首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the 80 years since their discovery the β-lactam antibiotics have progressed through structural generations, each in response to the progressive evolution of bacterial resistance mechanisms. The generational progression was driven by the ingenious, but largely empirical, manipulation of structure by medicinal chemists. Nonetheless, the true creative force in these efforts was Nature, and as the discovery of new β-lactams from Nature has atrophied while at the same time multi-resistant and opportunistic bacterial pathogens have burgeoned, the time for empirical drug discovery has passed. We concisely summarize recent developments with respect to bacterial resistance, the identity of the new β-lactams, and the emerging non-empirical strategies that will ensure that this incredible class of antibiotics has a future.  相似文献   

2.
3.
Effects of dietary β-sitosterol (S) and β-sitostanol (HS) on the metabolism and fate of labeled cholesterol intravenously injected were compared in rats fed diets high in cholesterol. Kinetic behavior of the decay curve for serum cholesterol in the HS supplemented (C + HS) group approximated to that in the cholesterol-free (control) group. The largest dilution of the label was observed in rats of the cholesterol (C) group and the least in the C + HS group, the C + S group being intermediate. The specific activity of hepatic cholesterol was in the decreasing order of the C + HS, C + S and C groups, while the situation was reversed when expressed in terms of net incorporation. Thus, cholesterol pool seemed to be much smaller in the C + HS group than in the C + S group.

In a long term feeding experiment with diets free of cholesterol, HS exhibited significantly greater hypocholesterolemic activity than S did.

These data, together with those reported previously, indicated that inhibitory effect on the absorption of both endogenous and exogenous cholesterol was much more greater in HS than in S.  相似文献   

4.
The selectivity for the glycon part of a donor substrate of -glycosidases from almond, a mesophilic (Kluyveromyces fragilis) and three highly thermophilic organisms (Caldocellum saccharolyticum, Sulfolobus solfataricus and Pyrococcus furiosus) was investigated at various temperatures (25–90 °C). On the basis of kinetic constants, the selectivity was calculated as the specificity constant (V max /K m ) ratio or V max ratio of glucoside to galactoside donor. In the almond -glucosidase and the mesostable enzyme one enzyme activity dominated whereas the thermostable enzymes expressed both high -glucosidase and high -galactosidase activities. Surprisingly, for -glycosidases from almond, K. fragilis, and C. saccharolyticum the donor selectivity decreased as the temperature increased. In contrast, two of the highly thermostable enzymes (from S. solfataricus and P. furiosus) had constant donor selectivity as the temperature increased. The results thus showed -glycosidases of differing origins to differ markedly in their substrate specificity and in the extent to which their selectivity for the glycon part of the donor substrate is influenced by the temperature.  相似文献   

5.
TRPM2 is a Ca2+-permeable non-selective cation channel that can be activated by adenosine dinucleotides, hydrogen peroxide, or intracellular Ca2+. The protein is expressed in a wide variety of cells, including neurons in the brain, immune cells, endocrine cells, and endothelial cells. This channel is also well expressed in β-cells in the pancreas. Insulin secretion from pancreatic β-cells is the primary mechanism by which the concentration of blood glucose is reduced. Thus, impairment of insulin secretion leads to hyperglycemia and eventually causes diabetes. Glucose is the principal stimulator of insulin secretion. The primary pathway involved in glucose-stimulated insulin secretion is the ATP-sensitive K+ (KATP) channel to voltage-gated Ca2+ channel (VGCC)-mediated pathway. Increases in the intracellular Ca2+ concentration are necessary for insulin secretion, but VGCC is not sufficient to explain [Ca2+]i increases in pancreatic β-cells and the resultant secretion of insulin. In this review, we focus on TRPM2 as a candidate for a [Ca2+]i modulator in pancreatic β-cells and its involvement in insulin secretion and development of diabetes. Although further analyses are needed to clarify the mechanism underlying TRPM2-mediated insulin secretion, TRPM2 could be a key player in the regulation of insulin secretion and could represent a new target for diabetes therapy.  相似文献   

6.
7.
《Phytochemistry》1987,26(5):1435-1440
Although the two smaller β- and γ- subunits of the lectin from Dioclea grandiflora were clearly resolved by sodium dodecyl sulphate (SDS) gel electrophoresis, the concensus of other techniques including ultracentrifugation, isoelectric focusing in 8 M urea, size-exclusion chromatography in dissociating solvents and amino acid and sequence analysis indicated that they were similar in molecular size and that they had arisen either by a single enzymic cleavage at Asn118-Ser119 in the middle of the 237 residue-long mature α-subunit or by multiple cleavages occurring during post-translational processing of intermediates. The existence of minor forms of the β- and γ- subunits resulting from a cleavage at Asn124-Ser125 of the α-subunit was also recognized. The results indicated that the apparent difference in molecular size of the β- and γ-subunits deduced from SDS-gel electrophoresis could be explained by the anomalous behaviour of both subunits in this separation technique. The structural features of the D. grandiflora lectin are compared with those of concanavalin A obtained from seeds of the botanically related Canavalia ensiformis.  相似文献   

8.
The overall goal of this research was to investigate structure-function mechanisms associated the emulsifying properties β-lactoglobulin (β-LG). Specifically the physicochemical (i.e., surface charge and hydrophobicity, size and interfacial tension) and emulsifying (i.e., emulsification activity (EAI) and stability indices (ESI)) properties of β-LG were investigated in response to changes in pH (3.0, 5.0 and 7.0) and heat pre-treatment conditions (25, 55 and 85 °C). Hydrophobicity was found to be greatest at pH 5.0/85 °C, whereas at all conditions it was significantly lower. Surface charge on β-LG was found to be neutral at?~?pH 3.9, regardless of conditions. Aggregate size was also found to be highest at pH 5.0/85 °C (avg. hydrodynamic radii of ~714 nm), corresponding to a reduced net surface charge and high hydrophobicity. Little size dependence of aggregates was observed at pH 3.0 regardless to the temperature pre-treatments (radii ~120 nm). In contrast, at pH 7.0 slight temperature dependence was apparent, where treatments at 25, 55 and 85 °C led to radii of 412.8, 307.2 and 232.3 nm, respectively. Overall, the addition of β-LG to a canola oil–water system resulted in a decline in interfacial tension from ~28 mN/m to ~18 mN/m, however the effect of pH/temperature conditions was minimal. EAI was found to be highest when β-LG solutions displayed high surface charge combined with moderate hydrophobicity. In contrast, ESI was higher under conditions where β-LG solutions remained in a native (25 °C) or fully denatured state (85 °C) versus one in where partially unravelling may be occurring (55 °C).  相似文献   

9.
The localization was studied of α- and β-galactosidases in frozen sections of Ca-formol fixed root tips using simultaneous azocoupling reaction. In all species studied (Allium cepa,Cucurbita maxima, Lupinus albus, Pisum sativum, Vicia faba, Zea mays) positive results were obtained, the localization being ubiquitous (according to localization typology given here). InVicia faba andZea mays the isoenzymes of α- and β-galactosidases were revealed by means of acrylamide gel electrophoresis, using authors’ modification of Reisfeld method, in whole root tips, particular growth zones and separately in cortex and central cylinder. No differences were observed comparing stele and cortex. Whereas characteristic isoenzyme patterns were found in individual growth zones in maize, no differences appeared in broad bean. A comparison was made of thein situ localization and of the isoenzyme patterns of α- and β-galactosidases with α- and β-glucosidases. In the case of galactosidases, positive results appear with both α- and β-galactoside. The rising of pH to neutrality leads to considerable decrease in the activity of both galactosidases.  相似文献   

10.
Summary The use of β-amino acids as peptidomimetics has emerged in recent years with significant potential in a number of applications. The incorporation of β-amino acids has been successful in creating peptidomimetics that not only have potent biological activity, but are also resistant to proteolysis. This article reviews the recent applications of β-amino acids in the design of protease and peptidase inhibitors. Given their structural diversity, together with the ease of synthesis and incorporation into peptide sequences using standard solid-phase peptide synthesis techniques, β-amino acids have the potential to form a new platform technology for peptidomimetic design and synthesis.  相似文献   

11.
The structures of DMPC and DPPC bilayers in unilamellar liposomes, in the presence of 33.3 mol% cholesterol or the plant sterol β-sitosterol, have been studied by small-angle neutron scattering. The bilayer thickness d L increases in a similar way for both sterols. The repeat distance in multilamellar liposomes, as determined by small-angle X-ray diffraction, is larger in the presence of β-sitosterol than in the presence of cholesterol. We observe that each sterol modifies the interlamellar water layer differently, cholesterol reducing its thickness more efficiently than β-sitosterol, and conclude that cholesterol suppresses bilayer undulations more effectively than β-sitosterol.  相似文献   

12.
The many faces and functions of β-catenin   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
The yeast hexokinase is highly specific for α-isomer of d-glucose. The relative rate of phosphorylation of β-d-glucose, catalyzed by the purified yeast hexokinase, is observed to be 60~70 (α-d-glucose=100). The average Michaelis constants of yeast hexokinase are found to be 1.8 × 10?4 and 2.4 × 10?4 for α-d-glucose and (β-d-glucose respectively, therefore the difference between the two constants is considered to be negligible.  相似文献   

15.
Small β-hairpin peptides have been widely used as models for the folding of β-sheets. But how applicable is the folding of such models to β-structure in larger proteins with conventional hydrophobic cores? Here we present multiple unfolding simulations of three such proteins that contain the WW domain double hairpin β-sheet motif: cold shock protein A (CspA), cold shock protein B (CspB) and glucose permease IIA domain. We compare the behavior of the free motif in solution and in the context of proteins of different size and architecture. Both Csp proteins lost contacts between the double-hairpin motif and the protein core as the first step of unfolding and proceeded to unfold with loss of the third β-strand, similar to the isolated WW domain. The glucose permease IIA domain is a larger protein and the contacts between the motif and the core were not lost as quickly. Instead the unfolding pathway of glucose permease IIA followed a different pathway with β1 pulling away from the sheet first. Interestingly, when the double hairpin motif was excised from the glucose permease IIA domain and simulated in isolation in water it unfolded by the same pathway as the WW domain, indicating that it is tertiary interactions with the protein that alter the motif’s unfolding not a sequence dependent effect on its intrinsic unfolding behavior. With respect to the unfolding of the hairpins, there was no consistent order to the loss of hydrogen bonds between the β-strands in the hairpins in any of the systems. Our results show that while the folding behavior of the isolated WW domain is generally consistent with the double hairpin motif’s behavior in the cold shock proteins, it is not the case for the glucose permease IIA domain. So, one must be cautious in extrapolating findings from model systems to larger more complicated proteins where tertiary interactions can overwhelm intrinsic behavior.  相似文献   

16.
Previous work has indicated that plasma cortisol increases during farrowing in the pig suggesting increasing physiological stress. The aim of this study was to determine changes in plasma cortisol and β-endorphin over farrowing in the pig to obtain a more detailed profile of pituitary and adrenal release at this time and also to investigate the involvement of endogenous opioids in the mediation of the HPA axis. Indwelling jugular catheters were implanted, under general anaesthesia, in 31 Large White×Landrace gilts approximately 15 days before the expected parturition day (EPD). Gilts were moved into either a farrowing crate, without straw (n=15), or a straw-bedded pen (n=16) 5 days before the EPD. Samples were taken during the pre-farrowing period and then during farrowing itself. At 7.5 min after the birth of the first piglet (BFP), gilts either received naloxone, an opioid antagonist, (1 mg kg−1 body weight, i.v.) or a control dose of saline. Plasma β-endorphin increased following the BFP but remained fairly constant over the third and fourth hour of farrowing. Plasma cortisol continued to increase over the 4 h following the BFP. Changes seen in these hormones were generally insensitive to the environment and there was little evidence of opioid mediation of the HPA axis at parturition. From these results it is suggested that certain aspect(s) of parturition itself stimulate the HPA axis. However it is unknown if the rise in plasma cortisol is a result of some stress-inducing factor of the parturition process or whether it reflects a metabolic function. The study also demonstrates the lack of any inhibitory mediation of the HPA axis by endogenous opioids at parturition.  相似文献   

17.
β-1,3-glucan is a major component of fungal cell walls with various biological activities, including effects on the production of inflammatory mediators in vivo and in vitro. However, few reports have examined its influence on the fungal cell itself. In this study, the influences of β-1,3-glucan on the growth and cell wall structure of fungi was examined. Aspergillus fumigatus was cultured with a synthetic medium, C-limiting medium, in the presence or absence of β-1,3-glucan. Hyphal growth was promoted in liquid and solid-cultures by adding β-1,3-glucan. Glucose and dextran did not induce growth. The influence on cell wall structure of the β-glucan-added cultures was examined by enzymolysis and NMR spectroscopy and the amount of β-1,3-glucan found to be changed. β-1,3-glucan has been widely detected in the environment. In this study, it was demonstrated that β-1,3-glucan causes promotion of the growth, and a change in the cell wall architecture, of Aspergillus. Unregulated distribution of β-1,3-glucan would be strongly related to the incidence of infectious diseases and allergy caused by Aspergillus spp.  相似文献   

18.
Extraction of Triton Photosystem II chloroplast fragments with 0.2% methanol in hexane for 3 h results in the removal of 90 to 95% of the plastoquinone in the original preparation. The extracted fragments (chlorophyll : plastoquinone ratio, 900 : 1) showed no P-680 photooxidation at 15 K after a single laser flash. The extracted fragments also showed no light-induced C-550 absorbance change at 77 K. Reconstitution of the primary reaction of Photosystem II, as evidenced by restoration of low-temperature photooxidation of P-680, could be obtained by the addition of plastoquinone A but not by the addition of β-carotene. The addition of β-carotene plus plastoquinone A restored the C-550 absorbance change. These results indicate that plastoquinone functions as the primary electron acceptor of Photosystem II and that β-carotene does not play a direct role in the primary photochemistry but is required for the C-550 absorbance change.  相似文献   

19.
Wang  Jia  Liu  Jiayin  Dong  Qinghai  An  Yang  Su  Jun  Xie  Hongliu  Sun  Bo  Liu  Jihua 《The protein journal》2022,41(4-5):543-549
The Protein Journal - Heparan sulfate (HS) as a mediator is usually involved in both inflammation and fibrosis. Besides, pre-fibrils are the intermediates of amyloid fibrils that usually cause cell...  相似文献   

20.
1. beta-d-Galactopyranosyl trimethylammonium bromide is a competitive inhibitor of beta-galactosidase, K(i)=1.4+/-0.2mm at 25 degrees C. 2. Tetramethylammonium bromide is not an inhibitor (K(i)>0.2m). 3. The kinetics of deactivation of Mg(2+)-saturated, and of inhibitor-and Mg(2+)-saturated, enzyme in 10mm-EDTA are similar. 4. The apparent K(i) for the glycosylammonium salt is approx. 2.2mm in the absence of Mg(2+). 5. It is therefore concluded that Mg(2+) and the inhibitor bind independently, and that the Mg(2+) does not act as an electrophilic catalyst. 6. Complexant fluorescence measurements indicate binding of 1 Mg(2+) ion per 135000-dalton protomer. 7. This stoicheiometry is confirmed by equilibrium dialysis. 8. 1,6-Anhydrogalactopyranose is neither a substrate (k(cat.)/K(m)< 3x10(-2)m(-1).S(-1)) nor an inhibitor (K(i)>0.2m). 9. Considerations of conformations available to the cationic inhibitor and to the anhydrogalactose indicate that the substrate is bound with the pyranose ring in a conformation not greatly different from the normal chair (C1) conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号