首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Froemke RC  Li CY  Dan Y 《Neuron》2003,39(4):579-581
In this issue of Neuron, Sj?str?m et al. provide evidence for a novel presynaptic mechanism for coincidence detection in induction of timing-dependent LTD. In their scheme, simultaneous activation of presynaptic NMDA receptors and CB1 endocannabinoid receptors induces a long-lasting reduction in presynaptic transmitter release.  相似文献   

2.
Biochemical mechanisms for translational regulation in synaptic plasticity   总被引:2,自引:0,他引:2  
Changes in gene expression are required for long-lasting synaptic plasticity and long-term memory in both invertebrates and vertebrates. Regulation of local protein synthesis allows synapses to control synaptic strength independently of messenger RNA synthesis in the cell body. Recent reports indicate that several biochemical signalling cascades couple neurotransmitter and neurotrophin receptors to translational regulatory factors in protein synthesis-dependent forms of synaptic plasticity and memory. In this review, we highlight these translational regulatory mechanisms and the signalling pathways that govern the expression of synaptic plasticity in response to specific types of neuronal stimulation.  相似文献   

3.
Sound localization in mammals uses two distinct neural circuits, one for low- and one for high-frequency bands. Recent experiments call for revision of the theory explaining how the direction of incoming sound is calculated. We propose such a revised theory. Our theory is based on probabilistic spiking and probabilistic delay of spikes from both sides. We have applied the mechanism originally proposed as an operation on spike trains resulting in multiplication of firing rates. We have adapted this mechanism for the case of synchronous spike trains. The mechanism has to detect spikes from both sides within a short time window. Therefore, in both circuits neurons act as coincidence detectors. In the excitatory low-frequency circuit we call the mechanism the excitatory coincidence detection, to distinguish it from the mechanism of the inhibitory coincidence detection in the high-frequency circuit. The times to first spike and gains of the two mechanisms are calculated. We show how the output gains of the mechanisms predict the dip within the human frequency sensitivity range. This dip has been described in human psychophysical experiments.  相似文献   

4.
Using a realistic model of activity dependent dynamical synapse, which includes both depressing and facilitating mechanisms, we study the conditions in which a postsynaptic neuron efficiently detects temporal coincidences of spikes which arrive from N different presynaptic neurons at certain frequency f. A numerical and analytical treatment of that system shows that: (1) facilitation enhances the detection of correlated signals arriving from a subset of presynaptic excitatory neurons, and (2) the presence of facilitation yields to a better detection of firing rate changes in the presynaptic activity. We also observed that facilitation determines the existence of an optimal input frequency which allows the best performance for a wide (maximum) range of the neuron firing threshold. This optimal frequency can be controlled by means of facilitation parameters. Finally, we show that these results are robust even for very noisy signals and in the presence of synaptic fluctuations produced by the stochastic release of neurotransmitters.  相似文献   

5.
Activity-dependent changes in the strength of excitatory synapses are a cellular mechanism for the plasticity of neuronal networks that is widely recognized to underlie cognitive functions such as learning and memory. AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors (AMPARs) are the main transducers of rapid excitatory transmission in the mammalian CNS, and recent discoveries indicate that the mechanisms which regulate AMPARs are more complex than previously thought. This review focuses on recent evidence that alterations to AMPAR functional properties are coupled to their trafficking, cytoskeletal dynamics and local protein synthesis. These relationships offer new insights into the regulation of AMPARs and synaptic strength by cellular signalling.  相似文献   

6.
Ye X  Carew TJ 《Neuron》2011,70(3):379-381
Neurexins and neuroligins are cell adhesion molecules that form transsynaptic interactions. In this issue of Neuron, Choi et al. report that neurexin-neuroligin signaling plays a critical role in functional and structural synaptic plasticity underlying memory formation in Aplysia.  相似文献   

7.
Li CY  Lu JT  Wu CP  Duan SM  Poo MM 《Neuron》2004,41(2):257-268
Correlated pre- and postsynaptic activity that induces long-term potentiation is known to induce a persistent enhancement of the intrinsic excitability of the presynaptic neuron. Here we report that, associated with the induction of long-term depression in hippocampal cultures and in somatosensory cortical slices, there is also a persistent reduction in the excitability of the presynaptic neuron. This reduction requires postsynaptic Ca(2+) elevation and presynaptic PKA- and PKC-dependent modification of slow-inactivating K(+) channels. The bidirectional changes in neuronal excitability and synaptic efficacy exhibit identical requirements for the temporal order of pre- and postsynaptic activation but reflect two distinct aspects of activity-induced modification of neural circuits.  相似文献   

8.
9.
In experiments on the frog cutaneous pectoris muscle in cases of different external calcium concentrations, using extracellular recording technique, processes of facilitation and depression of transmitter release during the high-frequency stimulation were investigated. On the ground of experiments using intracellular mobile calcium buffers BAPTA-AM and EGTA-AM, it was proposed that at least two (low- and high-affinity) calcium-binding sites underlie the facilitation. Both the facilitation and the depression were accompanied by such transformations of underlied of nerve ending responses as changes of the third phase amplitude. Application of potassium channel blockers allowed us to reveal the significant contribution of changes of duration of the AP repolarisation phase and, accordingly, the changes of magnitude of calcium influx to development of facilitation and depression of transmitter release. It was also revealed that, during the high-frequency rhythmic stimulation, the increase of asynchrony of transmitter release leading to decrease of facilitation and increase of depression occurred. It was concluded that the forms of short-term synaptic plasticity--facilitation and depression, were caused by various presynaptic mechanisms: the increase of concentration of "local" and accumulation of "residual" calcium, the changes of calcium influx, increase of temporal course of secretion, the impairment of equilibrium between the depletion and restoration of mediator supply. Due to some of these processes and specific conditions of synapse functioning, the facilitation of the depression of transmitter release occurred.  相似文献   

10.
To unravel the molecular and cellular bases of learning and memory is one of the most ambitious goals of modern science. The progress of recent years has not only brought us closer to understanding the molecular mechanisms underlying stable, long-lasting changes in synaptic strength, but it has also provided further evidence that these mechanisms are required for memory formation.  相似文献   

11.
12.
Different types of synapses are specialized to interpret spike trains in their own way by virtue of the complement of short-term synaptic plasticity mechanisms they possess. Numerous types of short-term, use-dependent synaptic plasticity regulate neurotransmitter release. Short-term depression is prominent after a single conditioning stimulus and recovers in seconds. Sustained presynaptic activation can result in more profound depression that recovers more slowly. An enhancement of release known as facilitation is prominent after single conditioning stimuli and lasts for hundreds of milliseconds. Finally, tetanic activation can enhance synaptic strength for tens of seconds to minutes through processes known as augmentation and posttetantic potentiation. Progress in clarifying the properties, mechanisms, and functional roles of these forms of short-term plasticity is reviewed here.  相似文献   

13.
14.
As in other mammals with binocular vision, monocular lid suture in mice induces bidirectional plasticity: rapid weakening of responses evoked through the deprived eye followed by delayed strengthening of responses through the open eye. It has been proposed that these bidirectional changes occur through three distinct processes: first, deprived-eye responses rapidly weaken through homosynaptic long-term depression (LTD); second, as the period of deprivation progresses, the modification threshold determining the boundary between synaptic depression and synaptic potentiation becomes lower, favouring potentiation; and third, facilitated by the decreased modification threshold, open-eye responses are strengthened via homosynaptic long-term potentiation (LTP). Of these processes, deprived-eye depression has received the greatest attention, and although several alternative hypotheses are also supported by current research, evidence suggests that alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor endocytosis through LTD is a key mechanism. The change in modification threshold appears to occur partly through changes in N-methyl-D-aspartate (NMDA) receptor subunit composition, with decreases in the ratio of NR2A to NR2B facilitating potentiation. Although limited research has directly addressed the question of open-eye potentiation, several studies suggest that LTP could account for observed changes in vivo. This review will discuss evidence supporting this three-stage model, along with outstanding issues in the field.  相似文献   

15.
16.
Neural circuits must maintain stable function in the face of many plastic challenges, including changes in synapse number and strength, during learning and development. Recent work has shown that these destabilizing influences are counterbalanced by homeostatic plasticity mechanisms that act to stabilize neuronal and circuit activity. One such mechanism is synaptic scaling, which allows neurons to detect changes in their own firing rates through a set of calcium-dependent sensors that then regulate receptor trafficking to increase or decrease the accumulation of glutamate receptors at synaptic sites. Additional homeostatic mechanisms may allow local changes in synaptic activation to generate local synaptic adaptations, and network-wide changes in activity to generate network-wide adjustments in the balance between excitation and inhibition. The signaling pathways underlying these various forms of homeostatic plasticity are currently under intense scrutiny, and although dozens of molecular pathways have now been implicated in homeostatic plasticity, a clear picture of how homeostatic feedback is structured at the molecular level has not yet emerged. On a functional level, neuronal networks likely use this complex set of regulatory mechanisms to achieve homeostasis over a wide range of temporal and spatial scales.  相似文献   

17.
Summary 1. Studies conducted on the rat arcuate nucleus, an area involved in the development and control of LH and FSH secretion, have shown the existence of hormonally regulated developmental sex differences in synaptic patterns and estrogen-induced synaptic plasticity during adult life. Several questions raised by these findings are examined in this review:2. The mechanisms of estrogen-regulated developmental synaptogenesis. These include the role of glycocalyx glycoproteins in neuronal membranes, neural cell adhesion molecules, and insulin-like growth factor I.3. The relationship among circulating estrogen, gonadotropin levels, and hypothalamic synaptic plasticity. Recent evidence for the role of GABAergic and dopaminergic synaptic inputs and POMC projections from the arcuate nucleus to the GnRH cells is discussed.4. The synaptologic basis of age-related failure of positive feedback. The role of the cumulative effect of repeated preovulatory synaptic retraction and reapplication cycles on sensescent constant estrus is analyzed.  相似文献   

18.
Bi GQ 《Biological cybernetics》2002,87(5-6):319-332
Recent experimental results on spike-timing-dependent plasticity (STDP) and heterosynaptic interaction in various systems have revealed new temporal and spatial properties of activity-dependent synaptic plasticity. These results challenge the conventional understanding of Hebb's rule and raise intriguing questions regarding the fundamental processes of cellular signaling. In this article, I review these new findings that lead to formulation of a new set of cellular rules. Emphasis is on evaluating potential molecular and cellular mechanisms that may underlie the spike-timing window of STDP and different patterns of heterosynaptic modifications. I also highlight several unresolved issues, and suggest future lines of research.  相似文献   

19.
20.
After accumulation of data showing that resident brain cells (neurons, astrocytes, and microglia) produce mediators of the immune system, such as cytokines and their receptors under normal physiological conditions, a critical need emerged for investigating the role of these mediators in cognitive processes. The major problem for understanding the functional role of cytokines in the mechanisms of synaptic plasticity, de novo neurogenesis, and learning and memory is the small number of investigated cytokines. Existing concepts are based on data from just three proinflammatory cytokines: interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha. The amount of information in the literature on the functional role of antiinflammatory cytokines in the mechanisms of synaptic plasticity and cognitive functions of mature mammalian brain is dismally low. However, they are of principle importance for understanding the mechanisms of local information processing in the brain, since they modulate the activity of individual cells and local neural networks, being able to reconstruct the processes of synaptic plasticity and intercellular communication, in general, depending on the local ratio of the levels of different cytokines in certain areas of the brain. Understanding the functional role of cytokines in cellular mechanisms of information processing and storage in the brain would allow developing preventive and therapeutic means for the treatment of neuropathologies related to impairment of these mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号