共查询到20条相似文献,搜索用时 18 毫秒
1.
Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus 总被引:2,自引:0,他引:2
Consumption of hexoses and pentoses and production of ethanol by Mucor indicus were investigated in both synthetic media and dilute-acid hydrolyzates. The fungus was able to grow in a poor medium containing only carbon, nitrogen, phosphate, potassium, and magnesium sources. However, the cultivation took more than a week and the ethanol yield was only 0.2 gg(-1). Enrichment of the medium by addition of trace metals, particularly zinc and yeast extract, improved the growth rate and yield, such that the cultivation was completed in less than 24 h and the ethanol and biomass yields were increased to 0.40 and 0.20 gg(-1), respectively. The fungus was able to assimilate glucose, galactose, mannose, and xylose, and produced ethanol with yields of 0.40, 0.34, 0.39, and 0.18 gg(-1), respectively. However, arabinose was poorly consumed and no formation of ethanol was detected. Glycerol was the major by-product in the cultivation on the hexoses, while formation of glycerol and xylitol were detected in the cultivation of the fungus on xylose. The fungus was able to take up the sugars present in dilute-acid hydrolyzate as well as the inhibitors, acetic acid, furfural, and hydroxymethyl furfural. M. indicus was able to grow under anaerobic conditions when glucose was the sole carbon source, but not on xylose or the hydrolyzate. The yield of ethanol in anaerobic cultivation on glucose was 0.46 g g(-1). 相似文献
2.
Edlich A Magdanz V Rasch D Demming S Aliasghar Zadeh S Segura R Kähler C Radespiel R Büttgenbach S Franco-Lara E Krull R 《Biotechnology progress》2010,26(5):1259-1270
A diffusion-based microreactor system operated with a reaction volume of 8 μL is presented and characterized to intensify the process understanding in microscale cultivations. Its potential as screening tool for biological processes is evaluated. The advantage of the designed microbioreactor is the use for the continuous cultivation mode by integrating online measurement technique for dissolved oxygen (DO) and optical density (OD). A further advantage is the broaden application for biological systems. The bioreactor geometry was chosen to achieve homogeneous flow during continuous process operation. The device consisted of a microstructured top layer made of poly(dimethylsiloxane) (PDMS), which was designed and fabricated using UV-depth and soft lithography assembled with a glass bottom. CFD simulation data used for geometry design were verified via microparticle-image-velocimetry (μPIV). In the used microreactor geometry no concentration gradients occurred along the entire reaction volume because of rapid diffusive mixing, the homogeneous medium flow inside the growth chamber of the microreactor could be realized. Undesirable bubble formation before and during operation was reduced by using degassed medium as well as moistened and moderate incident air flow above the gas permeable PDMS membrane. Because of this a passive oxygen supply of the culture medium in the device is ensured by diffusion through the PDMS membrane. The oxygen supply itself was monitored online via integrated DO sensors based on a fluorescent dye complex. An adequate overall volumetric oxygen transfer coefficient K(L)a as well as mechanical stability of the device were accomplished for a membrane thickness of 300 μm. Experimental investigations considering measurements of OD (online) and several metabolite concentrations (offline) in a modified Verduyn medium. The used model organism Saccharomyces cerevisiae DSM 2155 tended to strong reactor wall growth resembling a biofilm. 相似文献
3.
Detoxification of dilute-acid hydrolyzates by addition of Ca(OH)(2) (overliming) and cultivation of the detoxified hydrolyzates by Saccharomyces cerevisiae were examined. The examined overliming involves increasing the pH of the hydrolyzates to 9, 10, 11 or 12, keeping up to 90 min at different temperatures of 30, 45 and 60 degrees C, followed by readjustment of the pH to 5. Increasing the pH, time and/or temperature resulted in more effective degradation of furans and resulted in better fermentability for both of the tested hydrolyzates, but higher loss of the sugars was observed as well. Overliming of glucose and furfural solution at pH 12 showed a rapid decrease in concentration of these chemicals followed by a slow degradation process. Therefore, a kinetic model was proposed for the detoxification, where the sugars or furans make transient complexes with calcium ions and this complex will then be converted to the degradation product. The ANOVA analysis of the model resulted in an average R(2) of 0.99 for the model fitted to all the experimental data points. 相似文献
4.
In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. 总被引:4,自引:3,他引:4
下载免费PDF全文

Ethanol, in concentrations that affect growth and fermentation rates (3 to 10% [vol/vol]), activated in vivo the plasma membrane ATPase of Saccharomyces cerevisiae. The maximal value for this activated enzyme in cells grown with 6 to 8% (vol/vol) ethanol was three times higher than the basal level (in cells grown in the absence of ethanol). The Km values for ATP, the pH profiles, and the sensitivities to orthovanadate of the activated and the basal plasma membrane ATPases were virtually identical. A near-equivalent activation was also observed when cells grown in the absence of ethanol were incubated for 15 min in the growth medium with ethanol. The activated state was preserved after the extraction from the cells of the membrane fraction, and cycloheximide appeared to prevent this in vivo activation. After ethanol removal, the rapid in vivo reversion of ATPase activation was observed. While inducing the in vivo activation of plasma membrane ATPase, concentrations of ethanol equal to and greater than 3% (vol/vol) also inhibited this enzyme in vitro. The possible role of the in vivo activation of the plasma membrane proton-pumping ATPase in the development of ethanol tolerance by this fermenting yeast was discussed. 相似文献
5.
Ethanol, in concentrations that affect growth and fermentation rates (3 to 10% [vol/vol]), activated in vivo the plasma membrane ATPase of Saccharomyces cerevisiae. The maximal value for this activated enzyme in cells grown with 6 to 8% (vol/vol) ethanol was three times higher than the basal level (in cells grown in the absence of ethanol). The Km values for ATP, the pH profiles, and the sensitivities to orthovanadate of the activated and the basal plasma membrane ATPases were virtually identical. A near-equivalent activation was also observed when cells grown in the absence of ethanol were incubated for 15 min in the growth medium with ethanol. The activated state was preserved after the extraction from the cells of the membrane fraction, and cycloheximide appeared to prevent this in vivo activation. After ethanol removal, the rapid in vivo reversion of ATPase activation was observed. While inducing the in vivo activation of plasma membrane ATPase, concentrations of ethanol equal to and greater than 3% (vol/vol) also inhibited this enzyme in vitro. The possible role of the in vivo activation of the plasma membrane proton-pumping ATPase in the development of ethanol tolerance by this fermenting yeast was discussed. 相似文献
6.
Mary Jim Beck 《Biotechnology letters》1986,8(7):513-516
Summary Intermittent-feeding of cellulose hydrolyzate to hemicellulose hydrolyzate of hardwood resulted in greater yields of ethanol usingPachysolentannophilus than batch fermentations of either hydrolyzate alone or as a mix. Conversion efficiencies as great as 0.40 g ethanol/g sugar fed were achieved. 相似文献
7.
Patrik R. Lennartsson Keikhosro Karimi Lars Edebo Mohammad J. Taherzadeh 《Journal of biotechnology》2009,143(4):255-261
The dimorphic fungus Mucor indicus was grown in different forms classified as purely filamentous, mostly filamentous, mostly yeast-like and purely yeast-like, and the relationship between morphology and metabolite production, inhibitor tolerance and the cell wall composition was investigated. Low concentrations of spores in the inoculum with subsequent aeration promoted filamentous growth, whereas higher spore concentrations and anaerobic conditions promoted yeast-like growth. Ethanol was the main metabolite with glycerol next under all conditions tested. The yields of ethanol from glucose were between 0.39 and 0.42 g g−1 with productivities of 3.2–5.0 g l−1 h−1. The ethanol productivity of mostly filamentous cells was increased from 3.9 to 5.0 g l−1 h−1 by the presence of oxygen, whereas aeration of purely yeast-like cells showed no such effect. All growth forms were able to tolerate 4.6 g l−1 furfural and 10 g l−1 acetic acid and assimilate the sugars, although with different consumption rates. The cell wall content of the fungus measured as alkali insoluble materials (AIM) of the purely yeast-like cells was 26% of the biomass, compared to 8% of the pure filaments. However, the chitosan concentration of the filaments was 29% of the AIM, compared to 6% of the yeast-like cells. 相似文献
8.
Growth of Saccharomyces cerevisiae LBG H 1022 on ethanol under steady-state conditions was studied. As a cultivation device, an aerated Chemap fermentor combined with continuously working gas analyzers for oxygen and carbon dioxide was used. Dry matter, substrate concentration, yield, specific oxygen uptake, specific carbon dioxide release, and respiration quotient, as well as nitrogen, carbon, phosphorus, hydrogen, and protein content of the cells were measured in dependence on the dilution rate. Cell size distribution, as a function of the specific growth rate, was determined with the aid of a Celloscope 202. A fair agreement with the theory of continuous culture for all metabolic curves could be established. An increased turnover rate resulted from the addition of glutamic acid to the synthetic growth medium. The primary effect of this supplement could be a rise in the flow rate of the tricarboxylic acid cycle. 相似文献
9.
An increase in Brestan concentration in nutrient media decreased the content of protein, phosphorus, total ribonucleic acid,
activity of pyruvate carboxylase and isocitrate lyase in cells ofSaccharomyces cerevisiae parent strain and respiratory deficient (RD) mutant while the trehalose content increased. The respiration quotient value
for the RD mutant was higher than for the parent strain. The RD mutant lacked cytochromeaa
3; cytochromec andb contents were lower than those of the parent strain. 相似文献
10.
Summary The effect of trace amounts of oxygen on the degree of ethanol inhibition in a continuous anaerobic culture of Saccharomyces cerevisiae was studied at the 100 gl
–1 feed glucose concentration level. Results showed that the use of micro-aerobic conditions (0,5% of saturation) enhanced the utilisation of substrate by increasing the ethanol tolerance of the yeast without any significant decrease in the ethanol yield per unit substrate consumed. When the results were fitted to an equation of the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbyacaqG8o% GaaeypaiqabY7agaqcaiaab6cadaWcaaGcbaqcLbyacaqGdbWaaSba% aSqaaKqzagGaae4CaaWcbeaaaOqaaKqzagGaae4qamaaBaaaleaaju% gGbiaabohaaSqabaqcLbyacqGHRaWkcaqGlbWaaSbaaSqaaKqzagGa% ae4CaaWcbeaaaaqcLbyacaGGUaWaaSaaaOqaaKqzagGaae4samaaBa% aaleaajugGbiaabchaaSqabaaakeaajugGbiaabUeadaWgaaWcbaqc% LbyacaqGWbaaleqaaKqzagGaey4kaSIaaeywamaaBaaaleaajugGbi% aabchacaqGZbaaleqaaKqzagGaaiOlaiaacIcacaqGdbWaaSbaaSqa% aKqzagGaae4CaiaabAgaaSqabaqcLbyacqGHsislcaqGdbWaaSbaaS% qaaKqzagGaae4CaaWcbeaajugGbiaacMcaaaaaaa!6301!\[{\text{\mu = \hat \mu }}{\text{.}}\frac{{{\text{C}}_{\text{s}} }}{{{\text{C}}_{\text{s}} + {\text{K}}_{\text{s}} }}.\frac{{{\text{K}}_{\text{p}} }}{{{\text{K}}_{\text{p}} + {\text{Y}}_{{\text{ps}}} .({\text{C}}_{{\text{sf}}} - {\text{C}}_{\text{s}} )}}\]it was found that the values for % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeiVdyaaja% aaaa!373F!\[{\text{\hat \mu }}\], Ks and Yps were the same as for the non-aerobic case while the ethanol inhibition constant, Kp , had increased from 5,2 to 14,0 gl
–1.Notation Csf
feed substrate concentration - gl
–1
- Cs
substrate concentration gl
–1
- Cp
product concentration - gl
–1
- Cx
cell concentration - gl
–1
- D
dilution rate - h-1
- Ks
substrate saturation constant - gl
–1
- Kp
product inhibition constant - gl
–1
- m
maintenance coefficient - h–1
- Yps
product yield coefficient - g EtOH/g glucose
- Yxs
cell yield coefficient - g cells/g glucose
-
specific growth rate - h–1
- % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeiVdyaaja% aaaa!373F!\[{\text{\hat \mu }}\]
maximum specific growth rate - h–1 相似文献
11.
The performance of single, and series of, continuous stirred-tank (CSTBR) and fluidized-bed bioreactor (FBBR) in anaerobic continuous cultivation of glucose in defined media and dilute-acid hydrolyzates at dilution rates 0.22, 0.43, 0.65 and 0.86 h(-1) using immobilized Saccharomyces cerevisiae CBS 8066, was investigated. While the single CSTBR and FBBR could not take up more than 77% and 92% of glucose in a defined medium at dilution rate 0.86 h(-1), addition of the second bioreactor decreased the residual glucose to less than 1.1% of the incoming sugar. A similar trend was obtained in cultivation of dilute-acid hydrolyzates. A CSTBR could take up 75% and 54% of the initial fermentable sugars at dilution rates 0.43 and 0.86 h(-1), while the addition of the FBBR improved the assimilation of the sugars to 100% and 86%, respectively. The ethanol yields from the hydrolyzate were between 0.41 and 0.48 g/g in all the experiments. The specific and volumetric ethanol productivities were 1.13 g/gh and 5.98 g/Lh for the single bioreactor and 0.98 g/gh and 5.49 g/Lh for the serial bioreactor at the highest dilution rate, respectively. Glycerol was the only important by-product in terms of concentration, and yielded 0.05-0.07 g/g from the hydrolyzate. From the initial 3.98 g/L acetic acid present in the hydrolyzate, 0.1-0.8 g/L was assimilated by the cells. The yeast cells were accumulated close to the surface of the beads. While the cells had a dry-weight concentration of 129 g/L close to the surface of the beads, the concentration in the core was only 13 g/L. 相似文献
12.
Continuous culture in a cascade of vessels with the addition of supplemental nutrients to any stage permits adjustment of the physiological state of the culture in each stage to best achieve a desired performance goal. The yeast Saccharomyces cerevisiae in two-stage continuous cultivation was selected as a model system. With conditions in the first stage held constant- at a selected glucose concentration in the feed stream, dilution rate for the second stage was varied. Cell numbers, dry weight, glucose concentration, respiration coefficient, and titers of several enzymes were determined. The seed rate was defined as the ratio of glucose concentration in the feeds to stage 1 and to stage 2. At low seed rates, the calculated specific growth rate in the second stage was proportional to dilution rate. At higher seed rates, the specific growth rate based on dry weight behaved differently from that based on cell numbers, and the dependence on dilution rate was not linear. 相似文献
13.
Finogenova TV Kamzolova SV Dedyukhina EG Shishkanova NV Il'chenko AP Morgunov IG Chernyavskaya OG Sokolov AP 《Applied microbiology and biotechnology》2002,59(4-5):493-500
The effect of ethanol, zinc, and iron (Fe2+ and Fe3+) concentration and of oxygen supply on cell growth and the production of citric acid (CA) and isocitric acid (ICA) from ethanol
by mutant Yarrowia lipolytica N 1 was studied under continuous cultivation. The following peculiarities of Y. lipolytica metabolism were found: (1) intensive CA production occurred under yeast growth limitation by nitrogen; (2) inhibition of
yeast growth by ethanol was accompanied by significant alterations in fatty acid composition of lipids; (3) the production
of CA and ICA from ethanol required high concentrations of zinc and iron ions; (4) the intracellular iron concentration determined
whether CA or ICA was predominantly formed; (5) the cell's requirement for oxygen depended on the intracellular iron concentration.
The events taking place in the production of CA and ICA were evaluated through the activities of enzyme systems involved in
the metabolism of ethanol and CA in this strain.
Electronic Publication 相似文献
14.
The kinetics of glyoxalase I [(R)-S-lactoylglutathione methylglyoxal-lyase; EC 4.4.1.5] and glyoxalase II (S-2-hydroxyacylglutathione hydrolase; EC 3.1.2.6) from Saccharomyces cerevisiae was studied in situ, in digitonin permeabilized cells, using two different approaches: initial rate analysis and progress curves analysis. Initial rate analysis was performed by hyperbolic regression of initial rates using the program HYPERFIT. Glyoxalase I exhibited saturation kinetics on 0.05-2.5 mM hemithioacetal concentration range, with kinetic parameters Km 0.53 +/- 0.07 mM and V (3.18 +/- 0.16) x 10(-2) mM.min(-1). Glyoxalase II also showed saturation kinetics in the SD-lactoylglutathione concentration range of 0.15-3 mM and Km 0.32 +/- 0.13 mM and V (1.03 +/- 0.10) x 10(-3) mM.min(-1) were obtained. The kinetic parameters of both enzymes were also estimated by nonlinear regression of progress curves using the raw absorbance data and integrated differential rate equations with the program GEPASI. Several optimization methods were used to minimize the sum of squares of residuals. The best parameter fit for the glyoxalase I reaction was obtained with a single curve analysis, using the irreversible Michaelis-Menten model. The kinetic parameters obtained, Km 0.62 +/- 0.18 mM and V (2.86 +/- 0.01) x 10(-2) mM.min(-1), were in agreement with those obtained by initial rate analysis. The results obtained for glyoxalase II, using either the irreversible Michaelis-Menten model or a phenomenological reversible hyperbolic model, showed a high correlation of residuals with time and/or high values of standard deviation associated with Km. The possible causes for the discrepancy between data obtained from initial rate analysis and progress curve analysis, for glyoxalase II, are discussed. 相似文献
15.
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains. 相似文献
16.
《Critical reviews in biotechnology》2013,33(1):22-48
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains. 相似文献
17.
The continuous cultivation of mycoplasmas in a pH-controlled metabolistat was investigated with the fermentative strain Mycoplasma mobile 163K and the nonfermentative strain Mycoplasma arthritidis ISR1. The addition of medium and the removal of culture suspension were regulated by acid production from glucose by M. mobile 163K and by ammonium production from arginine by M. arthritidis ISR1, respectively. For both strains the optimal pH for continuous growth was 7.0. The steady state could be maintained for at least 21 days. With CFU of 8.4 X 10(9) ml-1 (M. mobile 163K) and 3.2 X 10(9) ml-1 (M. arthritidis ISR1), the cell concentrations were slightly higher than those obtained in batch cultures. The dependence on the adjusted pH values was measured for several parameters, such as flow rate, CFU, glucose fermentation or production of ammonia, and gliding velocity. Since the long lag phases of batch cultures can be avoided, pH-controlled continuous cultures provide an appropriate system for the production of mycoplasma cells. 相似文献
18.
In vivo phosphorylation of Saccharomyces cerevisiae ribosomal protein S10 by cyclic-AMP-dependent protein kinase. 总被引:2,自引:1,他引:2
下载免费PDF全文

Using wild-type Saccharomyces cerevisiae strains and mutants which are defective in the regulatory subunit of cyclic-AMP-dependent protein kinase (bcy1) and phosphoprotein phosphatase activity (ppd1), we demonstrated that a cyclic-AMP-dependent protein kinase phosphorylated the S. cerevisiae ribosomal protein S10 in vivo. S10 was not dephosphorylated in bcy1 or ppd1 mutants after heat shock. The phosphorylated forms of S10 were diminished during the stationary phase in bcy1 and ppd1 mutants as well as in wild-type cells. 相似文献
19.
Direct fermentation of potato starch to ethanol by cocultures of Aspergillus niger and Saccharomyces cerevisiae.
下载免费PDF全文

Direct fermentation of unhydrolyzed potato starch to ethanol by monocultures of an amylolytic fungus, Aspergillus niger, and cocultures of A. niger and Saccharomyces cerevisiae was investigated. Amylolytic activity, rate and amount of starch utilization, and ethanol yields increased several-fold in coculture versus the monoculture due to the synergistic metabolic interactions between the species. Optimal ethanol yields were obtained in the pH range 5 to 6 and amylolytic activity was obtained in the pH range 5 to 8. Ethanol yields were maximal when fermentations were conducted anaerobically. Increasing S. cerevisiae inoculum in the coculture from 4 to 12% gave a dramatic increase in the rate of ethanol production, and ethanol yields of greater than 96% of the theoretical maximum were obtained within 2 days of fermentation. These results indicate that simultaneous fermentation of starch to ethanol can be conducted efficiently by using cocultures of the amylolytic fungus A. niger and a nonamylolytic sugar fermenter, S. cerevisiae. 相似文献
20.
Rapid fermentation of cane molasses into ethanol has been studied in batch, continuous (free-cell and cell-immobilized systems) by a strain of Saccharomyces cerevisiae at temperature 30 degrees C and pH 5.0. The maximum productivity of ethanol obtained in immobilized system was 28.6 g L(-1) h(-1). The cells were immobilized by natural mode on a carrier of natural origin and retention of 0.132 g cells/g carrier was achieved. The immobilized-cell column was operated continuously at steady state over a period of 35 days. Based on the parameter data monitored from the system, mathematical analysis has been made and rate equations proposed, and the values of specific productivity of ethanol and specific growth rate for immobilized cells computed. It has been established that immobilized cells exhibit higher specific rate of ethanol formation compared to free cells but the specific growth rate appears to be comparatively low. The yield of ethanol in the immobilized-cell system is also higher than in the free-cell system. 相似文献