首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is found that bacteriophages B3 and B39 specific for Pseudomonas aeruginosa have the same genome structure as previously described phage D3112. On the right (S) end of their genomes a variable non-phage DNA is located (approximately 0.9-2.5 kilobases for different phages). It is probable that this variable DNa has its origin from different regions of bacterial chromosome. In genome of one of the phages, B3 phage, such variable DNA (not more than 150 base pairs) was found on the left end of DNA molecule. Isolation of a viable B3XD3112 recombinant phage and analysis of its genome with restriction technique and with studies of homo- and heteroduplex molecules had confirmed genetical relationship of B3 and D3112. Some essential non-homology of B3 and D3112 DNAs have been found on the right ends of genomes of the phages.  相似文献   

2.
A new bacteriophage phiK of microorganisms belonging to the genus Bordetella was isolated from cells of the earlier characterized strains 66(2-2) (1 and 2) obtained upon phage conversion of B. parapertussis 17903 cells by B. pertussis bacteriophage phi134. Bacteriophage phiK is identical to previously described Bordetella bacteriophages phiT, phi134, and phi214 in morphology and some biological properties but has a permuted genome different from all other phages. DNA of bacteriophage phiK is not integrated in the chromosome of B. parapertussis 17903, similar to DNA of bacteriophages phiT, phi134, and phi214 that are not integrated into B. pertussis and B. bronchiseptica chromosomes, but may be present in a small part of the bacterial population as linear plasmids. Sequences homologous to DNA of bacteriophage phiK were detected in the chromosome of strain 66(2-2) (1 and 2) and in chromosomes of all tested strains B. pertussis and B. bronchiseptica. Prophage integration in chromosomes of microorganisms of the genus Bordetella may vary in different bacterial strains and species. An assumption about abortive lysogeny of B. parapertussis bacteria for phiK phage and of B. bronchiseptica for closely related phages phiT, phi134, and phi214 has been advanced. The possibility of involvement of B. pertussis insertion sequences in the formation of the chromosomal structure in 66(2-2) convertants and in phage genomes is considered.  相似文献   

3.
The Shiga-like toxin 1-converting bacteriophage H-19B was recently shown to carry the structural genes for the toxin and was shown to have DNA sequence homology with phage lambda. We present evidence that the linear genome of bacteriophage H-19B has cohesive termini which become covalently associated during prophage integration. Integration occurs through a site on a 4-kilobase-pair EcoRI fragment located near the center of the bacteriophage chromosome. The relationship between bacteriophages H-19B and lambda was examined by Southern hybridization. Homologous regions were mapped on the respective chromosomes which corresponded to the regions of the J gene, the int-xis area, and the O and P genes of phage lambda. The H-19B tox genes were mapped to the right of the O and P gene homology, which was far away from the phage attachment site. We concluded that H-19B is a lambdoid bacteriophage. Unlike other toxin-converting bacteriophages, the toxin genes were not located adjacent to the phage attachment site. It appeared that the Shiga-like toxin 1 genes were not picked up by a simple imprecise prophage excision. H-19B could, however, have acquired chromosomally located toxin genes by a series of events involving deletion and duplication followed by aberrant excision.  相似文献   

4.
W Seufert  R Lurz    W Messer 《The EMBO journal》1988,7(12):4005-4010
A novel DNA replicon in Escherichia coli was identified. It is the smallest natural isolate (1282 bp) found so far. In the presence of phage M13 it grows as a filamentous single-stranded DNA phage. Contrary to previously identified mini-phages this replicon displays sequence homology only to parts of the M13 viral and complementary strand origin. In the absence of M13 this DNA replicates autonomously. The only gene (arp) of the replicon encodes a 32-kd protein, which is essential for autonomous replication. The host rep gene required for replication of single-stranded DNA phages is dispensable. Distinct replication mechanisms are thus involved during growth as defective phage or as autonomous plasmid.  相似文献   

5.
A novel single-stranded DNA phage, phiMH2K, of Bdellovibrio bacteriovorus was isolated, characterized, and sequenced. This phage is a member of the Microviridae, a family typified by bacteriophage phiX174. Although B. bacteriovorus and Escherichia coli are both classified as proteobacteria, phiMH2K is only distantly related to phiX174. Instead, phiMH2K exhibits an extremely close relationship to the Microviridae of Chlamydia in both genome organization and encoded proteins. Unlike the double-stranded DNA bacteriophages, for which a wide spectrum of diversity has been observed, the single-stranded icosahedral bacteriophages appear to fall into two distinct subfamilies. These observations suggest that the mechanisms driving single-stranded DNA bacteriophage evolution are inherently different from those driving the evolution of the double-stranded bacteriophages.  相似文献   

6.
A new bacteriophage ?K of microorganisms belonging to the genus Bordetella was isolated from cells of the earlier characterized strains 662-2 (1 and 2) obtained upon phage conversion of B. parapertussis 17 903 cells by B. pertussis bacteriophage ?134. Bacteriophage ?K is identical to previously described Bordetella bacteriophages ?T, ?134, and ?214 in morphology and some biological properties but has a permuted genome different from all other phages. DNA of bacteriophage ?K is not integrated in the chromosome of B. parapertussis 17 903, similar to DNA of bacteriophages ?T, ?134, and ?214 that are not integrated into B. pertussis and B. bronchiseptica chromosomes, but may be present in a small part of the bacterial population as linear plasmids. Sequences homologous to DNA of bacteriophage ?K were detected in the chromosome of strain 662-2 (1 and 2) and in chromosomes of all tested strains B. pertussis and B. bronchiseptica. Prophage integration in chromosomes of microorganisms of the genus Bordetella may vary in different bacterial strains and species. An assumption about abortive lysogeny of B. parapertussis bacteria for ?K phage and of B. pertussis and B. bronchiseptica for closely related phages ?T, ?134, and ?214 has been advanced. The possibility of involvement of B. pertussis insertion sequences in the formation of the chromosomal structure in 662-2 convertants and in phage genomes is considered.  相似文献   

7.
The influence of plasmids of the IncP-2 group on development of bacteriophages of Pseudomonas aeruginosa was studied. Six different types of phage growth inhibition conferred by natural plasmids of the IncP-2 group were found. All these plasmids were shown to have no effect on adsorption and injection of phage DNA into cells, only blocking intracellular phage development. The differences between phage inhibition mechanisms were shown by comparison of efficiency of colony formation by cells containing different plasmids, in the presence of different phages. The presence of the RpL11 plasmid reduces the frequency of lysogenization with G101 phage but not with B3 phage. The mutants of pMG53 plasmid having modified phage inhibition spectrum were obtained. It was inferred that inhibition of different phages is under control of different loci of this plasmid. The mutants of phage B3 overcoming inhibition by plasmids were obtained. It was supposed that the plasmids act at least at three different sites of the phage B3 genome.  相似文献   

8.
Packaging the viral genome into empty procapsids, an essential event in the life cycle of tailed bacteriophages and some eukaryotic viruses, is a process that shares features with chromosome assembly. Most viral procapsids possess a special vertex containing a dodecameric portal protein that is used for entry and exit of the viral genome. The portal and an ATPase are parts of the genome-packaging machine. The ATPase is required to provide energy for translocation and compaction of the negative charges on the genomic DNA. Here we report the atomic structure of the ATPase component in a phage DNA-packaging machine. The bacteriophage T4 ATPase has the greatest similarity to monomeric helicases, suggesting that the genome is translocated by an inchworm mechanism. The similarity of the packaging machines in the double-stranded DNA (dsDNA) bacteriophage T4 and dsRNA bacteriophage varphi12 is consistent with the evolution of many virions from a common ancestor.  相似文献   

9.
The close relatedness between 17 Leuconostoc oenos bacteriophages, induced with mitomycin C from strains isolated in different geographic regions, was inferred from their morphology, DNA homology and protein composition. The genome of all the phages had cohesive end termini and ranged in size from 36.4 to 40.9 kb. According to the restriction patterns obtained by digestion with five enzymes, the phages were divided in six groups. Lysogenization of a spontaneous phage-cured derivative of Leuc. oenos strain PSU-1 was achieved with 16 phages and the analysis of the lysogens showed that the phage DNA integrates in the host chromosome in one or two sites. The att B loci were located on the macrorestriction Asc I and Not I fragments of the recipient strain. A survey of Leuc. oenos strains with a phage DNA probe confirmed the lysogenic nature of several, but not all of the original phage hosts. These results are discussed in the light of evidence for the instability of some lysogenic PSU-1 derivatives.  相似文献   

10.
A phage-plasmid hybrid was constructed for use as a recombinant DNA vector, allowing the propagation of cloned EcoRI restriction endonuclease fragments of about 2 X 10(6) to 11 X 10(6) daltons. The colicin E1 plasmid replicon was fused to the left arm of a lambdagt generalized transducing phage with a thermolabile repressor, yielding a genome which could be replicated either by phage lambda functions or via the colicin E1 plasmid replicon. At the nonpermissive temperature, phage functions were derepressed and phage growth occurred lytically. Alternatively, at the permissive temperature, lambda functions were repressed and the vector replicated as a covalently closed circular plasmid. The phage-plasmid hybrid vector could be maintained at a copy number determined by the colicin E1 plasmid replicon and was also sensitive to amplification after chloramphenicol treatment. An EcoRI fragment of Escherichia coli DNA encoding genes of the arabinose operon also was inserted into the central portion of the vector.  相似文献   

11.
The method allowing the induction of bacterial mutations affecting Tn9 transposition from the bacteriophage genome to the Escherichia coli chromosome is described. Neither impaired ability of cells to adsorb bacteriophages, nor phage DNA degradation in the mutant cells were observed in the transposition-defective mutants isolated by the method. This led us to the conclusion that the isolated mutants were indeed defective in the transposition of Tn9.  相似文献   

12.
Some bacteriophages target potentially pathogenic bacteria by exploiting surface-associated virulence factors as receptors. For example, phage have been identified that exhibit specificity for Vi capsule producing Salmonella enterica serovar Typhi. Here we have characterized the Vi-associated E1-typing bacteriophage using a number of molecular approaches. The absolute requirement for Vi capsule expression for infectivity was demonstrated using different Vi-negative S. enterica derivatives. The phage particles were shown to have an icosahedral head and a long noncontractile tail structure. The genome is 45,362 bp in length with defined capsid and tail regions that exhibit significant homology to the S. enterica transducing phage ES18. Mass spectrometry was used to confirm the presence of a number of hypothetical proteins in the Vi phage E1 particle and demonstrate that a number of phage proteins are modified posttranslationally. The genome of the Vi phage E1 is significantly related to other bacteriophages belonging to the same serovar Typhi phage-typing set, and we demonstrate a role for phage DNA modification in determining host specificity.  相似文献   

13.
Despite the extensive genetic analysis of bacteriophage P1, the region of the viral genome that is responsible for its lytic (vegetative) replication has not been identified. In this paper we describe the identification of various fragments of P1 DNA that can replicate an otherwise replication-defective lambda vector when they are cloned into that vector. The fragments share a 2800 base-pair segment of the P1 genome that is located adjacent to the immI region of the phage. Replication mediated by the cloned P1 fragments is abolished by the product of the P1 c1 gene, the repressor of phage lytic functions. Since these properties resemble those of the P1 lytic replicon, we suggest that the 2800 base-pair segment identified here contains that replicon.  相似文献   

14.
Coevolution between bacteria and bacteriophages can be characterized as an infinitive constant evolutionary battle (phage-host arm race), which starts during phage adsorption and penetration into host cell, continues during phage replication inside the cells, and remains preserved also during prophage lysogeny. Bacteriophage may exist inside the bacterial cells in four forms with different evolutionary strategies: as a replicating virus during the lytic cycle, in an unstable carrier state termed pseudolysogeny, as a prophage with complete genome during the lysogeny, or as a defective cryptic prophage. Some defensive mechanisms of bacteria and virus countermeasures are characterized, and some evolutionary questions concerning phage–host relationship are discussed.  相似文献   

15.
R E Wolf  Jr 《Journal of bacteriology》1980,142(2):588-602
Molecular and genetic studies have revealed that several illegitimate recombinational events are associated with integration of the specialized transducing bacteriophage lambda cI57 St68 h80 dgnd his into either the Escherichia coli chromosome or into a plasmid. Most Gnd+ His+ transductants did not carry the prophage at att phi-80, and 10% were not immune to lambda, i.e., "nonlysogenic." Integration of the phage was independent of the phage Int and Red gene products and of the host's general recombination (Rec) system. In further studies, bacterial strains were selected which carried the phage integrated into an R-factor, pSC50. Restriction endonuclease analysis of plasmid deoxyribonucleic acid (DNA) purified from these strains showed that formation of the hybrid plasmids resulted from recombination between a single region of pSC50 and one of several sites within the lambda-phi 80 portion of the phage. Furthermore the his-gnd region of the phage, present in the chromosome of one nonlysogenic transductant, was shown to be able to translocate to pSC50. Concomitant deletion of phage DNA sequences or pSC50 DNA was frequently observed in conjunction with these integration or translocation events. In supplemental studies, a 22- to 24-megadalton segment of the his-gnd region of the chromosome of a prototrophic recA E. coli strain was shown to translocate to pSC50. One terminus of this translocatable segment was near gnd and was the same as a terminus of the his-gnd segment of the phage which translocated from the chromosome of the nonlysogenic transductant. These data suggest that integration of lambda cI857 St 68 h80 dgnd his may be directed by a recombinationally active sequence on another replicon and that the resulting cointegrate structure is subject to the formation of deletions which extend from the recombinationally active sequence. Translocation of the his-gnd portion of the phage probably requires prior replicon fusion, whereas the his-gnd region of the normal E. coli chromosome may comprise a discrete, transposable element.  相似文献   

16.
Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. The capsid expands after about 10%-25% of the genome is packaged. When the head is full, the motor cuts the concatemeric DNA and dissociates from the head. Conformational changes, particularly in the portal, are thought to drive these sequential transitions. We found that the phage T4 packaging machine is highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Optical tweezers experiments show that single motors can force exogenous DNA into phage heads at the same rate as into proheads. Single molecule fluorescence measurements demonstrate that phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. These results suggest that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features probably led to the evolution of viral genomes that fit capsid volume, a strikingly common phenomenon in double-stranded DNA viruses, and will potentially allow design of a novel class of nanocapsid delivery vehicles.  相似文献   

17.
Is phage DNA 'injected' into cells--biologists and physicists can agree   总被引:1,自引:0,他引:1  
The double-stranded DNA inside bacteriophages is packaged at a density of approximately 500 mg/ml and exerts an osmotic pressure of tens of atmospheres. This pressure is commonly assumed to cause genome ejection during infection. Indeed, by the addition of their natural receptors, some phages can be induced in vitro to completely expel their genome from the virion. However, the osmotic pressure of the bacterial cytoplasm exerts an opposing force, making it impossible for the pressure of packaged DNA to cause complete genome ejection in vivo. Various processes for complete genome ejection are discussed, but we focus on a novel proposal suggesting that the osmotic gradient between the extracellular environment and the cytoplasm results in fluid flow through the phage virion at the initiation of infection. The phage genome is thereby sucked into the cell by hydrodynamic drag.  相似文献   

18.
19.
phi CTX is a cytotoxin-converting phage isolated from Pseudomonas aeruginosa. In this study, we determined the complete nucleotide sequence of the phi CTX phage genome. The precise genome size was 35,538 bp with 21 base 5'-extruding cohesive ends. Forty-seven open reading frames (ORFs) were identified on the phi CTX genome, including two previously identified genes, ctx and int. Among them, 15 gene products were identified in the phage particle by protein microsequencing. The most striking feature of the phi CTX genome was an extensive homology with the coliphage P2 and P2-related phages; more than half of the ORFs (25 ORFs) had marked homology to P2 genes with 28.9-65.8% identity. The gene arrangement on the genome was also highly conserved for the two phages, although the G + C content and codon usage of most phi CTX genes were similar to those of the host P. aeruginosa chromosome. In addition, phi CTX was found to share several common features with P2, including the morphology, non-inducibility, use of lipopolysaccharide core oligosaccharide as receptor and Ca(2+)-dependent receptor binding. These findings indicate that phi CTX is a P2-like phage well adapted to P. aeruginosa, and provide clear evidence of the intergeneric spread and evolution of bacteriophages. Furthermore, comparative analysis of genome structures of phi CTX, P2 and other P2 relatives revealed the presence of several hot-spots where foreign DNAs, including the cytotoxin gene, were inserted. They appear to be deeply concerned in the acquisition of various genes that are horizontally transferred by bacteriophage infection.  相似文献   

20.
A general strategy was applied to implement resistance against temperate bacteriophages that infect food fermentation starters through cloning and expression of the phage repressor. Lactobacillus casei ATCC 393 and phage A2 were used to demonstrate its feasibility as milk fermentation is drastically inhibited when the strain is infected by this phage. The engineered strain Lact. casei EM40::cI, which has the A2 repressor gene (cI) integrated into the genome, was completely resistant and able to ferment milk whether phage was present or not. In addition, viable phages were eliminated from the milk, probably through adsorption to the cell wall. Finally, the integration of cI in the genome resulted in a stable resistance phenotype, being unnecessary selective pressure during milk fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号