首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The discovery of bacteria capable of anaerobic ammonia oxidation (anammox) has generated interest in understanding the activity, diversity, and distribution of these bacteria in the environment. In this study anammox activity in sediment samples obtained from the Inner Harbor of Baltimore, Md., was detected by (15)N tracer assays. Anammox-specific oligonucleotide primer sets were used to screen a Planctomycetales-specific 16S rRNA gene library generated from sediment DNA preparations, and four new anammox bacterial sequences were identified. Three of these sequences form a cohesive new branch of the anammox group, and the fourth sequence branches separately from this group. Denaturing gradient gel electrophoresis analysis of sediment incubated with anammox-specific media confirmed the presence of the four anammox-related 16S rRNA gene sequences. Evidence for the presence of anammox bacteria in Inner Harbor sediment was also obtained by using an anammox-specific probe in fluorescence in situ hybridization studies. To our knowledge, this is the first report of anammox activity and related bacterial 16S rRNA gene sequences from the Chesapeake Bay basin area, and the results suggest that this pathway plays an important role in the nitrogen cycle of this estuarine environment. Furthermore, the presence of these bacteria and their activity in sediment strengthen the contention that anammox-related Plactomycetales are globally distributed.  相似文献   

2.
Nine out of ten anaerobic enrichment cultures inoculated with sediment samples from various freshwater, brackish-water, and marine sediments exhibited ferrous iron oxidation in mineral media with nitrate and an organic cosubstrate at pH 7.2 and 30° C. Anaerobic nitrate-dependent ferrous iron oxidation was a biological process. One strain isolated from brackish-water sediment (strain HidR2, a motile, nonsporeforming, gram-negative rod) was chosen for further investigation of ferrous iron oxidation in the presence of acetate as cosubstrate. Strain HidR2 oxidized between 0.7 and 4.9 mM ferrous iron aerobically and anaerobically at pH 7.2 and 30° C in the presence of small amounts of acetate (between 0.2 and 1.1 mM). The strain gained energy for growth from anaerobic ferrous iron oxidation with nitrate, and the ratio of iron oxidized to acetate provided was constant at limiting acetate supply. The ability to oxidize ferrous iron anaerobically with nitrate at approximately pH 7 appears to be a widespread capacity among mesophilic denitrifying bacteria. Since nitrate-dependent iron oxidation closes the iron cycle within the anoxic zone of sediments and aerobic iron oxidation enhances the reoxidation of ferrous to ferric iron in the oxic zone, both processes increase the importance of iron as a transient electron carrier in the turnover of organic matter in natural sediments. Received: 24 April 1997 / Accepted: 22 September 1997  相似文献   

3.
Sulphate-reducing bacteria (SRB) can be inhibited by nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB), despite the fact that these two groups are interdependent in many anaerobic environments. Practical applications of this inhibition include the reduction of sulphide concentrations in oil fields by nitrate injection. The NR-SOB Thiomicrospira sp. strain CVO was found to oxidize up to 15 mM sulphide, considerably more than three other NR-SOB strains that were tested. Sulphide oxidation increased the environmental redox potential (Eh) from -400 to +100 mV and gave 0.6 nitrite per nitrate reduced. Within the genus Desulfovibrio, strains Lac3 and Lac6 were inhibited by strain CVO and nitrate for the duration of the experiment, whereas inhibition of strains Lac15 and D. vulgaris Hildenborough was transient. The latter had very high nitrite reductase (Nrf) activity. Southern blotting with D. vulgaris nrf genes as a probe indicated the absence of homologous nrf genes from strains Lac3 and Lac6 and their presence in strain Lac15. With respect to SRB from other genera, inhibition of the known nitrite reducer Desulfobulbus propionicus by strain CVO and nitrate was transient, whereas inhibition of Desulfobacterium autotrophicum and Desulfobacter postgatei was long-lasting. The results indicate that inhibition of SRB by NR-SOB is caused by nitrite production. Nrf-containing SRB can overcome this inhibition by further reducing nitrite to ammonia, preventing a stalling of the favourable metabolic interactions between these two bacterial groups. Nrf, which is widely distributed in SRB, can thus be regarded as a resistance factor that prevents the inhibition of dissimilatory sulphate reduction by nitrite.  相似文献   

4.
5.
Benthic invertebrates affect microbial processes and communities in freshwater sediment by enhancing sediment-water solute fluxes and by grazing on bacteria. Using microcosms, the effects of larvae of the widespread midge Chironomus plumosus on the efflux of denitrification products (N2O and N2 + N2O) and the diversity and abundance of nitrate- and nitrous-oxide-reducing bacteria were investigated. Additionally, the diversity of actively nitrate- and nitrous-oxide-reducing bacteria was analyzed in the larval gut. The presence of larvae increased the total effluxes of N2O and N2 + N2O up to 8.6- and 4.2-fold, respectively, which was mostly due to stimulation of sedimentary denitrification; incomplete denitrification in the guts accounted for up to 20% of the N2O efflux. Phylotype richness of the nitrate reductase gene narG was significantly higher in sediment with than without larvae. In the gut, 47 narG phylotypes were found expressed, which may contribute to higher phylotype richness in colonized sediment. In contrast, phylotype richness of the nitrous oxide reductase gene nosZ was unaffected by the presence of larvae and very few nosZ phylotypes were expressed in the gut. Gene abundance of neither narG, nor nosZ was different in sediments with and without larvae. Hence, C. plumosus increases activity and diversity, but not overall abundance of nitrate-reducing bacteria, probably by providing additional ecological niches in its burrow and gut.  相似文献   

6.
In phosphate-rich environments, vivianite (FeII3(PO4)2, 8H2O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.  相似文献   

7.
A Gram-negative nitrate-reducing bacterium, strain Asl-3, was isolated from activated sludge with nitrate and 3-hydroxybenzoate as sole source of carbon and energy. The new isolate was facultatively anaerobic, catalase- and oxidase-positive and polarly monotrichously flagellated. In addition to nitrate, nitrite, N2O, and O2 served as electron acceptors. Growth with 3-hydroxybenzoate and nitrate was biphasic: nitrate was completely reduced to nitrite before nitrite reduction to N2 started. Benzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, protocatechuate or phenyl-acetate served as electron and carbon source under aerobic and anaerobic conditions. During growth with excess carbon source, poly-beta-hydroxybutyrate was formed. These characteristics allow the affiliation of strain Asl-3 with the family Pseudomonadaceae. Analogous to the pathway of 4-hydroxybenzoate degradation in other bacteria, the initial step in anaerobic 3-hydroxybenzoate degradation by this organism was activation to 3-hydroxy-benzoyl-CoA in an ATP-consuming reaction. Cell extracts of 3-hydroxybenzoate-grown cells exhibited 3-hydroxybenzoyl-CoA synthetase activity of 190 nmol min-1 mg protein-1 as well as benzoyl-CoA synthetase activity of 86 nmol min-1 mg protein-1. A reductive dehydroxylation of 3-hydroxybenzoyl-CoA could not be demonstrated due to rapid hydrolysis of chemically synthesized 3-hydroxybenzoyl-CoA by cell extracts.  相似文献   

8.
Oil fields that use water flooding to enhance oil recovery may become sour because of the production of H2S from the reduction of sulfate by sulfate-reducing bacteria (SRB). The addition of nitrate to produced waters can stimulate the activities of nitrate-reducing bacteria (NRB) and control sulfide production. Many previous studies have focused on chemolithotrophic bacteria that can use thiosulfate or sulfide as energy sources while reducing nitrate. Little attention has been given to heterotrophic NRB in oil field waters. Three different media were used in this study to enumerate various types of planktonic NRB present in waters from five oil fields in western Canada. The numbers of planktonic SRB and bacteria capable of growth under aerobic conditions were also determined. In general, microbial numbers in the produced waters were very low (<10 ml−1) in samples taken near or at wellheads. However, the numbers increased in the aboveground facilities. No thiosulfate-oxidizing NRB were detected in the oil field waters, but other types of NRB were detected in 16 of 18 produced water samples. The numbers of heterotrophic NRB were equal to or greater than the number of sulfide-oxidizing, chemolithotrophic NRB in 12 of 15 samples. These results showed that each of the oil fields contained NRB, which might be stimulated by nitrate amendment to control H2S production by SRB. Journal of Industrial Microbiology & Biotechnology (2002) 29, 83–92 doi:10.1038/sj.jim.7000274 Received 20 February 2002/ Accepted in revised form 14 May 2002  相似文献   

9.
10.
Nitrification was investigated in a model freshwater sediment by the combined use of microsensors and fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes. In situ nitrification activity was restricted mainly to the upper 2 mm of the sediment and coincided with the maximum abundance of nitrifying bacteria, i.e. 1.5 x 107 cells cm-3 for ammonia-oxidizing Beta-proteobacteria (AOB) and 8.6 x 107 cells cm-3 for Nitrospira-like nitrite-oxidizing bacteria (NOB). Cell numbers of AOB decreased more rapidly with depth than numbers of NOB. For the first time, Nitrospira-like bacteria could be quantified and correlated with in situ nitrite oxidation rates in a sediment. Estimated cell-specific nitrite oxidation rates were 1.2-2.7 fmol NO2- cell-1 h-1.  相似文献   

11.
Nitrate reduction is performed by phylogenetically diverse bacteria. Analysis of narG (alpha subunit of the membrane bound nitrate reductase) trees constructed using environmental sequences revealed a new cluster that is not related to narG gene from known nitrate-reducing bacteria. In this study, primers targeting this as yet uncultivated nitrate-reducing group were designed and used to develop a real-time SYBR(R) Green PCR assay. The assay was tested with clones from distinct nitrate-reducing groups and applied to various environmental samples. narG copy number was high ranging between 5.08x10(8) and 1.12x10(11) copies per gram of dry weight of environmental sample. Environmental real-time PCR products were cloned and sequenced. Data was used to generate a phylogenetic tree showing that all environmental products belonged to the target group. Moreover, 16S rDNA copy number was quantified in the different environments by real-time PCR using universal primers for Eubacteria. 16S rDNA copy number was similar or slightly higher than that of narG, between 7.12x10(9) and 1.14x10(11) copies per gram of dry weight of environmental sample. Therefore, the yet uncultivated nitrate-reducing group targeted in this study seems to be numerically important in the environment, as revealed by narG high absolute and relative densities across various environments. Further analysis of the density of the nitrate-reducing community as a whole by real-time PCR may provide insights into the correlation between microbial density, diversity and activity.  相似文献   

12.
脱氮除硫菌株的分离鉴定和功能确认   总被引:2,自引:0,他引:2  
从长期稳定运行的脱氮除硫反应器污泥中,分离获得两株具有脱氮除硫功能的芽孢杆菌。经形态观察、生理试验和16SrDNA序列比对,将两菌株归入芽孢杆菌属,菌株CB归类于Bacillus pseudofirmus,菌株CS则与Bacillus hemicellulosilytus和Bacillus halodurans最为接近。以Biolog板检测,菌株CB的基质多样性不明显,菌株CS则可利用Biolog板中多种碳源。菌株CB和菌株CS都能以硝酸盐氧化硫化物,其中菌株CB对硝酸盐、硫化物的转化能力大于CS,菌株CB对硝酸盐的亲和力也大于菌株CS。  相似文献   

13.
Anaerobic bacteria in clinical infections   总被引:1,自引:0,他引:1  
The findings of 275 cultures from routine clinical specimens obtained from lesions in different sites of body, during a period of 11 months, are presented. The clinical specimens were obtained from surgical wounds, abdominal infections, orthopaedic operations, biliary tract infections and pleuropulmonary infections. The total number of positive cultures including both aerobes and anaerobes was 203 out of 275 (73.8%). Of the 38 cultures positive for anaerobes, 29 (76.3%) grew both aerobic and anaerobic bacteria, while in nine (23.7%) cultures only anaerobes were found. A total of 42 strains of anaerobic bacteria were isolated. The majority of them were found in clinical specimens obtained from abdominal infections (62%), while a low percentage (3.6%) was found in specimens from orthopaedic operations. Strains belonging to the genus Bacteroides were the most frequently isolated anaerobes, accounting for 35.7% of the total, followed by Clostridia 28.5%, Peptostreptococci 23.8% and Prevotella 12%.  相似文献   

14.
This study investigated the anaerobic degradation of tetrachlorobisphenol-A (TCBPA) in sediment samples collected at three sites along the Erren River in southern Taiwan. TCBPA anaerobic degradation half-lives (t1/2) in the sediment were 12.6, 16.9 and 21.7 d at concentrations of 50, 100, and 250 ??g g−1, respectively. TCBPA (50 ??g g−1) anaerobic degradation half-lives (t1/2) in the sediment were 10.1, 11.8, 11.0, 11.6, 10.8, 9.1, 8.5, 18.2, 19.3, and 16.1 d by the addition of yeast extract (5 mg l−1), cellulose (0.96 mg l−1), sodium chloride (1%), brij 30 (130 mg l−1), brij 35 (43 mg l−1), rhamnolipid (55 ??M), surfactin (91 ??M), phthalic esters (2 mg l−1), nonylphenol (2 mg l−1), and heavy metals (2 mg l−1), respectively. The degradation rate of TCBPA was enhanced by the addition of yeast extract, cellulose, sodium chloride, brij 30, brij 35, rhamnolipid, or surfactin. However, it was inhibited by the addition of phthalic esters, nonylphenol, or heavy metals. Also noted was the presence of dichlorobisphenol-A and bisphenol-A, two intermediate products resulting from the anaerobic degradation of TCBPA accumulated in the sediments.  相似文献   

15.
16.
A variety of microbially mediated metabolic pathways impact biogeochemical cycling in terrestrial subsurface environments. However, the role that viruses have in influencing microbial mortality and microbial community structure is poorly understood. Here we investigated the production of viruses and change in microbial community structure within shallow alluvial aquifer sediment slurries amended with 13C-labeled acetate and nitrate. Biostimulation resulted in production of viruses concurrent with acetate oxidation, 13CO2 production and nitrate reduction. Interestingly, change in viral abundance was positively correlated to acetate consumption (r2=0.6252, P<0.05) and 13CO2 production (r2=0.6572, P<0.05); whereas change in cell abundance was not correlated to acetate consumption or 13CO2 production. Viral-mediated cell lysis has implications for microbial community structure. Betaproteobacteria predominated microbial community composition (62% of paired-end reads) upon inoculation but decreased in relative abundance and was negatively correlated to changes in viral abundance (r2=0.5036, P<0.05). As members of the Betaproteobacteria decreased, Gammaproteobacteria, specifically Pseudomonas spp., increased in relative abundance (82% of paired-end reads) and was positively correlated with the change in viral abundance (r2=0.5368, P<0.05). A nitrate-reducing bacterium, Pseudomonas sp. strain Alda10, was isolated from these sediments and produced viral-like particles with a filamentous morphology that did not result in cell lysis. Together, these results indicate that viruses are linked to carbon biogeochemistry and community structure in terrestrial subsurface sediments. The subsequent cell lysis has the potential to alter available carbon pools in subsurface environments, additionally controlling microbial community structure from the bottom-up.  相似文献   

17.
Abstract The interactions occuring between populations of a nitrate-respiring Vibrio sp. and autotrophic nitrifying bacteria belonging to the genera Nitrosomonas and Nitrobacter have been investigated in a compound bi-directional flow diffusion chemostat at a dilution rate of 0.025 h−1 and a temperature of 25°C. When grown under NO3 limitation, the Vibrio sp. produced NH+4 as the principal end-product of nitrate respiration, and there was a corresponding significant increase in cell numbers of the Nitrosomonas sp. population, which derived energy by the oxidation of NH+4 to NO2. Nitrite in turn was used by the Nitrobacter sp. population as an energy source with the concomitant regeneration of NO3. Under NO3 excess growth conditions the Vibrio sp. produced NO2 rather than NH+4 as the major product of NO3 dissimilation, and growth of the Nitrobacter population was stimulated as increased quantities of NO2 became available. In contrast, the Nitrosomonas sp. population declined sharply as the energy source NH+4 became limiting. These data demonstrate that defined mixed populations of obligately aerobic nitrifying bacteria and facultatively anaerobic nitrate respiring bacteria can co-exist for extended time periods and operate an internal nitrogen cycle which is energetically beneficial to both populations.  相似文献   

18.
The predominant bacterial genera of baboon feces were enumerated and identified by established procedures. The predominant genera isolated were Lactobacillus, Eubacterium, Streptococcus, and Bacteroides.  相似文献   

19.
The predominant bacterial genera of baboon feces were enumerated and identified by established procedures. The predominant genera isolated were Lactobacillus, Eubacterium, Streptococcus, and Bacteroides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号