiphytes were only DSE colonized. Terrestrial Bromeliaceae that formed AM-DSE associations were likely responding to the arid conditions of the area and the availability of AM fungal (AMF) spores in the soil. The terrestrialBromelia ubaniana was not colonized either by AMF or DSE. This could reflect its root morphology and high number of root hairs. DSE are endosymbiotic in the stressful ecosystems experienced by canopy epiphytes in the studied environment. The different fungal associations are discussed in relation to the three Bromeliaceae subfamiles and we suggest that environmental features determinethe type of association formed by species in this plant family.  相似文献   

5.
The culturable fungal assemblage associated with hair roots of Rhododendron lochiae (Ericaceae) from a tropical cloud forest in Queensland, Australia was investigated using rDNA internal transcribed spacer (ITS) restriction fragment length polymorphisms (RFLPs) and sequence analysis, and the abilities of the fungi to form ericoid mycorrhizas were tested. DNA was further extracted directly from hair roots and partial fungal ITS products compared with those from the cultured isolate assemblage using denaturing gradient gel electrophoresis (DGGE). A range of ericoid mycorrhizal and non-mycorrhizal fungi was identified using both approaches, with ericoid mycorrhizal fungi found to be taxonomically similar to those associated with Ericaceae in temperate habitats worldwide. Both approaches identified several unique fungi and, although most of the abundant RFLP types identified in the cultured fungal assemblage were also present in DGGE profiles of DNA extracted directly from roots, one the most commonly isolated RFLP types, a putative Xylariaceae taxon, was absent. The data suggest that a combination of culturing and culture-independent approaches may be more efficacious than either method individually.  相似文献   

6.
Ericaceae associate with a wide spectrum of root mycobionts, but the most common are ascomycetous ericoid mycorrhizal fungi and dark septate endophytes (DSE), followed by basidiomycetous fungi and glomeracean arbuscular mycorrhizal fungi. We investigated distribution and morphological diversity of ericoid mycorrhizae (ErM), DSE associations, ectomycorrhizae (EcM) and arbuscular mycorrhizae (AM) in hair roots of six European native Rhododendron species and found that i) while EcM and AM were absent, ErM and DSE associations were simultaneously present in all screened plants; ii) their levels were negatively correlated, suggesting Ericaceae preference for certain root-fungus association in certain habitats; iii) the highest ErM colonization occurred at sites in southern and central Europe, while the highest DSE colonization was found in a subarctic site in northern Finland and in a subalpine site in the Carpathians, suggesting a latitudinal/altitudinal shift in Ericaceae root-fungus associations; iv) some mycelia could simultaneously form structures corresponding to ErM and DSE association, which occasionally resulted in a unique ectendomycorrhizal colonization comprising an intercellular parenchymatous net and intracellular hyphal coils. These results indicate frequent interactions between ErM fungi and DSE in roots of European rhododendrons and a morphological continuum between ErM and DSE associations. The new ectendomycorrhizal type deserves further investigation.  相似文献   

7.
The first axenic synthesis of morphologically typical ericoid mycorrhizas of the Epacridaceae has been achieved in micropropagated Epacris impressa Labill. with eight fungi isolated from roots of two epacrid species, E. impressa and Astroloma pinifolium (R.Br.) Benth. Mycorrhizal synthesis has also been achieved between E. impressa and both Hymenoscyphus ericae (Read) Korf and Kernan and Oidiodendron griseum Robak, recognized endophytes of Ericaceae, suggesting that the endophytes of the Epacridaceae and Ericaceae are capable of cross-infection. Infection rate of epidermal cells on hair roots varied from 3–77% infection and the density of hyphal coils varied widely. This synthesis makes possible studies of the roles of these endophytes in the Epacridaceae and comparison with their roles in the Ericaceae.  相似文献   

8.
Urcelay C 《Mycorrhiza》2002,12(2):89-92
The roots of Gaultheria poeppiggi (Ericaceae) were examined for fungal symbiont colonization. Typical structures of ericoid mycorrhizas (hyphae and intracellular coil hyphae complexes), dark septate fungal endophytes (hyphae and sclerotia), and arbuscular mycorrhizas (hyphae, coils, vesicles and arbuscules) were found in the roots of all the individuals examined. The evolutionarily derived position of Gaultheria within the Ericales may suggest that G. poeppiggi recently acquired the ability to form arbuscular mycorrhizas rather than having retained it from ancestral lines.  相似文献   

9.
张艳华  孙立夫 《菌物学报》2021,40(6):1299-1316
杜鹃花科Ericaceae植物可与土壤真菌形成杜鹃花类菌根ericoid mycorrhizas (ERM)共生体,且广泛分布于全球不同的陆地生态系统,特别是在贫瘠、酸性等严酷的环境中占优势.杜鹃花科植物菌根类型多样,绝大多数宿主具有ERM,还有少量宿主具有其他类型的菌根结构,且常与暗隔内生菌(dark septate...  相似文献   

10.
Responses of the mycorrhizal fungal community in terrestrial ecosystems to global change factors are not well understood. However, virtually all land plants form symbiotic associations with mycorrhizal fungi, with approximately 20% of the plants' net primary production transported down to the fungal symbionts. In this study, we investigated how ericoid mycorrhiza (ErM), fine endophytes (FE) and dark septate endophytes (DSE) in roots responded to elevated atmospheric CO2 concentrations and warming in the dwarf shrub understory of a birch forest in the subarctic region of northern Sweden. To place the belowground results into an ecosystem context we also investigated how plant cover and nutrient concentrations in leaves responded to elevated atmospheric CO2 concentrations and warming. The ErM colonization in ericaceous dwarf shrubs increased under elevated atmospheric CO2 concentrations, but did not respond to warming following 6 years of treatment. This suggests that the higher ErM colonization under elevated CO2 might be due to increased transport of carbon belowground to acquire limiting resources such as N, which was diluted in leaves of ericaceous plants under enhanced CO2. The elevated CO2 did not affect total plant cover but the plant cover was increased under warming, which might be due to increased N availability in soil. FE colonization in grass roots decreased under enhanced CO2 and under warming, which might be due to increased root growth, to which the FE fungi could not keep up, resulting in proportionally lower colonization. However, no responses in aboveground cover of Deschampsia flexuosa were seen. DSE hyphal colonization in grass roots significantly increased under warmer conditions, but did not respond to elevated CO2. This complex set of responses by mycorrhizal and other root‐associated fungi to global change factors of all the fungal types studied could have broad implications for plant community structure and biogeochemistry of subarctic ecosystems.  相似文献   

11.
Aim To document the elevational pattern of epiphyte species richness at the local scale in the tropical Andes with a consistent methodology. Location The northern Bolivian Andes at 350–4000 m above sea level. Methods We surveyed epiphytic vascular plant assemblages in humid forests in (a) single trees located in (b) 90 subplots of 400 m2 each located in (c) 14 plots of 1 ha each. The plots were separated by 100–800 m along the elevational gradient. Results We recorded about 800 epiphyte species in total, with up to 83 species found on a single tree. Species richness peaked at c. 1500 m and declined by c. 65% to 350 m and by c. 99% to 4000 m, while forests on mountain ridges had richness values lowered by c. 30% relative to slope forests at the same elevations. The hump‐shaped richness pattern differed from a null‐model of random species distribution within a bounded domain (the mid‐domain effect) as well as from the pattern of mean annual precipitation by a shift of the diversity peak to lower elevations and by a more pronounced decline of species richness at higher elevations. With the exception of Araceae, which declined almost monotonically, all epiphyte taxa showed hump‐shaped curves, albeit with slightly differing shapes. Orchids and pteridophytes were the most species‐rich epiphytic taxa, but their relative contributions shifted with elevation from a predominance of orchids at low elevations to purely fern‐dominated epiphyte assemblages at 4000 m. Within the pteridophytes, the polygrammoid clade was conspicuously overrepresented in dry or cold environments. Orchids, various small groups (Cyclanthaceae, Ericaceae, Melastomataceae, etc.), and Bromeliaceae (below 1000 m) were mostly restricted to the forest canopy, while Araceae and Pteridophyta were well represented in the forest understorey. Main conclusions Our study confirms the hump‐shaped elevational pattern of vascular epiphyte richness, but the causes of this are still poorly understood. We hypothesize that the decline of richness at high elevations is a result of low temperatures, but the mechanism involved is unknown. The taxon‐specific patterns suggest that some taxa have a phylogenetically determined propensity for survival under extreme conditions (low temperatures, low humidity, and low light levels in the forest interior). The three spatial sampling scales show some different patterns, highlighting the influence of the sampling methodology.  相似文献   

12.
Simultaneous associations among ectotrophic and ericoid mycorrhizal hosts and their mycorrhizal fungi are expected in boreal bogs where ericaceous shrubs and conifers coexist rooted in an organic matrix dominated by Sphagnum mosses. We were thus prompted to examine, in vitro, the abilities of three ericoid mycorrhizal fungi [ Hymenoscyphus ericae, Oidiodendron maius, and Variable White Taxon (VWT)] to associate with Picea mariana (Pinaceae), with both P. mariana and Rhododendron groenlandicum (Ericaceae) simultaneously, and to decompose Sphagnum fuscum. Hymenoscyphus ericae and VWT developed an intracellular association with roots of P. mariana and with roots of R. groenlandicum. Two strains of O. maius did not form typical infection units in R. groenlandicum, nor did they colonize the root cells of P. mariana. Mass losses incurred by sterilized S. fuscum plants inoculated with these three taxa indicated that O. maius could be more efficient as a free-living saprophyte on this material than either H. ericae or VWT and may in part explain why atypical associations with the roots of ericaceous hosts were formed.  相似文献   

13.
Wetlands provide numerous ecosystem services, and ericaceous plants are important components of these habitats. However, the ecology of fungi associated with ericaceous roots in these habitats is poorly known. To investigate fungi associated with ericaceous roots in wetlands, ericoid mycorrhizal colonization was quantified, and fungal communities were characterized on the roots of Gaultheria hispidula and Kalmia angustifolia along two upland – forested wetland transects in spring and fall. Ericoid mycorrhizal colonization was significantly higher in the wetlands for both plant species. Both upland and wetland habitats supported distinct assemblages of ericaceous root associated fungi including habitat specific members of the genus Serendipita. Habitat was a stronger driver of ericoid mycorrhizal colonization and ericaceous root associated community composition than host or sampling season, with differences related to soil water content, soil nutrient content, or both. Our results indicate that ericaceous plant roots in forested wetlands are heavily colonized by habitat specific symbionts.  相似文献   

14.
The Sebacinales are a monophyletic group of ubiquitous hymenomycetous mycobionts which form ericoid and orchid mycorrhizae, ecto- and ectendomycorrhizae, and nonspecific root endophytic associations with a wide spectrum of plants. However, due to the complete lack of fungal isolates derived from Ericaceae roots, the Sebacinales ericoid mycorrhizal (ErM) potential has not yet been tested experimentally. Here, we report for the first time isolation of a serendipitoid (formerly Sebacinales Group B) mycobiont from Ericaceae which survived in pure culture for several years. This allowed us to test its ability to form ericoid mycorrhizae with an Ericaceae host in vitro, to describe its development and colonization pattern in host roots over time, and to compare its performance with typical ErM fungi and other serendipitoids derived from non-Ericaceae hosts. Out of ten serendipitoid isolates tested, eight intracellularly colonized Vaccinium hair roots, but only the Ericaceae-derived isolate repeatedly formed typical ericoid mycorrhiza morphologically identical to ericoid mycorrhiza commonly found in naturally colonized Ericaceae, but yet different from ericoid mycorrhiza formed in vitro by the prominent ascomycetous ErM fungus Rhizoscyphus ericae. One Orchidaceae-derived isolate repeatedly formed abundant hyaline intracellular microsclerotia morphologically identical to those occasionally found in naturally colonized Ericaceae, and an isolate of Serendipita (= Piriformospora) indica produced abundant intracellular chlamydospores typical of this species. Our results confirm for the first time experimentally that some Sebacinales can form ericoid mycorrhiza, point to their broad endophytic potential in Ericaceae hosts, and suggest possible ericoid mycorrhizal specificity in Serendipitaceae.  相似文献   

15.
Vascular epiphytes contribute to the structural, compositional, and functional complexity of tropical montane cloud forests because of their high biomass, diversity, and ability to intercept and retain water and nutrients from atmospheric sources. However, human-caused climate change and forest-to-pasture conversion are rapidly altering tropical montane cloud forests. Epiphyte communities may be particularly vulnerable to these changes because of their dependence on direct atmospheric inputs and host trees for survival. In Monteverde, Costa Rica, we measured vascular epiphyte biomass, community composition, and richness at two spatial scales: (1) along an elevation gradient spanning premontane forests to montane cloud forests and (2) within trees along branches from inner to outer crown positions. We also compared epiphyte biomass and distribution at these scales between two different land-cover types, comparing trees in closed canopy forest to isolated trees in pastures. An ordination of epiphyte communities at the level of trees grouped forested sites above versus below the cloud base, and separated forest versus pasture trees. Species richness increased with increasing elevation and decreased from inner to outer branch positions. Although richness did not differ between land-cover types, there were significant differences in community composition. The variability in epiphyte community organization between the two spatial scales and between land-cover types underscores the potential complexity of epiphyte responses to climate and land-cover changes.  相似文献   

16.
Epiphytic plants play an important role in the nutrient cycle of forest ecosystems. There had been fewer studies in subtropical regions than in other climate zones. Prior research showed that the canopy epiphyte could fix nitrogen combined with microorganism in tropical forest. The epiphytic plants enwrapping trees in canopy layer are very abundant in the subtropical mountainous cloud forest of Ailao Mountain (central and southern Yunnan Province, SW China). This forest lacks widespread nitrogen-fixing plants, and the nitrogen origin is elusive. Maybe there also exist such nitrogen-fixing systems in epiphyte community. Nitrogen-fixing potentials of canopy epiphytes increased greatly from dry season to wet season. There occurred an obvious difference on the epiphytic nitrogen fixation abilities between upper canopy layer and sub-canopy layer in alternant period between wet season and dry season. Epiphytic nitrogen-fixing potentials for the subtropical moist forest in Ailao Mountains ranged between 0.027 and 2.24 kg ha?1?year?1. Our results indicate that the canopy epiphytes in the subtropical moist forest of Ailao Mountains can fix a significant amount of atmospheric nitrogen. This finding suggests a new nitrogen source for the subtropical forest ecosystem, thus can have profound impact on the studies of nitrogen cycling.  相似文献   

17.
Epiphytic plants were collected from four oil palm plantations in Peninsular Malaysia and their mycorrhizal status determined. Conspecific plants with a terrestrial habit (16 species) and rhizosphere soils were also examined for mycorrhizal colonization and glomalean fungi, respectively. Twelve species of glomalean fungi were recovered from the four oil palm plantation soils. Of the 29 epiphytic species in 16 families belonging to the bryophytes, pteridophytes and angiosperms, only four species of angiosperms that were facultative epiphytes and a hemiepiphyte growing within 0.4 m of ground level had vesicular-arbuscular mycorrhizal (VAM) fungi. Bioassays of organic debris from oil palm trunks did not produce vesicular-arbuscular mycorrhizas on maize. Six epiphytic species grown in the greenhouse in pots containing oil palm rhizosphere soils rooted and had VAM fungi and thus may be facultative epiphytes. Five other epiphyte species failed to grow in pots and are probably obligate epiphytes. Seven epiphyte species that established themselves in pots failed to form vesicular-arbuscular mycorrhizas.  相似文献   

18.
We developed and evaluated a model of the canopy of a tropical montane forest at Monteverde, Costa Rica, to estimate inorganic nitrogen (N) retention by epiphytes from atmospheric deposition. We first estimated net retention of inorganic N by samples of epiphytic bryophytes, epiphyte assemblages, vascular epiphyte foliage, and host tree foliage that we exposed to cloud water and precipitation solutions. Results were then scaled up to the ecosystem level using a multilayered model of the canopy derived from measurements of forest structure and epiphyte mass. The model was driven with hourly meteorological and event‐based atmospheric deposition data, and model predictions were evaluated against measurements of throughfall collected at the site. Model predictions were similar to field measurements for both event‐based and annual hydrologic and inorganic N fluxes in throughfall. Simulation of individual events indicated that epiphytic bryophytes and epiphyte assemblages retained 33–67 percent of the inorganic N deposited in cloud water and precipitation. On an annual basis, the model predicted that epiphytic components retained 3.4 kg N ha/yr, equivalent to 50 percent of the inorganic N in atmospheric deposition (6.8 kg N ha/yr). Our results indicate that epiphytic bryophytes play a major role in N retention and cycling in this canopy by transforming highly mobile inorganic N (ca. 50% of atmospheric deposition is NO?3) to less mobile (exchangeable NH+4) and recalcitrant forms in biomass and remaining litter and humus.  相似文献   

19.
To assess the contributions of rustic shade cacao plantations to vascular epiphyte conservation, we compared epiphyte species richness, abundance, composition, and vertical distributions on shade trees and in the understories of six plantations and adjacent natural forests. On three phorophytes and three 10 × 10 m understory plots in each of the agroforestry plantations and natural forests, 54 and 77 species were observed, respectively. Individual-based rarefaction curves revealed that epiphyte species richness was significantly higher on forest phorophytes than on cacao farm shade trees; detailed analyses showed that the differences were confined to the inner and outer crown zones of the phorophytes. No differences in epiphyte species richness were found in understories. Araceae, Piperaceae, and Pteridophyta were less species-rich in plantations than in forests, while there were no differences in Orchidaceae and Bromeliaceae. Regression analysis revealed that epiphyte species richness on trunks varied with canopy cover, while abundance was more closely related to soil pH, canopy cover, and phorophyte height. For crown epiphytes, phorophyte diameter at breast height (dbh) explained much of the variation in species richness and abundance. There were also pronounced downward shifts in the vertical distributions of epiphyte species in agroforests relative to natural forests. The results confirm that epiphyte diversity, composition, and vertical distributions are useful indicators of human disturbance and showed that while the studied plantations serve to preserve portions of epiphyte diversity in the landscape, their presence does not fully compensate for the loss of forests.  相似文献   

20.
This study explores the host tree preferences of epiphyte bryophyte communities in two key types of evergreen cloud forests on La Gomera (Canary Islands, Spain): ericaceous versus broadleaved laurel forest. By comparing two pairs of tree species (Erica arborea and Myrica faya vs. Ilex canariensis and Laurus novocanariensis) that occur in both forest types, we quantitatively examined whether epiphyte-host relationships change with the type of forest. In 51 ancient forest stands, the low-trunk bryophyte composition on the two host tree groups was analysed with both non-parametric procedures and ordination analyses. Our results highlight that the influence of local environmental conditions on the structuring of epiphyte communities may be different depending on the host tree identity. Whilst the epiphyte composition of the host tree group formed by I. canariensis and L. novocanariensis differed significantly between forest types depending on solar exposure, we failed to find variations for the other host tree group, excepting in those localities wherein mist precipitation was extremely high. Our findings highlight the importance of the natural diversity of tree species along environmental gradients, as well as of water availability at different spatial scales for epiphytic bryophytes in montane cloud forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号