首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclin-dependent kinase (CDK) inhibitor genes encode low molecular weight proteins which have important functions in cell cycle regulation, development and perhaps also in tumorigenesis. The first plant CDK inhibitor gene ICK1 was recently identified from Arabidopsis thaliana . Although the C-terminal domain of ICK1 contained an important consensus sequence with the mammalian CDK inhibitor p27Kip1, the remainder of the deduced ICK1 sequence showed little similarity to any known CDK inhibitors. In vitro assays showed that recombinant ICK1 exhibited unique kinase inhibitory properties. In the present study we characterized ICK1 in terms of its gene structure, its interaction with both A. thaliana Cdc2a and CycD3, and its induction by the plant growth regulator, abscisic acid (ABA). ICK1 was expressed at a relatively low level in the tissues surveyed. However, ICK1 was induced by ABA, and along with ICK1 induction there was a decrease in Cdc2-like histone H1 kinase activity. These results suggest a molecular mechanism by which plant cell division might be inhibited by ABA. ICK1 clones were also identified from independent yeast two-hybrid screens using the CycD3 construct. The implication that ICK1 protein could interact with both Cdc2a and CycD3 was confirmed by in vitro binding assays. Furthermore, deletion analysis indicated that different regions of ICK1 are required for the interactions with Cdc2a and CycD3. These results provide a mechanistic basis for understanding the role of CDK inhibitors in cell cycle regulation in plant cells.  相似文献   

2.
Calcium-dependent protein kinases (CDPKs) are essential sensor-transducers of calcium signaling pathways in plants. Functional characterization of CDPKs is of great interest because they play important roles during growth, development, and in response to a wide range of environmental stimuli. The Arabidopsis genome encodes 34 CDPKs, but very few substrates of these enzymes have been identified. In this study, we exploited the unique characteristics of CDPKs to develop an efficient approach for the discovery of CDPK-interacting proteins. High-throughput, semi-automated yeast two-hybrid interaction screens with two different cDNA libraries each containing 18 million prey clones were performed using catalytically impaired and constitutively active AtCPK4 and AtCPK11 variants as baits. The use of the constitutively active versions of the CPK baits improved the recovery of positive interacting proteins relative to the wild type kinase. Titration of interaction strength by growth under increasing concentrations of 3-aminotriazole (3-AT), a histidine analog and competitive inhibitor of the His3 gene product, confirmed these results. Possible mechanisms for this observed improvement are discussed. The reproducibility of this approach was assessed by the overlap of several interacting proteins of AtCPK4 and AtCPK11 and the recovery of several putative substrates and indicated that yeast two-hybrid screens using constitutively active and/or catalytically impaired forms of CDPK provides a useful tool to identify potential substrates of the CDPK family and potentially the entire protein kinase superfamily. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
In yeast and mammals, the Yip/PRA1 family of proteins has been reported to facilitate the delivery of Rab GTPases to the membrane by dissociating the Rab–GDI complex during vesicle trafficking. Recently, we identified OsPRA1, a plant Yip/PRA1 homolog, as an OsRab7-interacting protein that localizes to the prevacuolar compartment, which suggests that it plays a role in vacuolar trafficking of plant cells. Here, we show that OsPRA1 is essential for vacuolar trafficking and that it has molecular properties that are typical of the Yip/PRA1 family of proteins. A trafficking assay using Arabidopsis protoplasts showed that the point mutant OsPRA1(Y94A) strongly inhibits the vacuolar trafficking of cargo proteins, but has no inhibitory effect on the plasma membrane trafficking of H+-ATPase-GFP, suggesting its specific involvement in vacuolar trafficking. Moreover, OsPRA1 was shown to be an integral membrane protein, suggesting that its two hydrophobic domains may mediate membrane integration, and its cytoplasmic N- and C-terminal regions were found to be important for binding to OsRab7. OsPRA1 also interacted with OsVamp3, implying its involvement in vesicle fusion. Finally, we used a yeast expression system to show that OsPRA1 opposes OsGDI2 activity and facilitates the delivery of OsRab7 to the target membrane. Taken together, our results support strongly that OsPRA1 targets OsRab7 to the tonoplast during vacuolar trafficking.  相似文献   

4.
Neisseria gonorrhoeae opacity-associated (Opa) proteins are a family of outer membrane proteins involved in gonococcal adherence to and invasion of human cells. We wanted to identify additional roles for Opa in the infectious process and used the yeast two-hybrid system to identify human epithelial cell proteins that interact with Opa proteins. Although this system has been used successfully to identify many types of interacting proteins, it has not been used to screen a human cell cDNA library for binding partners of a prokaryotic outer membrane protein. Therefore, we were also interested in exploring the versatility of the yeast two-hybrid system in identifying bacteria–host interactions. Using OpaP from strain F62SF as bait, we screened a HeLa cell cDNA library for Opa-interacting proteins (OIPs). We identified five different OIPs, designated OIP1–OIP5, two of which are homologous to human proteins — thyroid hormone receptor interacting protein (TRIP6) and pyruvate kinase isoenzyme M2 (PK). In the studies presented here, we investigated the interaction between Opa proteins and PK in more depth. Opa–PK interactions were confirmed by in vitro and in vivo assays independent of the yeast two-hybrid system. Escherichia coli expressing six different Opa proteins from gonococcal strain FA1090 all bound more PK than Opa-negative E. coli in in vitro binding assays. Using anti-PK antibody and fluorescence microscopy, we showed that human epithelial cell PK co-localizes with intracellular Opa+ gonococci and E. coli expressing Opa proteins. Using a mutant of N. gonorrhoeae unable to grow on pyruvate or lactate, it appears that intracellular pyruvate is essential for gonococcal growth and survival. These results suggest a novel mechanism in bacterial pathogenesis, i.e. the requirement for direct molecular interaction with a host metabolic enzyme (PK) for the acquisition of an essential intracellular carbon source and growth substrate (pyruvate). These results demonstrate that the yeast two-hybrid system is a valuable tool for identifying biologically relevant interactions between bacteria and host proteins, providing valuable leads for further investigations into novel mechanisms of bacterial pathogenesis.  相似文献   

5.
Rab GTPases like Ras-related monomeric GTPases are well known to regulate intracellular vesicle trafficking by cycling between membrane-bound and cytosolic states. The functions of these proteins are controlled by upstream regulators and downstream effectors. Ypt/Rabs transmit signals to downstream effectors in a GTP-dependent manner. GDP-bound Rab proteins are extracted from their target membrane by cytosolic proteins known as GDP dissociation inhibitors (GDIs), and the Rab GTPase is recruited to the membrane compartment following dissociation from the GDI by GDI displacement factor (GDF). Now, we''re going to discuss the role of plant PRA concerted with Rab and GDI proteins by recycling Rab between membrane and cytosol for intracellular trafficking of cargo proteins.Key words: GDF, GDI, PRA1, Rab, vacuolar trafficking, vesicle traffickingAlthough Rabs appear to undergo multiple cycles of GDI-mediated delivery to, and extraction from membranes,1 the mechanisms underlying Rab membrane delivery and association by GDI and other factors remain unclear. GDP-GTP exchange occurs at the target membrane, catalyzed by a guanine nucleotide exchange factor (GEF),2,3 and the GTP-bound Rab transmits signals to downstream effectors and associates with the membrane to ensure proper docking and fusion of transport vesicles.4 After vesicle fusion on its target membrane, subsequently hydrolysis of GTP by the Rab is facilitated by GTPase-activating proteins (GAPs).4 The resulting GDP-bound Rab is subsequently retrieved from the membrane by GDI, which then maintains Rab in the cytosol to complete the cycle.Many research groups isolated PRAs, a homolog of human YIP3, in several two-hybrid screenings as interacting with multiple Rabs in their GTP- or GDP-bound form.5,6 PRA contains two extensive hydrophobic domains which may form a membrane-spanning domain or the inner hydrophobic core of the protein.7 PRA1 is localized to the Golgi and late endosomes,8 and the related PRA2 is present in the endoplasmic reticulum.9Recently it has been shown that the human YIP3 stimulates the rate of nucleotide binding to Rab9 when added to prenyl Rab9-GDI complex and catalyzes the dissociation of the endosomal Rab-GDI complex, indicating that YIP3 is a GDI displacement factor that recruits Rab to membranes.10 According to the Gougeon et al. report (2002),11 PRA1 inhibits the extraction of membrane-bound Rab3A by GDI1, suggesting that recycling of Rab depends on the opposing actions of PRA and GDI, with PRA favoring membrane retention but GDI favoring solubilization.Moreover, mammalian PRA1 is required for vesicle formation from the Golgi complex and might influence the recruitment of Rab effectors during cargo sequestration as well as proteins required for subsequent vesicle docking and fusion.11 This is consistent with its transport function based on interaction of yeast homologue Yip3p with proteins in the secretory pathway.7 Yip1-Yif1p complex binds to the ER and to the Golgi SNAREs, Bos1p and Sec22p, and is required for membrane fusion machinery.5 In addition, a role of Yip1p had also been proposed in COPII vesicle biogenesis.12To our current knowledge there is no report on the physiological role of a GDF in plants. Aims to enrich the understanding of the mechanism of Rab recycling and trafficking pathways in plant, we identified and characterized OsPRA1, a rice homolog of PRA. OsPRA1, isolated by yeast two-hybrid screening using OsRab7 as bait, localized to the prevacuolar compartment as a membrane protein.13 Additionally, through western blot and protoplast transient assays it was confirmed that OsPRA1 has GDF activity, which dissociates the Rab7-GDI2 complex and recruits dissociated Rab from the Rab7-GDI2 complex to the donor membrane (unpublished data). When yeast two-hybrid interaction assay between OsPRA1 and OsGDI2 was performed, OsPRA1 interacted with OsGDI2 weakly (unpublished data), supporting our proposition that OsPRA1 dissociates the OsRab7-OsGDI2 complex.Furthermore, by using yeast two-hybrid and co-immunoprecipitation assays it was demonstrated that OsPRA1 interacted with dominant negative OsRab7 (T22N) which has no GTP binding activity, but not the constitutively active OsRab7 (Q67L),13 indicating that OsPRA1 may interact with GDP-bound OsRab7 at the donor membrane, PVC. These results support that OsPRA1 is a GDF for OsRab7.Subsequently, in order to find its interacting proteins implicated in vesicular trafficking, such as t- or v-SNAREs, yeast two-hybrid screening using OsPRA1 as bait was performed. Interestingly, a t-SNARE, OsVam3p, homolgous to AtVam3p involved in vacuolar trafficking and localizing to both PVC and vacuole membranes in Arabidopsis,14 was isolated (unpublished data). This suggests that OsPRA1 may be a component of the vesicle fusion machinery. To further strengthen our hypothesis, we examined whether or not mutant OsPRA1 (Y94A) and OsRab7 interact. Mutant OsPRA1 (Y94A) showed weak and no interaction with OsRab7 and OsVam3p, respectively, indicating that mutant OsPRA1 (Y94A) may lose its activity for recruiting Rab GTPase and Rab effector proteins and fusing vesicles to the vacuolar membrane. Actually, when OsPRA1 was mutated, its GDF activity was reduced to less than 50%, and its localization was changed from the PVC to the cytosol. These results are consistent with the assigned transport function of OsPRA1. Besides, our data from transient expression assay using vacuole markers suggested a direct involvement of OsPRA1 in the trafficking of vacuolar proteins.In summary, OsPRA1, a Yip homologous protein, may function in regulating vacuolar trafficking as a GDF dissociating OsRab7-OsGDI2 complex in plant cells.  相似文献   

6.
G-protein coupled receptor interacting scaffold protein (GISP) is a multi-domain, brain-specific protein derived from the A-kinase anchoring protein (AKAP)-9 gene. Using yeast two-hybrid screens to identify GISP interacting proteins we isolated the SUMO conjugating enzyme Ubc9. GISP interacts with Ubc9 in vitro, in heterologous cells and in neurons. SUMOylation is a post-translational modification in which the small protein SUMO is covalently conjugated to target proteins, modulating their function. Consistent with its interaction with Ubc9, we show that GISP is SUMOylated by both SUMO-1 and SUMO-2 in both in vitro SUMOylation assays and in mammalian cells. Intriguingly, SUMOylation of GISP in neurons occurs in an activity-dependent manner in response to chemical LTP. These data suggest that GISP is a novel neuronal SUMO substrate whose SUMOylation status is modulated by neuronal activity.  相似文献   

7.
In this work we used the yeast two-hybrid (Y2H) system to deepen our understanding of protein-protein interactions that are involved in the nitrogen regulatory network in Escherichia coli. Three different genes, encoding GlnB, GlnK and AspA, respectively, were found among 64 positive clones identified from E. coli Sau 3AI Y2H libraries using the nitrogen regulator NtrB as bait. Structural and functional analysis of the prey clones provided information on library features and the degree of saturation achieved in the screens. Further analysis revealed that the C-terminal kinase domain of NtrB is required for the interaction with GlnK, while AspA91–312 interacts specifically with the conserved histidine phosphotransfer domain of NtrB, thus providing additional evidence for the involvement of the conserved transmitter module of the histidine kinase NtrB in input sensory functions.Communicated by A. Kondorosi  相似文献   

8.
In Arabidopsis, there is a family of receptor-like protein kinases (RLKs) containing novel cysteine-rich repeats in their extracellular domains. Genes encoding many of these cysteine-rich RLKs (CRKs) are induced by pathogen infection, suggesting a possible role in plant defense responses. We have previously generated Arabidopsis plants expressing four pathogen-regulated CRK genes (CRK5, 6, 10 and 11) under control of a steroid-inducible promoter and found that induced expression of CRK5, but not the other three CRK genes, triggered hypersensitive response-like cell death in transgenic plants. In the present study, we have analyzed the structural relationship of the CRK family and identified three CRKs (CRK4, 19 and 20) that are structurally closely related to CRK5. Genes encoding these three CRKs are all induced by salicylic acid and pathogen infection. Furthermore, induced expression of CRK4, 19and 20 all activates rapid cell death in transgenic plants. Thus, the activity of inducing rapid cell death is shared by these structurally closely related CRKs. We have also performed yeast two-hybrid screens and identified proteins that interact with the kinase domains of CRKs. One of the identified CRK-interacting proteins is the kinase-associated type 2C protein phospohatase known to interact with a number of other RLKs through its kinase-interacting FHA domain. Other CRK-interacting proteins include a second protein with a FHA domain and another type 2C protein phosphatase. Interactions of CRKs with these three proteins in vivo were demonstrated through co-immunoprecipitation. These CRK-interacting proteins may play roles in the regulation and signaling of CRKs.  相似文献   

9.
10.
为了明确GsSnRK1.1蛋白激酶在野生大豆生长发育中的具体调控机制,该研究利用酵母二元杂交技术发现了蛋白激酶GsSnRK1.1的互作蛋白GsPP2CA和GsPKA,利用原核表达系统对GsSnRK1.1、GsPP2CA和GsPKA进行了表达和纯化用于Pull down和体外磷酸化分析,并在酵母中研究了GsPP2CA和GsPKA对GsSnRK1.1蛋白活性的调控功能。结果表明:(1)GsSnRK1.1与GsPP2CA和GsPKA具有物理互作关系,Phos Tag和pPKDsub特异性磷酸化抗体检测发现,GsSnRK1.1的Thr176磷酸化可以被蛋白磷酸酶GsPP2CA去磷酸化,GsPKA可能会磷酸化GsSnRK1.1的其他潜在磷酸化位点,进而竞争性抑制GsSnRK1.1的Thr176位点的磷酸化水平。(2)将这些基因回补进入酵母ARY330( snf1/ reg1/ sit4)突变株系中,发现共转化GsSnRK1.1和GsPP2CA或GsPKA的转化子可在非葡萄糖碳源和高葡萄糖碳源的选择培养基上正常生长,GsPP2CA、GsPKA可以替代Reg1和Sit4降低GsSnRK1.1过度磷酸化对酵母细胞产生的毒害作用,进而调控GsSnRK1.1对非发酵型碳源的利用。  相似文献   

11.
Several GTPases are required for ribosome biogenesis and assembly. We recently identified rice (Oryza sativa) nuclear/nucleolar GTPase 2 (OsNug2), a YlqF/YawG family GTPase, as having a role in pre-60S ribosomal subunit maturation. To investigate the potential factors involved in regulating OsNug2 function, yeast two-hybrid screens were performed using OsNug2 as bait. Rice serine/threonine kinase 1 (OsSTK1) was identified as a candidate interacting protein. OsSTK1 appeared to interact with OsNug2 both in vitro and in vivo. OsSTK1 was found to have no effect on the GTP-binding activity of OsNug2; however, the presence of recombinant OsSTK1 in OsNug2 assay reaction mixtures increased OsNug2 GTPase activity. A kinase assay showed that OsSTK1 had weak autophosphorylation activity and strongly phosphorylated serine 209 of OsNug2. Using yeast complementation testing, we identified a GAL::OsNug2(S209N) mutation-harboring yeast strain that exhibited a growth-defective phenotype on galactose medium at 39 °C, which was divergent from that of a yeast strain harboring GAL::OsNug2. The intrinsic GTPase activity of OsNug2(S209N), which was found to be similar to that of OsNug2, was not fully enhanced upon weak binding of OsSTK1. Our findings indicate that OsSTK1 functions as a positive regulator of OsNug2 by enhancing OsNug2 GTPase activity. In addition, phosphorylation of OsNug2 serine 209 is essential for its complete function in biological functional pathway.  相似文献   

12.
The yeast two-hybrid system was used to further characterize the interactions between the Brassica S receptor kinase (SRK) and three putative substrates, ARC1 and the two thioredoxin h proteins, THL1 and THL2. Interactions were generally detectable with kinase domains of both Class I and Class II SRKs. Chimeric constructs were made between the SRK910 kinase domain and the non-interacting Arabidopsis RLK5 kinase domain. Only one chimeric construct, SRR2, interacted with THL1 and THL2, while none of the chimeras were able to interact with ARC1. SRR2 is largely made up of RLK5 kinase domain with the N-terminal end being derived from the SRK910 kinase domain and was the only chimeric construct that retained kinase activity. Deletion or substitution of a conserved cysteine at the N-terminal end of the SRK910 kinase domain resulted in loss of interaction with THL1 and THL2, while the addition of this cysteine to a related receptor kinase, SFR1, conferred the ability to interact with the thioredoxin h proteins. In addition, substitution of the cysteines in the THL1 active site abolished the interaction. Lastly, the two Arabidopsis thioredoxin h clones most closely related to THL1 and THL2 were found to interact with the SRK kinase domains. Thus, the nature of the interaction of the thioredoxin h clones with SRK involves the reducing activity of these proteins and is restricted to the class of thioredoxin h proteins which have the variant CPPC active site.  相似文献   

13.
14.
Chk1 is an evolutionarily conserved protein kinase that plays an essential role in mediating G2 arrest in response to DNA damage in Schizosaccharomyces pombe and human cells. It functions by maintaining the inhibition (by phosphorylation of a specific tyrosine residue) of the cyclin-dependent kinase Cdc2 that initiates the G2/M transition. Here, we characterize a structural homologue of Chk1 in the budding yeast Saccharomyces cerevisiae. In this organism, G2/M arrest following DNA damage is considered to be independent of tyrosine phosphorylation of the Cdc2 homologue Cdc28. Nevertheless, a partial defect in G2/M-phase arrest following treatment with ionizing radiation, but not UV radiation, is associated with deletion of CHK1. The fact that such an effect remains detectable in cells synchronized with the microtubule inhibitor nocodazole prior to γ irradiation implies the existence of a CHK1-dependent checkpoint in M phase. We conclude from epistasis analysis that Chk1 participates in the Pds1-dependent subpathway of M-phase arrest. In spite of the partial checkpoint defect of the chk1 mutant, the survival of colony-forming cells is not notably decreased following UV and γ irradiation. In two-hybrid screens, we identified a heme-binding stress protein (encoded by the yeast ORF YNL234W), a protein involved in genomic silencing (Sas3) and Chk1 itself as interacting partners of Chk1. Received: 7 July 1999 / Accepted: 29 October 1999  相似文献   

15.

Background  

Members of the Kinesin-3 family of kinesin-like proteins mediate transport of axonal vesicles (KIF1A, KIF1Bβ), distribution of mitochondria (KIF1Bα) and anterograde Golgi to ER vesicle transport (KIF1C). Until now, little is known about the regulation of kinesin-like proteins. Several proteins interact with members of this protein family. Here we report on a novel, KIF1 binding protein (KBP) that was identified in yeast two-hybrid screens.  相似文献   

16.
Grain size and weight are directly associated with grain yield in crops. However, the molecular mechanisms that set final grain size and weight remain largely unknown. Here, we characterize two large grain mutants, large grain8‐1 (large8‐1) and large grain8‐2 (large8‐2). LARGE8 encodes the mitogen‐activated protein kinase phosphatase1 (OsMKP1). Loss of function mutations in OsMKP1 results in large grains, while overexpression of OsMKP1 leads to small grains. OsMKP1 determines grain size by restricting cell proliferation in grain hulls. OsMKP1 directly interacts with and deactivates the mitogen‐activated protein kinase 6 (OsMAPK6). Taken together, we identify OsMKP1 as a crucial factor that influences grain size by deactivating OsMAPK6, indicating that the reversible phosphorylation of OsMAPK6 plays important roles in determining grain size in rice.  相似文献   

17.
18.
19.
Abi enhances Abl-mediated Cdc2 phosphorylation and inactivation   总被引:1,自引:1,他引:0  
Abelson tyrosine kinase (Abl) is a non-receptor tyrosine kinase which is frequently coupled with adaptor proteins to interact with its substrates for the regulation of cytoskeleton rearrangement, cell growth and apoptosis in response to a variety of biological stimuli. The Abl interactor (Abi) family members were first identified as adaptor proteins of Abl for regulating Abl transforming and kinase activity. In the present study, we used a yeast two-hybrid screen to identify Cdc2 as a novel Abi-binding protein. This finding led us to investigate the role of Abi in linking Abl and Cdc2. These three proteins formed a trimeric complex inDrosophila and mammalian cells. The expression of Abi in cells greatly enhanced the formation of the Abl-Cdc2 complex, suggesting that Abi functions as an adaptor protein facilitating the binding between Abl and Cdc2. We show that Abi promotes Abl-mediated phosphorylation of Cdc2 at tyrosine 15 and inactivation of Cdc2 kinase activity. Furthermore, coexpression of Abl and Abi inDrosophila S2 cells led to suppression of cell growth. These data suggest that Abl signaling may be involved in the downregulation of Cdc2 kinase in cell cycle control.  相似文献   

20.
Yeast and human Clp1 proteins are homologous components of the mRNA 3′-cleavage-polyadenylation machinery. Recent studies highlighting an association of human Clp1 (hClp1) with tRNA splicing endonuclease and an intrinsic RNA-specific 5′-OH polynucleotide kinase activity of hClp1 have prompted speculation that Clp1 might play a catalytic role in tRNA splicing in animal cells. Here, we show that expression of hClp1 in budding yeast can complement conditional and lethal mutations in the essential 5′-OH RNA kinase module of yeast or plant tRNA ligases. The tRNA splicing activity of hClp1 in yeast is abolished by mutations in the kinase active site. In contrast, overexpression of yeast Clp1 (yClp1) cannot rescue kinase-defective tRNA ligase mutants, and, unlike hClp1, the purified recombinant yClp1 protein has no detectable RNA kinase activity in vitro. Mutations of the yClp1 ATP-binding site do not affect yeast viability. These findings, and the fact that hClp1 cannot complement growth of a yeast clp1Δ strain, indicate that yeast and human Clp1 proteins are not functional orthologs, despite their structural similarity. Although hClp1 can perform the 5′-end-healing step of a yeast-type tRNA splicing pathway in vivo, it is uncertain whether its kinase activity is necessary for tRNA splicing in human cells, given that other mammalian counterparts of yeast-type tRNA repair enzymes are nonessential in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号