首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background Tuberculosis (TB) and AIDS together present a devastating public health challenge. Over 3 million deaths every year are attributed to these twin epidemics. Annually, ~11 million people are coinfected with HIV and Mycobacterium tuberculosis (Mtb). AIDS is thought to alter the spontaneous rate of latent TB reactivation. Methodology Macaques are excellent models of both TB and AIDS. Therefore, it is conceivable that they can also be used to model coinfection. Using clinical, pathological, and microbiological data, we addressed whether latent TB infection in rhesus macaques can be reactivated by infection with simian immunodeficiency virus (SIV). Results A low‐dose aerosol infection of rhesus macaques with Mtb caused latent, asymptomatic TB infection. Infection of macaques exhibiting latent TB with a rhesus‐specific strain of SIV significantly reactivated TB. Conclusions Rhesus macaques are excellent model of TB/AIDS coinfection and can be used to study the phenomena of TB latency and reactivation.  相似文献   

2.
Gastrointestinal (GI) disease is a debilitating feature of human immunodeficiency virus (HIV) infection that can occur in the absence of histopathological abnormalities or identifiable enteropathogens. However, the mechanisms of GI dysfunction are poorly understood. The present study was undertaken to characterize changes in resident and inflammatory cells in the enteric nervous system (ENS) of macaques during the acute stage of simian immunodeficiency virus (SIV) infection to gain insight into potential pathogenic mechanisms of GI disease. Ganglia from duodenum, ileum, and colon were examined in healthy and acutely infected macaques by using a combination of routine histology, double-label immunofluorescence and in situ hybridization. Evaluation of tissues from infected macaques showed progressive infiltration of myenteric ganglia by CD3+ T cells and IBA1+ macrophages beginning as early as 8 days postinfection. Quantitative image analysis revealed that the severity of myenteric ganglionitis increased with time after SIV infection and, in general, was more severe in ganglia from the small intestine than in ganglia from the colon. Despite an abundance of inflammatory cells in myenteric ganglia during acute infection, the ENS was not a target for virus infection. This study provides evidence that the ENS may be playing a role in the pathogenesis of GI disease and enteropathy in HIV-infected people.  相似文献   

3.
The presence of sperm in testicular tissue of rhesus macaques that died as a result of infection with simian immunodeficiency virus (SIV) was related to age and body weight. Depressed testosterone levels were not associated with elevated LH levels. The data suggest that azoospermia in the SIV-infected macaques was due to cachexia and not a direct effect of virus on the testis, supporting a similar hypothesis regarding azoospermia in men infected with human immunodeficiency virus.  相似文献   

4.
Comparative studies were performed to determine the neuropathogenesis of infection in macaques with simian human immunodeficiency virus (SHIV)89.6P and SHIV(KU). Both viruses utilize the CD4 receptor and CXCR4 co-receptor. However, in addition, SHIV89.6P uses the CCR5 co-receptor. Both agents are dual tropic for CD4+ T cells and blood-derived macrophages of rhesus macaques. Following inoculation into macaques, both caused rapid elimination of CD4+ T cells but they varied greatly in mechanisms of neuropathogenesis. Two animals infected with SHIV89.6P developed typical lentiviral encephalitis in which multinucleated giant cell formation, nodular accumulations of microglial cells, activated macrophages and astrocytes, and perivascular accumulations of mononuclear cells were present in the brain. Many of the macrophages in these lesions contained viral RNA. Three macaques infected with SHIV(KU) and killed on days 6, 11 and 18, respectively, developed a slowly progressive infection in the CNS but macrophages were not productively infected and there were no pathological changes in the brain. Two other animals infected with this virus and killed several months later showed minimal infection in the brain even though one of the two developed encephalitis of unknown etiology. The basic difference in the mechanisms of neuropathogenesis by the two viruses may be related to co-receptor usage. SHIV89.6P, in utilizing the CCR5 co-receptor, caused neuropathogenic effects that are similar to other neurovirulent primate lentiviruses.  相似文献   

5.
Comparative studies were performed to determine the neuropathogenesis of infection in macaques with simian human immunodeficiency virus (SHIV)89.6P and SHIVKU. Both viruses utilize the CD4 receptor and CXCR4 co-receptor. However, in addition, SHIV89.6P uses the CCR5 co-receptor. Both agents are dual tropic for CD4+ T cells and blood-derived macrophages of rhesus macaques. Following inoculation into macaques, both caused rapid elimination of CD4+ T cells but they varied greatly in mechanisms of neuropathogenesis. Two animals infected with SHIV89.6P developed typical lentiviral encephalitis in which multinucleated giant cell formation, nodular accumulations of microglial cells, activated macrophages and astrocytes, and perivascular accumulations of mononuclear cells were present in the brain. Many of the macrophages in these lesions contained viral RNA. Three macaques infected with SHIVKU and killed on days 6, 11 and 18, respectively, developed a slowly progressive infection in the CNS but macrophages were not productively infected and there were no pathological changes in the brain. Two other animals infected with this virus and killed several months later showed minimal infection in the brain even though one of the two developed encephalitis of unknown etiology. The basic difference in the mechanisms of neuropathogenesis by the two viruses may be related to co-receptor usage. SHIV89.6P, in utilizing the CCR5 co-receptor, caused neuropathogenic effects that are similar to other neurovirulent primate lentiviruses.  相似文献   

6.
One rhesus macaque displayed severe encephalomyelitis and another displayed severe enterocolitis following infection with molecularly cloned simian immunodeficiency virus (SIV) strain SIVmac239. Little or no free anti-SIV antibody developed in these two macaques, and they died relatively quickly (4 to 6 months) after infection. Manifestation of the tissue-specific disease in these macaques was associated with the emergence of variants with high replicative capacity for macrophages and primary infection of tissue macrophages. The nature of sequence variation in the central region (vif, vpr, and vpx), the env gene, and the nef long terminal repeat (LTR) region in brain, colon, and other tissues was examined to see whether specific genetic changes were associated with SIV replication in brain or gut. Sequence analysis revealed strong conservation of the intergenic central region, nef, and the LTR. However, analysis of env sequences in these two macaques and one other revealed significant, interesting patterns of sequence variation. (i) Changes in env that were found previously to contribute to the replicative ability of SIVmac for macrophages in culture were present in the tissues of these animals. (ii) The greatest variability was located in the regions between V1 and V2 and from "V3" through C3 in gp120, which are different in location from the variable regions observed previously in animals with strong antibody responses and long-term persistent infection. (iii) The predominant sequence change of D-->N at position 385 in C3 is most surprising, since this change in both SIV and human immunodeficiency virus type 1 has been associated with dramatically diminished affinity for CD4 and replication in vitro. (iv) The nature of sequence changes at some positions (146, 178, 345, 385, and "V3") suggests that viral replication in brain and gut may be facilitated by specific sequence changes in env in addition to those that impart a general ability to replicate well in macrophages. These results demonstrate that complex selective pressures, including immune responses and varying cell and tissue specificity, can influence the nature of sequence changes in env.  相似文献   

7.
Six rhesus macaques were adapted to morphine dependence by injecting three doses of morphine (5 mg/kg of body weight) for a total of 20 weeks. These animals along with six control macaques were infected intravenously with mixture of simian-human immunodeficiency virus KU-1B (SHIV(KU-1B)), SHIV(89.6P), and simian immunodeficiency virus 17E-Fr. Levels of circulating CD4(+) T cells and viral loads in the plasma and the cerebrospinal fluid were monitored in these macaques for a period of 12 weeks. Both morphine and control groups showed precipitous loss of CD4(+) T cells. However this loss was more prominent in the morphine group at week 2 (P = 0.04). Again both morphine and control groups showed comparable peak plasma viral load at week 2, but the viral set points were higher in the morphine group than that in the control group. Likewise, the extent of virus replication in the cerebral compartment was more pronounced in the morphine group. These results provide a definitive evidence for a positive correlation between morphine and levels of viral replication.  相似文献   

8.
Simian immunodeficiency virus from rhesus macaques (SIVmac), like human immunodeficiency virus type 1 (HIV-1), encodes a transactivator (tat) which stimulates long terminal repeat (LTR)-directed gene expression. We performed cotransfection assays of SIVmac and HIV-1 tat constructs with LTR-CAT reporter plasmids. The primary effect of transactivation for both SIVmac and HIV-1 is an increase in LTR-directed mRNA accumulation. The SIVmac tat gene product partially transactivates an HIV-1 LTR, whereas the HIV-1 tat gene product fully transactivates an SIVmac LTR. Significant transactivation is achieved by the product of coding exon 1 of the HIV-1 tat gene; however, inclusion of coding exon 2 results in a further increase in mRNA accumulation. In contrast, coding exon 2 of the SIVmac tat gene is required for significant transactivation. These results imply that the tat proteins of SIVmac and HIV-1 are functionally similar but not interchangeable. In addition, an in vitro-generated mutation in SIVmac tat disrupts splicing at the normal splice acceptor site at the beginning of coding exon 2 and activates a site approximately 15 nucleotides downstream. The product of this splice variant stimulates LTR-directed gene expression. This alternative splice acceptor site is also used by a biologically active provirus with an efficiency of approximately 5% compared with the upstream site. These data suggest that a novel tat protein is encoded during the course of viral infection.  相似文献   

9.
We have examined the frequency of infection of monocyte-derived and alveolar macrophages isolated from rhesus macaques inoculated with simian immunodeficiency virus (SIVmac) utilizing a semiquantitative PCR methodology. Animals were inoculated with either pathogenic (SIVmac239) or nonpathogenic (SIVmac1A11) molecularly cloned viruses of SIVmac, or with uncloned pathogenic SIVmacBIOL. The frequency of SIV DNA in macrophages was highest early after infection and at terminal stages of disease, whereas during the asymptomatic period, SIV DNA was present at very low levels in macrophages.  相似文献   

10.
The simian immunodeficiency virus of macaques (SIVmac) is a lentivirus which induces an AIDS-like disease in rhesus monkeys. We have explored the virus-specific cellular immune response in SIVmac-infected rhesus monkeys. Con A-activated, IL-2 expanded PBL of some SIVmac-infected rhesus monkeys lyse autologous B lymphoblastoid cell lines infected with a recombinant vaccinia virus that carries the SIVmac gag gene. This lysis is mediated by CD8+ lymphocytes and is MHC class I restricted. Moreover, these effector lymphocytes do not express the NK cell-associated molecules NKH1 or CD16. These cells are, therefore, CTL. In a limited prospective study of SIVmac-infected rhesus monkeys, the presence of the SIVmac gag-specific CTL activity in PBL correlated with both a reduced efficiency in isolating SIVmac from PBL of these monkeys and their extended survival. This method for assessing SIVmac gag-specific cellular immunity in rhesus monkeys will be important not only in investigating the immunopathogenesis of SIVmac-induced disease, but also in evaluating the capacity of candidate AIDS vaccines to elicit a cell-mediated immune response in this animal model.  相似文献   

11.
We have isolated a biologically active molecular clone of simian immunodeficiency virus (SIV), SIVmac 1A11, originally obtained from a rhesus macaque at the New England Regional Primate Research Center. Virus derived from cells transfected with this clone is cytopathic for rhesus peripheral blood mononuclear cells, replicates in cultures of rhesus macrophages, and infects rhesus macaques when inoculated intravenously. Six macaques inoculated with SIVmac 1A11 all became infected and produced antibodies to viral envelope glycoproteins that neutralized virus. Antibodies to viral core proteins were detected in only one animal. No clinical signs of disease were observed throughout 7 months postinoculation.  相似文献   

12.
The simian immunodeficiency virus (SIV) macaque model of AIDS has provided a valuable system with which to investigate vaccine approaches for protection against human immunodeficiency virus type 1 (HIV-1) infection. In particular, the ability of macaques persistently infected with attenuated infectious molecular clones of SIV to resist challenge with the pathogenic parental swarm has conclusively demonstrated that protective immunity can be achieved by immunization prior to exposure. The breadth of these protective responses and the immunological correlates of protection, however, have not been identified. In addition, vaccine studies have mainly employed lymphocyte-tropic strains of HIV-1 and SIV. Recent studies have implicated macrophage-tropic strains in the transmission of HIV-1 and have suggested that these virus strains should be examined in vaccine strategies. Macrophage-tropic viruses may confer additional advantages in the induction of protective immunity by replication in antigen-presenting cells. In this study, the immune response of rhesus macaques inoculated with an attenuated macrophage-tropic recombinant of SIVmac239 (SIV/17E-Cl) was evaluated with respect to protective immunity by heterologous challenge at various times after infection. Vigorous type-specific neutralizing-antibody responses restricted to SIV/17E-Cl were evident by 2 weeks postinfection. By 7 months, however, cross-reactive neutralizing antibodies emerged which neutralized not only SIV/17E-Cl but also the heterologous primary isolate SIV/DeltaB670. Challenge of SIV/17E-Cl-infected monkeys with SIV/DeltaB670 at various times postinfection demonstrated that protective responses were associated with the appearance of cross-reactive neutralizing antibodies. Furthermore, passive transfer of sera from SIV/17E-Cl-infected animals passively protected two of four naive recipients.  相似文献   

13.
Cytomegalovirus (CMV) infections occur worldwide and are responsible for severe damage to the child in from one to five newborns per 20,000 births. Animal models of congenital CMV infection resulting in disease have been developed in mice and guinea pigs. We report here the development of ventricular dilatation and leptomeningitis in rhesus monkeys, Macaca mulatta, following intrauterine infection with rhesus cytomegalovirus (RCMV). Central nervous system (CNS) lesions were associated with low cytomegalovirus fluorescent antibody titers in affected fetuses. In several infected animals, RCMV was isolated at necropsy from neural and nonneural tissues taken shortly after birth. This model allows investigators to study the pathogenesis and prevention of CNS changes following RCMV infection.  相似文献   

14.
15.
Neurological disease resulting from lentivirus (including human immunodeficiency virus) infections is usually caused by a strain of virus that replicates productively in microglia in vivo and in macrophage cultures in vitro. We undertook this study using the model of simian immunodeficiency virus in macaques (SIVmac) to test the hypothesis that macrophage tropism is a prerequisite for neurotropism of the virus. Using molecularly cloned SIVmac239, a virus which is lymphocyte- but not macrophagetropic, we showed that this virus failed to infect brain after intracerebral (i.c.) inoculation into two macaques. Rather, these inoculations resulted in disseminated infection in lymphoid organs and the bone marrow. Two sequential passages of infected bone marrow cells inoculated i.c. into new macaques resulted in severe neurological disease and classical neuropathological lesions. Virus obtained from affected brain answered the hypothetical question: it was neurotropic and macrophagetropic. New findings in the study were that both lymphocyte- and macrophage-tropic viruses were present in the animals, but the viruses localized in different tissues: the lymphotropic virus in the spleen, lymph nodes, and plasma and the macrophagetropic virus in the brain and lungs. To determine whether the brain virus was preferentially neurotropic and whether it had neuroinvasive properties, infectious brain homogenate was inoculated into one animal i.c. and into two others peripherally. The i.c. inoculated animal developed fatal encephalitis 5 months later, and examination of tissues showed cell-free virus only in brain homogenates. Only microglia were infected despite persistent viremia and infection in bone marrow cells. The two macaques inoculated peripherally remained healthy and were euthanized at 6 months. Virus replication was detected only in the bone marrow cells and peripheral blood mononuclear cells. No infection in any macrophage population in visceral organs was detected, and the virus did not invade the brain. The strictly microglial specificity of this virus suggested that different macrophage populations in the body may select specific phenotypes of lentivirus from the quasispecies of virus in the bone marrow. This could provide the basis for specific disease affecting different organ systems.  相似文献   

16.
The simian immunodeficiency virus (SIV)-rhesus macaque model of heterosexual human immunodeficiency virus transmission consists of atraumatic application of cell-free SIVmac onto the intact vaginal mucosa of mature female rhesus macaques. This procedure results in systemic infection, and eventually infected animals develop the clinical signs and pathologic changes of simian AIDS. To achieve 100% transmission with the virus stocks used to date, multiple intravaginal inoculations are required. The current titration study utilized two stocks of SIVmac and demonstrated that a single intravaginal dose of cell-free SIV can reliably produce infection in rhesus macaques. This study also demonstrated that some animals intravaginally inoculated with cell-free SIVmac develop transient viremia characterized by a limited ability to isolate virus from peripheral blood mononuclear cells and lymph node mononuclear cells and no seroconversion to SIV antigen. SIV could be isolated from the peripheral lymph nodes of transiently viremic animals only during periods of viremia and not at times when SIV was not detected in circulating mononuclear cells. Thus, peripheral lymphoid tissues were not reservoirs of infection in the transiently viremic animals. Taken together, these results suggest either that the SIV infection was cleared in the transiently viremic animals or that SIV infection is limited to a compartment of the genital mucosal immune system that cannot be assessed by monitoring SIV infection in peripheral blood mononuclear cells and peripheral lymphoid tissue.  相似文献   

17.
Simian immunodeficiency virus (SIV) infection of rhesus macaques has become an important surrogate model for evaluating HIV vaccine strategies. The extreme resistance to neutralizing antibody (NAb) of many commonly used strains, such as SIVmac251/239 and SIVsmE543-3, limits their potential relevance for evaluating the role of NAb in vaccine protection. In contrast, SIVsmE660 is an uncloned virus that appears to be more sensitive to neutralizing antibody. To evaluate the role of NAb in this model, we generated full-length neutralization-sensitive molecular clones of SIVsmE660 and evaluated two of these by intravenous inoculation of rhesus macaques. All animals became infected and maintained persistent viremia that was accompanied by a decline in memory CD4(+) T cells in blood and bronchoalveolar lavage fluid. High titers of autologous NAb developed by 4 weeks postinoculation but were not associated with control of viremia, and neutralization escape variants were detected concurrently with the generation of NAb. Neutralization escape was associated with substitutions and insertion/deletion polymorphisms in the V1 and V4 domains of envelope. Analysis of representative variants revealed that escape variants also induced NAbs within a few weeks of their appearance in plasma, in a pattern that is reminiscent of the escape of human immunodeficiency virus type 1 (HIV-1) isolates in humans. Although early variants maintained a neutralization-sensitive phenotype, viruses obtained later in infection were significantly less sensitive to neutralization than the parental viruses. These results indicate that NAbs exert selective pressure that drives the evolution of the SIV envelope and that this model will be useful for evaluating the role of NAb in vaccine-mediated protection.  相似文献   

18.
Viral suppression by noncytolytic CD8+ T cells, in addition to that by classic antiviral CD8+ cytotoxic T lymphocytes, has been described for human immunodeficiency virus and simian immunodeficiency virus (SIV) infections. However, the role of soluble effector molecules, especially beta-chemokines, in antiviral immunity is still controversial. In an attenuated vaccine model, approximately 60% of animals immunized with simian/human immunodeficiency virus (SHIV) 89.6 and then challenged intravaginally with SIVmac239 controlled viral replication (viral RNA level in plasma, <10(4) copies/ml) and were considered protected (K. Abel, L. Compton, T. Rourke, D. Montefiori, D. Lu, K. Rothaeusler, L. Fritts, K. Bost, and C. J. Miller, J. Virol. 77:3099-3118, 2003). To determine the in vivo importance of beta-chemokine secretion and CD8+-T-cell proliferation in the control of viral replication in this vaccine model, we examined the relationship between viral RNA levels in the axillary and genital lymph nodes of vaccinated, protected (n = 20) and vaccinated, unprotected (n = 11) monkeys by measuring beta-chemokine mRNA levels and protein expression, the frequency of CD8+ T cells expressing beta-chemokines, and the extent of CD8+-T-cell proliferation. Tissues from uninfected (n = 3) and unvaccinated, SIVmac239-infected (n = 9) monkeys served as controls. Axillary and genital lymph nodes from unvaccinated and vaccinated, unprotected monkeys had significantly higher beta-chemokine mRNA expression levels and increased numbers of beta-chemokine-positive cells than did vaccinated, protected animals. Furthermore, the lymph nodes of vaccinated, unprotected monkeys had significantly higher numbers of beta-chemokine(+) CD8+ T cells than did vaccinated, protected monkeys. Lymph nodes from vaccinated, unprotected animals also had significantly more CD8+-T-cell proliferation and marked lymph node hyperplasia than the lymph nodes of vaccinated, protected monkeys. Thus, higher levels of virus replication were associated with increased beta-chemokine secretion and there is no evidence that beta-chemokines contributed to the SHIV89.6-mediated control of viral replication after intravaginal challenge with SIVmac239.  相似文献   

19.
20.
The untranslated leader sequences of rhesus macaque simian immunodeficiency virus mRNAs form a stable secondary structure, TAR. This structure can be modified by RNA splicing. In this study, the role of TAR splicing in virus replication was investigated. The proportion of viral RNAs containing a spliced TAR structure is high early after infection and decreases at later times. Moreover, proviruses containing mutations which prevent TAR splicing are significantly delayed in replication. These mutant viruses require approximately 20 days to achieve half-maximal virus production, in contrast to wild-type viruses, which require approximately 8 days. We attribute this delay to the inefficient translation of unspliced-TAR-containing mRNAs. The molecular basis for this translational effect was examined in in vitro assays. We found that spliced-TAR-containing mRNAs were translated up to 8.5 times more efficiently than were similar mRNAs containing an unspliced TAR leader. Furthermore, these spliced-TAR-containing mRNAs were more efficiently associated with ribosomes. We postulate that the level of TAR splicing provides a balance for the optimal expression of both viral proteins and genomic RNA and therefore ultimately controls the production of infectious virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号