首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of aldolases in rat hepatoma clones and subclones has revealed that they synthesize all three forms of aldolase monomers: A (the ubiquitous glycolytic isozyme), B (the form characteristic of the liver) and C, and that in vitro–in vivo passage results in a reversible modulation in aldolase A activity. Three kinds of somatic hybrids, between rat hepatoma cells and either mouse fibroblasts or rat epithelial cells, have been studied. In each case, aldolase B, found only in the hepatoma parent, was absent in the hybrid cells. The absence of aldolase B in the somatic hybrids seems not to be due to trivial factors (species differences, inactivation of all hepatoma aldolase genes, increase in ploidy or loss of chromosomes); it is concluded that extinction of this differentiated function of the hepatoma parent reflects a genetic regulatory phenomenon.  相似文献   

2.
This study describes the characteristics of hybrids between two closely related rat myoblast lines, which differ both in the ability to express their program of differentiation and in the expression of neoplastic properties. Myogenic, nonneoplastic L6J1-S cells were hybridized with nonmyogenic, neoplastic L6J1-N1 cells. Six hybrid clones were isolated and expanded for analysis of myogenic competence, and four of these clones were also evaluated for parameters of transformation, including tumorigenicity, ability to clone in agar, and surface fibronectin. In addition to our analysis of isolated clones, we also assessed myogenic differentiation in colonies representing 226 early hybrid clones. Results of all these analyses demonstrate that the myogenic phenotype is retained and that the tumorigenic/transformed phenotype is suppressed in the hybrids. Furthermore, our results indicate that when the programs for myogenesis and neoplastic transformation are confronted within a single cell, they are expressed as mutually exclusive alternatives. In contrast to these results on myogenic X nonmyogenic L6 hybrids, it has been reported that isolated clones of A9 X L6 exhibited extinction of myogenic competence and retention of transformed properties. We have evaluated myotube formation in over 300 early hybrid clones between A9 and either diploid or subtetraploid L8 rat myoblasts. Our results demonstrate that all of these hybrid clones exhibit extinction regardless of the ploidy of the myoblast parent, and they further indicate that extinction is not a consequence of chromosome loss. These results support the conclusion that in A9 X L6 hybrids, the nonmyogenic, transformed phenotype is dominant.  相似文献   

3.
C Fougère  M C Weiss 《Cell》1978,15(3):843-854
Hybridization of cells of defined and different histotypes has been carried out to investigate whether the expression (or reexpression) of parental functions is mutually exclusive, as is expected if the generally assumed rule of discreteness of differentiation applies to hybrid cells. A cross of pigmented mouse melanoma cells and albumin-producing rat hepatoma cells gave rise to hybrids containing essentially one set of chromosomes from each parent and producing neither melanin nor albumin. Cells of one hybrid clone are shown to retain the potential to reexpress both parental differentiations. Successive subclonings of this hybrid have shown that cells which reexpress one function may retain the potential to reexpress the other, and that freshly isolated, morphologically homogeneous subclones may produce pigment or albumin, but not both; there successive and exclusive shifts of phenotype are documented, and in these cases, chromosome loss is very slight. The use of immunoadsorbed antisera has revealed that most (if not all) of the albumin produced by the hybrid cells is of the mouse type. We conclude that both parental determinations are retained by the hybrid cells, and that the parental differentiations are reexpressed only in a mutually exclusive fashion.  相似文献   

4.
Somatic cell hybrids were isolated from fusions of diploid embryonic rat fibroblasts with transformed Rat-1 cells which contained 4 to 5 copies of the transforming human Ha-ras 1 gene. In contrast to their transformed parental cells four hybrid clones showed normal morphology, long latency periods of tumorigenicity in newborn rats, anchorage requirement of proliferation, and an eightfold-reduced amount of secreted transforming growth factor activity. Thus these hybrids are called suppressed with regard to expression of the Ha-ras-induced transformed phenotype. Tumorigenic derivatives of the suppressed hybrids that had segregated chromosomes were isolated. Since two of the tumorigenic hybrid clones showed the similar low level of secreted transforming growth factors as the suppressed hybrids, decreased production of transforming growth factor activity is unlikely to be a sufficient criterion for suppression of malignancy. Whereas one of the suppressed hybrids expressed the transforming gene product p21 at a level similar to that of the transformed parental cells, other suppressed hybrids expressed less p21. This suggests that the suppressed phenotype can be regulated at the posttranslational level of p21 but that additional controls of expression of p21 are likely to exist. DNA of the suppressed hybrids transformed Rat-1 cells to proliferation in the presence of semisolid agar. Thus the activated human Ha-ras gene in the suppressed hybrids retained its biological activity even though it did not transform these cells to tumorigenicity.  相似文献   

5.
The production of four liver-specific enzymes (tyrosine aminotransferase or TAT, alanine aminotransferase, aldolase B, and alcohol dehydrogenase) has been analyzed in rat hepatoma-mouse lymphoid cell hybrids containing a 1s or 2s complement of rat chromosomes. The hybrid clones which retain a nearly 2s complement of rat chromosomes show high activity of all four enzymes; those which contain a 1s rat complement show partial or complete extinction of these enzymes. The tyrosine aminotransferase produced by most of the hybrid clones is identifiable as being of both rat and mouse origin, based upon criteria of temperature sensitivity and electrophoretic mobility; antiserum to the rat liver enzyme was used to distinguish the pseudo-TAT produced by the lymphoid parent from liver-TAT produced by hepatoma and hybrid cells. By the criteron of electrophoretic mobility, the liver form (B) of aldolase, produced by only some of the hybrid clones, appears to be composed of both rat and mouse subunits. We conclude that when extinction of tissue-specific proteins does not occur or is only partial in hybrid cells (due to gene dosage effects), the genomes of both parents may be active in directing synthesis of these proteins.  相似文献   

6.
Rat hepatoma cells were fused with cells of an established mouse lymphoma line, with normal diploid mouse macrophages, lymphocytes and fibroblasts and with normal diploid rat macrophages and lymphocytes. The liver-specific enzyme tyrosine aminotransferase was produced by almost all the hybrid cells, but usually at a lower level than in the parental hepatoma cells. Most of the hybrids also showed increased levels of this enzyme after exposure to dexamethasone. In the rat x mouse hybrids, the electrophoretic mobility of the enzyme indicated that only the rat hepatoma enzyme was produced. The findings are difficult to explain in terms of simple models involving a single diffusible repressor or activator of tyrosine aminotransferase synthesis.  相似文献   

7.
Most of the hybrid clones derived from a cross of Chinese hamster fibroblasts (DON) with rat hepatoma cells (Faza 967) showed preferential loss of rat chromosomes. Two of the hybrid clones retained the rat chromosomes, and both showed extinction of 4 liver-specific enzymes: aldolase B, liver alcohol dehydrogenase, and the inducible enzymes tyrosine aminotransferase and alanine aminotransferase. Subcloning of 1 of these hybrids, which contained 2 sets of hepatoma chromosomes and 1 set of hamster chromosomes, permitted the isolation of some clones which reexpressed 1 or more of the liver-specific enzymes. Liver alcohol dehydrogenase was the most frequently reexpressed enzyme and aldolase B the least. Tyrosine aminotransferase inducibility was reexpressed independently of basal activity, and the enzyme produced by the reexpressing hybrid cells was precipitated by a specific antiserum. No correlation was detected between the presence or absence of the marker chromosomes (large metacentrics) of the hamster parent and the extinction and reexpression of the hepatic enzymes. The results reported confirm and extend to interspecific hybrids the observation of the stable and independent reexpression of tissue-specific enzymes.  相似文献   

8.
In order to analyze the mechanisms implicated in the expression of differentiated functions during development, we have studied ten hybrid clones arising from fusion of cells of a mouse hepatoma characterized by the expression of only fetal hepatic functions with those of a rat hepatoma which express, like adult hepatocytes, a set of neonatal as well as fetal hepatic functions. The cells of most hybrid clones contain one set of chromosomes of each parent and coexpress the hepatic functions common to both parents. Among the hepatic proteins characteristic of only one parental line, some continue to be expressed while others are extinguished. The three functions out of the eight examined which are subject to extinction are expressed uniquely by the rat parental cells and appear only near or at birth during normal liver development. These results suggest that regulatory mechanisms (whose final effect is negative) operate in fetal cells to inhibit the expression of differentiated functions limited to a later stage of development.  相似文献   

9.
Recombination of mammalian mitochondrial DNA (mtDNA) was examined using mouse X rat somatic cell hybrid clones and rat cybrid clones. The mouse X rat hybrids were isolated by fusion of chloramphenicol-sensitive (CAPs) mouse and CAP-resistant (CAPr) rat cells. The rat cybrids were isolated by fusion of rat cells with type B mtDNA and enucleated cells with type A mtDNA. Genetic and physical analyses showed that the mtDNAs of the hybrids and cybrids were simple mixtures of the two parental mtDNAs except in the following two cases: One was subclone H2-9 of mouse X rat hybrids, which was CAPr even though mtDNA from the CAPs mouse parent was predominantly retained. The other was rat cybrid subclones, Y12-24 and -61, which showed specific loss of one Hinf I fragment of type B mtDNA, B10. These observations suggest that, in contrast to the case with plant mtDNA, recombination of mammalian mtDNA occurs rarely, if at all.  相似文献   

10.
Four T antigen-positive phenotypic revertants were isolated by negative selection with BUdR from SV40-transformed rat and mouse cells which contain six and two viral genome equivalents per cell, respectively. Karyological analysis indicated that one rat and one mouse revertant had a hyperploid number of chromosomes, while the remaining two rat revertants had a subtetraploid number similar to those of the transformed parent cells. The hyperploid revertants were unable to grow in soft agar medium and were nontumorigenic in nude mice. One of the subtetraploid revertants formed large colonies at a very low frequency and induced tumors after a prolonged incubation period. These results indicate that there is a good correlation between the capacity of cells to grow without anchorage and the capacity to form tumors in nude mice and suggest that the revertant phenotype is stable in the presence of T antigen when the number of chromosomes is greatly increased as compared with that of the transformed parent cells.  相似文献   

11.
Untransformed mouse cells were fused with rat cells transformed by a temperature sensitive mutant of avian sarcoma virus, and cell hybrids were isolated in the absence and in the presence of selective medium. None of the hybrids isolated were as transformed as the parent rat cells. All hybrids isolated in the absence of selective medium showed a phenotype similar to that of the untransformed mouse cell parent. Cell hybrids isolated on selective media, however, were more heterogenous. Some showed a phenotype that were intermediate between that of the two parental cells, while others were more like the untransformed mouse cells.  相似文献   

12.
P.J. Dyson  K. Quade  J.A. Wyke 《Cell》1982,30(2):491-498
Somatic cell hybrids have been made between clones of rat cells transformed by avian sarcoma virus and rat or mouse cells that are untransformed. Intraspecies hybrids were either predominantly morphologically normal or predominantly transformed, some clones that formed transformed intraspecies hybrids yielding normal interspecies hybrids. Untransformed hybrids usually showed no detectable alteration in the structure or location of the integrated provirus, but viral RNA and pp60src kinase activities were much reduced. No decrease in viral gene expression was seen in transformed hybrids. Thus hybrid suppression of viral transformation, mediated in trans by the untransformed parent, is a specific event that depends on both untransformed and transformed parental parameters.  相似文献   

13.
GM 126 diploid fibroblasts were fused with a heat-sensitive mouse cell mutant defective in DNA synthesis, and primary hybrids were selected at permissive and nonpermissive temperatures in HAT medium. Primary hybrids, primary hybrid clones back-selected in 8-azaguanine at the permissive temperature, and subclones of heat-resistant primary hybrids isolated under nonselective conditions or after 8-azaguanine treatment were tested for heat sensitivity, the expression of 26 human enzymes assigned to 19 different human chromosomes, and the presence of human chromosomes. Only the human X chromosome and X-linked marker enzymes exhibited a clear pattern of concordant segregation with the heat-resistant phenotype. On the basis of these observations, we have defined the human genetic locus that corrects the heat-sensitive lesion in tsC1AGOH as hrC1AGOH and have assigned this locus to the X chromosome. This observation provides the first instance where two selectable markers (heat resistance and 8-azaguanine sensitivity) are found on a single human chromosome and suggests that these markers may prove to be a valuable push-pull selective system of use in determining the linear arrangement of genes on human chromosomes by somatic cell genetics.  相似文献   

14.
Normal diploid human cells with a limited life-span in culture, as well as primary or secondary cell cultures of mouse or rat embryos, can be transformed in vitro (i.e. grow in soft-agar or low-serum medium) after a single exposure to metaphase chromosomes from SV40-transformed human or rat cells, Ad5-transformed human cells and several spontaneous human or mouse tumor cells. Chromosomes from normal diploid cells do not show any such transforming activity. As judged from the number of colonies formed in selective medium, the efficiency of transformation is, with some exceptions, of the order of 10(-5)--10(-6) and is generally higher for homologous than for heterologous transfers. A fraction of the colonies demonstrate abortive transformation. Nevertheless, using chromosomes from all but one donor cell population, at least one transferent cell line expressing a stable transformed phenotype has been established. Our results demonstrate that transformation of normal diploid cells by a presumptive chromosome-mediated gene transfer can be obtained with a variety of donor and recipient cells.  相似文献   

15.
We have produced somatic cell hybrids between totipotent mouse teratocarcinoma cells and rat hepatoma cells. These hybrids were tested for the expression of liver specific functions expressed in the hepatoma cell parent and for their ability to differentiate when injected into nude mice. The results of this study indicate that hybrid cell clones do not resemble either of the parental cells, since they do not produce albumin and tyrosine aminotransferase that are expressed in the rat hepatoma parent, and are incapable of forming either teratocarcinomas or hepatomas when injected in experimental animals.  相似文献   

16.
Genetic control of tumorigenicity in interspecific mammalian cell hybrids.   总被引:5,自引:0,他引:5  
R Kucherlapati  S I Shin 《Cell》1979,16(3):639-648
The nature of genetic control of cellular malignancy was investigated by examining the tumorigenicity of a series of interspecific mouse-human cell hybrids in the athymic nude mouse. Two highly malignant but genetically distinct mouse cell lines, A9 and PG19, were hybridized with three normal human diploid fibroblast strains, and 19 independently arising hybrid clones were isolated. Each of these clones was capable of forming progressive lethal tumors in the nude mouse, and thus resembled the malignant parental mouse cells rather than the nonmalignant parental human cells. We failed to obtain any evidence for complete suppression of tumorigenicity in these cell hybrids. The absence of suppression was observed regardless of the extent and composition of the human chromosome complements retained in the hybrid clones; the results of detailed cytological and isoenzyme analyses would make it highly improbable that the observed lack of suppression was due to cellular selection in vivo for a more tumorigenic subpopulation in the injected hybrid cells. These data demonstrate that at least for the parental cell combinations used in this study, no human chromosome, when present singly in the mouse-human cell hybrids, can suppress the tumorigenic phenotype of the mouse cells. Our results are consistent with the view that the suppression of cellular malignancy previously demonstrated in intraspecific (mouse × mouse) somatic cell hybrids does not occur in interspecific (mouse-human) cell hybrids, or alternatively, genetic determinants located on two or more human chromosomes are required simultaneously to suppress the malignancy of the mouse cells in cell hybrids derived from malignant mouse cell and nonmalignant human cells.  相似文献   

17.
Activation of two previously silent mouse hepatic genes has been investigated in hybrid cells between pseudodiploid mouse lymphoblastoma cells and hyperdiploid or hypertetraploid rat hepatoma cells. In this material, activation of the mouse albumin gene is a frequent event, whereas activation of mouse alpha-fetoprotein (AFP) occurs only in those cells that produce large amounts of albumin. Quantitative tests of hybrid populations for the activated proteins and their mRNAs revealed the expected sizes and structures: moreover, as in hepatoma cells, the amount of both rat and mouse albumin produced was directly proportional to the intracellular concentration of the corresponding mRNA. The cellular environment required for activation of the liver-specific genes was investigated by cell-by-cell analysis of each hybrid clone. Immunostaining for the presence of rat and mouse albumin and mouse AFP revealed unexpected heterogeneity in the phenotypes of the hybrid populations, which were found to contain cells that: (a) failed to express either of the proteins; (b) produced all three; (c) produced both rat and mouse albumin; or (d) produced rat albumin only. Karyotypic analysis indicated that the hybrid-cell phenotype depended on parental chromosome ratios rather than absolute numbers of chromosomes. It was found for albumin and mouse AFP that the fraction of immunostained cells was equal to the fraction of metaphases that contained a minimal rat-to-mouse chromosome ratio of 2.5 and 9, respectively. It is concluded that in those hybrids, expression of liver-specific genes is regulated by extinguishers, but in a dose-dependent fashion, suggesting the intervention of antagonistic activators from the rat hepatoma chromosomes.  相似文献   

18.
A cross has been performed between dedifferentiated rat hepatoma cells and the differentiated cells from which they were derived. 10 hybrid clones, containing the complete chromosome sets of both parents, show extinction of 4 liver-specific enzymes: tyrosine aminotransferase (E.C. 2.6.1.5), alanine aminotransferase (E.C. 2.6.1.2), and the liver-specific isozymes of alcohol dehydrogenase (E.C. 1.1.1.1) and aldolase (E.C. 4.1.2.13). Moreover, the 4 hybrid clones examined do not produce albumin . The only function of the differentiated parent which is not extinguished in the hybrid cells is inducibility of the aminotransferases. For 3 of the hybrid clones, extinction of 3 of the 4 enzymes is incomplete, but these clones do not differ in modal chromosome number from those which show more complete extinction of the enzymes. Subcloning of several of the hybrids revealed that the phenotype of the hybrids is very stable; 4 subclones showing reexpression of intermediate levels of the enzymes are characterized. These results show that dedifferentiation of the parental cells is not due to the simple loss of some factor required for the maintenance of expression of differentiated functions, and suggest that dedifferentiation is due to the activation of some control mechanism, whose final effect is negative, and which may be a part of the epigenotype of the embryonic hepatocyte.  相似文献   

19.
Interspecific somatic cell hybrid clones have been isolated and characterized in order to study growth hormone (GH) and prolactin (PRL) gene expression. Rat pituitary tumor cells (GH3, 69 chromosomes) secreting rat GH and PRL were grown for 48 h together with nonhormone secreting, aminopterin-sensitive murine fibroblast cells (LMTK-, 55 chromosomes) and fused using polyethylene glycol. Resultant heterokaryons were selected in hypoxanthine-aminopterin-thymidine (HAT) medium and cloned. Five clones produced rat GH and PRL. Hormone-producing hybrids morphologically resembled the mouse parent fibroblast. Hybrids grew in monolayers and contained 80-142 chromosomes, and marker chromosomes for both rat (small submetacentric) and mouse (bi-armed and large true metacentric) were identified. The interspecific nature of the hybrids was further confirmed by the presence of both rat and mouse adenosine deaminase and superoxide dismutase isozymes. Using specific antisera and indirect immunoperoxidase staining, both hybrid clones and GH3 rat parental cells stained positively for rat GH and PRL, while the murine fibroblast parental cells were negative. Hormone production by the hybrids has been sustained for over twenty subcultures; secretion rates were initially 150 ng PRL and 321 ng GH/10(6) cells/24 h and are currently 100 ng PRL and 90 ng GH/10(6) cells/24 h. Parental GH3 rat cells secreted 720 ng PRL and 660 ng GH/10(6) cells/24 h. Exposure of hybrids to KCl (50 mM) resulted in acute stimulation of rat PRL, but not rat GH release, and long-term incubation with thyrotropin-releasing hormone (TRH, 80 nM) stimulated PRL secretion. Hormone-dependent modulation of PRL secretion was transferred to the hybrid cell thus enabling the model to be used in studying regulation of PRL gene expression.  相似文献   

20.
Phenotype and hybrids between lymphoid cells and rat hepatoma cells   总被引:3,自引:0,他引:3  
Subtetraploid rat hepatoma cells were fused with diploid or tetraploid lymphoid cells of various origins. All hybrid cells, analysed 28 h to 26 days after fusion, expressed basal and steroid-induced activities of the liver-specific enzyme tyrosine aminotransferase within the range given by the parental hepatoma cell line. Only the rat enzyme was produced in the hybrids. This was true, irrespective of the gene dosage of the lymphoid partner cell and of the presence of human X chromosomes. In contrast, the lymphoid phenotype, as monitored by production of kappa light chains specified by the diploid and tetraploid lymphoid partner cells, was totally suppressed within 72 h after fusion. No difference in phenotypic expression was observed, whether the hybrid cells were grown as monolayer or as suspension cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号