首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance of encapsulated Saccharomyces cerevisiae CBS 8066 in anaerobic cultivation of glucose, in the presence and absence of furfural as well as in dilute-acid hydrolyzates, was investigated. The cultivation of encapsulated cells in 10 sequential batches in synthetic media resulted in linear increase of biomass up to 106 g/L of capsule volume, while the ethanol productivity remained constant at 5.15 (+/-0.17) g/L x h (for batches 6-10). The cells had average ethanol and glycerol yields of 0.464 and 0.056 g/g in these 10 batches. Addition of 5 g/L furfural decreased the ethanol productivity to a value of 1.31 (+/-0.10) g/L x h with the encapsulated cells, but it was stable in this range for five consecutive batches. On the other hand, the furfural decreased the ethanol yield to 0.41-0.42 g/g and increased the yield of acetic acid drastically up to 0.068 g/g. No significant lag phase was observed in any of these experiments. The encapsulated cells were also used to cultivate two different types of dilute-acid hydrolyzates. While the free cells were not able to ferment the hydrolyzates within at least 24 h, the encapsulated yeast successfully converted glucose and mannose in both of the hydrolyzates in less than 10 h with no significant lag phase. However, since the hydrolyzates were too toxic, the encapsulated cells lost their activity gradually in sequential batches.  相似文献   

2.
Consumption of hexoses and pentoses and production of ethanol by Mucor indicus were investigated in both synthetic media and dilute-acid hydrolyzates. The fungus was able to grow in a poor medium containing only carbon, nitrogen, phosphate, potassium, and magnesium sources. However, the cultivation took more than a week and the ethanol yield was only 0.2 gg(-1). Enrichment of the medium by addition of trace metals, particularly zinc and yeast extract, improved the growth rate and yield, such that the cultivation was completed in less than 24 h and the ethanol and biomass yields were increased to 0.40 and 0.20 gg(-1), respectively. The fungus was able to assimilate glucose, galactose, mannose, and xylose, and produced ethanol with yields of 0.40, 0.34, 0.39, and 0.18 gg(-1), respectively. However, arabinose was poorly consumed and no formation of ethanol was detected. Glycerol was the major by-product in the cultivation on the hexoses, while formation of glycerol and xylitol were detected in the cultivation of the fungus on xylose. The fungus was able to take up the sugars present in dilute-acid hydrolyzate as well as the inhibitors, acetic acid, furfural, and hydroxymethyl furfural. M. indicus was able to grow under anaerobic conditions when glucose was the sole carbon source, but not on xylose or the hydrolyzate. The yield of ethanol in anaerobic cultivation on glucose was 0.46 g g(-1).  相似文献   

3.
Bioethanol production from sweet sorghum bagasse (SB), the lignocellulosic solid residue obtained after extraction of sugars from sorghum stalks, can further improve the energy yield of the crop. The aim of the present work was to evaluate a cost-efficient bioconversion of SB to ethanol at high solids loadings (16?% at pretreatment and 8?% at fermentation), low cellulase activities (1-7 FPU/g SB) and co-fermentation of hexoses and pentoses. The fungus Neurospora crassa DSM 1129 was used, which exhibits both depolymerase and co-fermentative ability, as well as mixed cultures with Saccharomyces cerevisiae 2541. A dilute-acid pretreatment (sulfuric acid 2?g/100?g SB; 210?°C; 10?min) was implemented, with high hemicellulose decomposition and low inhibitor formation. The bioconversion efficiency of N. crassa was superior to S. cerevisiae, while their mixed cultures had negative effect on ethanol production. Supplementing the in situ produced N. crassa cellulolytic system (1.0 FPU/g SB) with commercial cellulase and β-glucosidase mixture at low activity (6.0 FPU/g SB) increased ethanol production to 27.6?g/l or 84.7?% of theoretical yield (based on SB cellulose and hemicellulose sugar content). The combined dilute-acid pretreatment and bioconversion led to maximum cellulose and hemicellulose hydrolysis 73.3?% and 89.6?%, respectively.  相似文献   

4.
Furfural is an important inhibitor of yeast metabolism in lignocellulose-derived substrates. The effect of furfural on the physiology of Saccharomyces cerevisiae CBS 8066 was investigated using anaerobic continuous cultivations. Experiments were performed with furfural in the feed medium (up to 8.3 g/L) using three different dilution rates (0.095, 0.190, and 0.315 h(-1)). The measured concentration of furfural was low (< 0.1 g/L) at all steady states obtained. However, it was not possible to achieve a steady state at a specific conversion rate of furfural, q(f), higher than approximately 0.15 g/g.h. An increased furfural concentration in the feed caused a decrease in the steady-state glycerol yield. This agreed well with the decreased need for glycerol production as a way to regenerate NAD+, i.e., to function as a redox sink because furfural was reduced to furfuryl alcohol. Transient experiments were also performed by pulse addition of furfural directly into the fermentor. In contrast to the situation at steady-state conditions, both glycerol and furfuryl alcohol yields increased after pulse addition of furfural to the culture. Furthermore, the maximum specific conversion rate of furfural (0.6 g/g.h) in dynamic experiments was significantly higher than what was attainable in the chemostat experiments. The dynamic furfural conversion could be described by the use of a simple Michaelis-Menten-type kinetic model. Also furfural conversion under steady-state conditions could be explained by a Michaelis-Menten-type kinetic model, but with a higher affinity and a lower maximum conversion rate. This indicated the presence of an additional component with a higher affinity, but lower maximum capacity, either in the transport system or in the conversion system of furfural.  相似文献   

5.
A diffusion-based microreactor system operated with a reaction volume of 8 μL is presented and characterized to intensify the process understanding in microscale cultivations. Its potential as screening tool for biological processes is evaluated. The advantage of the designed microbioreactor is the use for the continuous cultivation mode by integrating online measurement technique for dissolved oxygen (DO) and optical density (OD). A further advantage is the broaden application for biological systems. The bioreactor geometry was chosen to achieve homogeneous flow during continuous process operation. The device consisted of a microstructured top layer made of poly(dimethylsiloxane) (PDMS), which was designed and fabricated using UV-depth and soft lithography assembled with a glass bottom. CFD simulation data used for geometry design were verified via microparticle-image-velocimetry (μPIV). In the used microreactor geometry no concentration gradients occurred along the entire reaction volume because of rapid diffusive mixing, the homogeneous medium flow inside the growth chamber of the microreactor could be realized. Undesirable bubble formation before and during operation was reduced by using degassed medium as well as moistened and moderate incident air flow above the gas permeable PDMS membrane. Because of this a passive oxygen supply of the culture medium in the device is ensured by diffusion through the PDMS membrane. The oxygen supply itself was monitored online via integrated DO sensors based on a fluorescent dye complex. An adequate overall volumetric oxygen transfer coefficient K(L)a as well as mechanical stability of the device were accomplished for a membrane thickness of 300 μm. Experimental investigations considering measurements of OD (online) and several metabolite concentrations (offline) in a modified Verduyn medium. The used model organism Saccharomyces cerevisiae DSM 2155 tended to strong reactor wall growth resembling a biofilm.  相似文献   

6.
Kinetic study of detoxification of dilute-acid hydrolyzates by Ca(OH)2   总被引:1,自引:0,他引:1  
Detoxification of dilute-acid hydrolyzates by addition of Ca(OH)(2) (overliming) and cultivation of the detoxified hydrolyzates by Saccharomyces cerevisiae were examined. The examined overliming involves increasing the pH of the hydrolyzates to 9, 10, 11 or 12, keeping up to 90 min at different temperatures of 30, 45 and 60 degrees C, followed by readjustment of the pH to 5. Increasing the pH, time and/or temperature resulted in more effective degradation of furans and resulted in better fermentability for both of the tested hydrolyzates, but higher loss of the sugars was observed as well. Overliming of glucose and furfural solution at pH 12 showed a rapid decrease in concentration of these chemicals followed by a slow degradation process. Therefore, a kinetic model was proposed for the detoxification, where the sugars or furans make transient complexes with calcium ions and this complex will then be converted to the degradation product. The ANOVA analysis of the model resulted in an average R(2) of 0.99 for the model fitted to all the experimental data points.  相似文献   

7.
Ethanol, in concentrations that affect growth and fermentation rates (3 to 10% [vol/vol]), activated in vivo the plasma membrane ATPase of Saccharomyces cerevisiae. The maximal value for this activated enzyme in cells grown with 6 to 8% (vol/vol) ethanol was three times higher than the basal level (in cells grown in the absence of ethanol). The Km values for ATP, the pH profiles, and the sensitivities to orthovanadate of the activated and the basal plasma membrane ATPases were virtually identical. A near-equivalent activation was also observed when cells grown in the absence of ethanol were incubated for 15 min in the growth medium with ethanol. The activated state was preserved after the extraction from the cells of the membrane fraction, and cycloheximide appeared to prevent this in vivo activation. After ethanol removal, the rapid in vivo reversion of ATPase activation was observed. While inducing the in vivo activation of plasma membrane ATPase, concentrations of ethanol equal to and greater than 3% (vol/vol) also inhibited this enzyme in vitro. The possible role of the in vivo activation of the plasma membrane proton-pumping ATPase in the development of ethanol tolerance by this fermenting yeast was discussed.  相似文献   

8.
Ethanol, in concentrations that affect growth and fermentation rates (3 to 10% [vol/vol]), activated in vivo the plasma membrane ATPase of Saccharomyces cerevisiae. The maximal value for this activated enzyme in cells grown with 6 to 8% (vol/vol) ethanol was three times higher than the basal level (in cells grown in the absence of ethanol). The Km values for ATP, the pH profiles, and the sensitivities to orthovanadate of the activated and the basal plasma membrane ATPases were virtually identical. A near-equivalent activation was also observed when cells grown in the absence of ethanol were incubated for 15 min in the growth medium with ethanol. The activated state was preserved after the extraction from the cells of the membrane fraction, and cycloheximide appeared to prevent this in vivo activation. After ethanol removal, the rapid in vivo reversion of ATPase activation was observed. While inducing the in vivo activation of plasma membrane ATPase, concentrations of ethanol equal to and greater than 3% (vol/vol) also inhibited this enzyme in vitro. The possible role of the in vivo activation of the plasma membrane proton-pumping ATPase in the development of ethanol tolerance by this fermenting yeast was discussed.  相似文献   

9.
Summary Intermittent-feeding of cellulose hydrolyzate to hemicellulose hydrolyzate of hardwood resulted in greater yields of ethanol usingPachysolen tannophilus than batch fermentations of either hydrolyzate alone or as a mix. Conversion efficiencies as great as 0.40 g ethanol/g sugar fed were achieved.  相似文献   

10.
Growth of Saccharomyces cerevisiae LBG H 1022 on ethanol under transient-state conditions was studied. As a cultivation device, an aerated Chemap fermentor combined with continuously working gas analyzers for oxygen and carbon dioxide was used. Yeast cell dry matter, substrate concentration, specific oxygen uptake, specific carbon dioxide release, and respiration quotient were measured during the different transient states. Depending on which range of the dilution rate the initial steady state was found, we obtain different responses to the shift experiment. For the lower range, up to D = 0.07, we deal with damped oscillations ranging above and below the steady-state values. For the higher specific growth rates, the rate of damping is strongly enhanced and the shape of the curves becomes an asymptotic approach to the final steady states.  相似文献   

11.
Growth of Saccharomyces cerevisiae LBG H 1022 on ethanol under steady-state conditions was studied. As a cultivation device, an aerated Chemap fermentor combined with continuously working gas analyzers for oxygen and carbon dioxide was used. Dry matter, substrate concentration, yield, specific oxygen uptake, specific carbon dioxide release, and respiration quotient, as well as nitrogen, carbon, phosphorus, hydrogen, and protein content of the cells were measured in dependence on the dilution rate. Cell size distribution, as a function of the specific growth rate, was determined with the aid of a Celloscope 202. A fair agreement with the theory of continuous culture for all metabolic curves could be established. An increased turnover rate resulted from the addition of glutamic acid to the synthetic growth medium. The primary effect of this supplement could be a rise in the flow rate of the tricarboxylic acid cycle.  相似文献   

12.
The dimorphic fungus Mucor indicus was grown in different forms classified as purely filamentous, mostly filamentous, mostly yeast-like and purely yeast-like, and the relationship between morphology and metabolite production, inhibitor tolerance and the cell wall composition was investigated. Low concentrations of spores in the inoculum with subsequent aeration promoted filamentous growth, whereas higher spore concentrations and anaerobic conditions promoted yeast-like growth. Ethanol was the main metabolite with glycerol next under all conditions tested. The yields of ethanol from glucose were between 0.39 and 0.42 g g−1 with productivities of 3.2–5.0 g l−1 h−1. The ethanol productivity of mostly filamentous cells was increased from 3.9 to 5.0 g l−1 h−1 by the presence of oxygen, whereas aeration of purely yeast-like cells showed no such effect. All growth forms were able to tolerate 4.6 g l−1 furfural and 10 g l−1 acetic acid and assimilate the sugars, although with different consumption rates. The cell wall content of the fungus measured as alkali insoluble materials (AIM) of the purely yeast-like cells was 26% of the biomass, compared to 8% of the pure filaments. However, the chitosan concentration of the filaments was 29% of the AIM, compared to 6% of the yeast-like cells.  相似文献   

13.
Summary The effect of trace amounts of oxygen on the degree of ethanol inhibition in a continuous anaerobic culture of Saccharomyces cerevisiae was studied at the 100 gl –1 feed glucose concentration level. Results showed that the use of micro-aerobic conditions (0,5% of saturation) enhanced the utilisation of substrate by increasing the ethanol tolerance of the yeast without any significant decrease in the ethanol yield per unit substrate consumed. When the results were fitted to an equation of the form % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcLbyacaqG8o% GaaeypaiqabY7agaqcaiaab6cadaWcaaGcbaqcLbyacaqGdbWaaSba% aSqaaKqzagGaae4CaaWcbeaaaOqaaKqzagGaae4qamaaBaaaleaaju% gGbiaabohaaSqabaqcLbyacqGHRaWkcaqGlbWaaSbaaSqaaKqzagGa% ae4CaaWcbeaaaaqcLbyacaGGUaWaaSaaaOqaaKqzagGaae4samaaBa% aaleaajugGbiaabchaaSqabaaakeaajugGbiaabUeadaWgaaWcbaqc% LbyacaqGWbaaleqaaKqzagGaey4kaSIaaeywamaaBaaaleaajugGbi% aabchacaqGZbaaleqaaKqzagGaaiOlaiaacIcacaqGdbWaaSbaaSqa% aKqzagGaae4CaiaabAgaaSqabaqcLbyacqGHsislcaqGdbWaaSbaaS% qaaKqzagGaae4CaaWcbeaajugGbiaacMcaaaaaaa!6301!\[{\text{\mu = \hat \mu }}{\text{.}}\frac{{{\text{C}}_{\text{s}} }}{{{\text{C}}_{\text{s}} + {\text{K}}_{\text{s}} }}.\frac{{{\text{K}}_{\text{p}} }}{{{\text{K}}_{\text{p}} + {\text{Y}}_{{\text{ps}}} .({\text{C}}_{{\text{sf}}} - {\text{C}}_{\text{s}} )}}\]it was found that the values for % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeiVdyaaja% aaaa!373F!\[{\text{\hat \mu }}\], Ks and Yps were the same as for the non-aerobic case while the ethanol inhibition constant, Kp , had increased from 5,2 to 14,0 gl –1.Notation Csf feed substrate concentration - gl –1 - Cs substrate concentration gl –1 - Cp product concentration - gl –1 - Cx cell concentration - gl –1 - D dilution rate - h-1 - Ks substrate saturation constant - gl –1 - Kp product inhibition constant - gl –1 - m maintenance coefficient - h–1 - Yps product yield coefficient - g EtOH/g glucose - Yxs cell yield coefficient - g cells/g glucose - specific growth rate - h–1 - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabeiVdyaaja% aaaa!373F!\[{\text{\hat \mu }}\] maximum specific growth rate - h–1  相似文献   

14.
An increase in Brestan concentration in nutrient media decreased the content of protein, phosphorus, total ribonucleic acid, activity of pyruvate carboxylase and isocitrate lyase in cells ofSaccharomyces cerevisiae parent strain and respiratory deficient (RD) mutant while the trehalose content increased. The respiration quotient value for the RD mutant was higher than for the parent strain. The RD mutant lacked cytochromeaa 3; cytochromec andb contents were lower than those of the parent strain.  相似文献   

15.
The performance of single, and series of, continuous stirred-tank (CSTBR) and fluidized-bed bioreactor (FBBR) in anaerobic continuous cultivation of glucose in defined media and dilute-acid hydrolyzates at dilution rates 0.22, 0.43, 0.65 and 0.86 h(-1) using immobilized Saccharomyces cerevisiae CBS 8066, was investigated. While the single CSTBR and FBBR could not take up more than 77% and 92% of glucose in a defined medium at dilution rate 0.86 h(-1), addition of the second bioreactor decreased the residual glucose to less than 1.1% of the incoming sugar. A similar trend was obtained in cultivation of dilute-acid hydrolyzates. A CSTBR could take up 75% and 54% of the initial fermentable sugars at dilution rates 0.43 and 0.86 h(-1), while the addition of the FBBR improved the assimilation of the sugars to 100% and 86%, respectively. The ethanol yields from the hydrolyzate were between 0.41 and 0.48 g/g in all the experiments. The specific and volumetric ethanol productivities were 1.13 g/gh and 5.98 g/Lh for the single bioreactor and 0.98 g/gh and 5.49 g/Lh for the serial bioreactor at the highest dilution rate, respectively. Glycerol was the only important by-product in terms of concentration, and yielded 0.05-0.07 g/g from the hydrolyzate. From the initial 3.98 g/L acetic acid present in the hydrolyzate, 0.1-0.8 g/L was assimilated by the cells. The yeast cells were accumulated close to the surface of the beads. While the cells had a dry-weight concentration of 129 g/L close to the surface of the beads, the concentration in the core was only 13 g/L.  相似文献   

16.
17.
Continuous culture in a cascade of vessels with the addition of supplemental nutrients to any stage permits adjustment of the physiological state of the culture in each stage to best achieve a desired performance goal. The yeast Saccharomyces cerevisiae in two-stage continuous cultivation was selected as a model system. With conditions in the first stage held constant- at a selected glucose concentration in the feed stream, dilution rate for the second stage was varied. Cell numbers, dry weight, glucose concentration, respiration coefficient, and titers of several enzymes were determined. The seed rate was defined as the ratio of glucose concentration in the feeds to stage 1 and to stage 2. At low seed rates, the calculated specific growth rate in the second stage was proportional to dilution rate. At higher seed rates, the specific growth rate based on dry weight behaved differently from that based on cell numbers, and the dependence on dilution rate was not linear.  相似文献   

18.
Pure melanophore populations isolated from the tail skin of the tadpole, Rana catesbeiana, were mass cultured for a period of 2-3 years. All cell lines of amphibian melanophores studied exhibited growth crisis (in vitro ageing) followed by spontaneous transformation to a continuous cell line, as shown by changes in growth characteristics in mass culture and in clone culture, by the appearance of the cells, and by measurements of cell volumes. Even after becoming a continuous cell line, amphibian melanophores continued to have a diploid chromosome number (2n = 26) in three of four cell lines examined. The chromosome mode in one cell line, however, changed to thirty. Measurement of melanin dispersion after the addition of alpha-melanocyte-stimulating hormone suggested that the mechanism for melanin dispersion in melanophores changed during in vitro ageing.  相似文献   

19.
The kinetics of glyoxalase I [(R)-S-lactoylglutathione methylglyoxal-lyase; EC 4.4.1.5] and glyoxalase II (S-2-hydroxyacylglutathione hydrolase; EC 3.1.2.6) from Saccharomyces cerevisiae was studied in situ, in digitonin permeabilized cells, using two different approaches: initial rate analysis and progress curves analysis. Initial rate analysis was performed by hyperbolic regression of initial rates using the program HYPERFIT. Glyoxalase I exhibited saturation kinetics on 0.05-2.5 mM hemithioacetal concentration range, with kinetic parameters Km 0.53 +/- 0.07 mM and V (3.18 +/- 0.16) x 10(-2) mM.min(-1). Glyoxalase II also showed saturation kinetics in the SD-lactoylglutathione concentration range of 0.15-3 mM and Km 0.32 +/- 0.13 mM and V (1.03 +/- 0.10) x 10(-3) mM.min(-1) were obtained. The kinetic parameters of both enzymes were also estimated by nonlinear regression of progress curves using the raw absorbance data and integrated differential rate equations with the program GEPASI. Several optimization methods were used to minimize the sum of squares of residuals. The best parameter fit for the glyoxalase I reaction was obtained with a single curve analysis, using the irreversible Michaelis-Menten model. The kinetic parameters obtained, Km 0.62 +/- 0.18 mM and V (2.86 +/- 0.01) x 10(-2) mM.min(-1), were in agreement with those obtained by initial rate analysis. The results obtained for glyoxalase II, using either the irreversible Michaelis-Menten model or a phenomenological reversible hyperbolic model, showed a high correlation of residuals with time and/or high values of standard deviation associated with Km. The possible causes for the discrepancy between data obtained from initial rate analysis and progress curve analysis, for glyoxalase II, are discussed.  相似文献   

20.
Lignocellulosic biomass from agricultural and agro-industrial residues represents one of the most important renewable resources that can be utilized for the biological production of ethanol. The yeast Saccharomyces cerevisiae is widely used for the commercial production of bioethanol from sucrose or starch-derived glucose. While glucose and other hexose sugars like galactose and mannose can be fermented to ethanol by S. cerevisiae, the major pentose sugars D-xylose and L-arabinose remain unutilized. Nevertheless, D-xylulose, the keto isomer of xylose, can be fermented slowly by the yeast and thus, the incorporation of functional routes for the conversion of xylose and arabinose to xylulose or xylulose-5-phosphate in Saccharomyces cerevisiae can help to improve the ethanol productivity and make the fermentation process more cost-effective. Other crucial bottlenecks in pentose fermentation include low activity of the pentose phosphate pathway enzymes and competitive inhibition of xylose and arabinose transport into the cell cytoplasm by glucose and other hexose sugars. Along with a brief introduction of the pretreatment of lignocellulose and detoxification of the hydrolysate, this review provides an updated overview of (a) the key steps involved in the uptake and metabolism of the hexose sugars: glucose, galactose, and mannose, together with the pentose sugars: xylose and arabinose, (b) various factors that play a major role in the efficient fermentation of pentose sugars along with hexose sugars, and (c) the approaches used to overcome the metabolic constraints in the production of bioethanol from lignocellulose-derived sugars by developing recombinant S. cerevisiae strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号