首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Although the distribution of DNA-binding proteins inside the cell nucleus can be analyzed by immunolabeling or by tagging proteins with GFP, we cannot establish whether the protein is bound to DNA or not. Here, we describe a novel approach that allows imaging of the in situ interaction between a GFP-fusion protein and DNA in the cell nucleus, using fluorescence resonance energy transfer (FRET). We used fluorescence lifetime imaging microscopy (FLIM) as a reliable tool to detect protein in contact with DNA. The method was successfully applied to the DNA-binding proteins histone H2B and the glucocorticoid receptor and to the heterochromatin-associated proteins HP1alpha and HP1beta.  相似文献   

3.
4.
Binding of proteins to DNA is usually considered 1D with one protein bound to one DNA molecule. In principle, proteins with multiple DNA binding domains could also bind to and thereby cross-link different DNA molecules. We have investigated this possibility using high-mobility group A1 (HMGA1) proteins, which are architectural elements of chromatin and are involved in the regulation of multiple DNA-dependent processes. Using direct stochastic optical reconstruction microscopy (dSTORM), we could show that overexpression of HMGA1a-eGFP in Cos-7 cells leads to chromatin aggregation. To investigate if HMGA1a is directly responsible for this chromatin compaction we developed a DNA cross-linking assay. We were able to show for the first time that HMGA1a can cross-link DNA directly. Detailed analysis using point mutated proteins revealed a novel DNA cross-linking domain. Electron microscopy indicates that HMGA1 proteins are able to create DNA loops and supercoils in linearized DNA confirming the cross-linking ability of HMGA1a. This capacity has profound implications for the spatial organization of DNA in the cell nucleus and suggests cross-linking activities for additional nuclear proteins.  相似文献   

5.
Architectural DNA-binding proteins function to regulate diverse DNA reactions and have the defining property of significantly changing DNA conformation. Although the 1D movement along DNA by other types of DNA-binding proteins has been visualized, the mobility of architectural DNA-binding proteins on DNA remains unknown. Here, we applied single-molecule fluorescence imaging on arrays of extended DNA molecules to probe the binding dynamics of three structurally distinct architectural DNA-binding proteins: Nhp6A, HU, and Fis. Each of these proteins was observed to move along DNA, and the salt concentration independence of the 1D diffusion implies sliding with continuous contact to DNA. Nhp6A and HU exhibit a single sliding mode, whereas Fis exhibits two sliding modes. Based on comparison of the diffusion coefficients and sizes of many DNA binding proteins, the architectural proteins are categorized into a new group distinguished by an unusually high free-energy barrier for 1D diffusion. The higher free-energy barrier for 1D diffusion by architectural proteins can be attributed to the large DNA conformational changes that accompany binding and impede rotation-coupled movement along the DNA grooves.  相似文献   

6.
We describe a protocol, DNA sampling, for the rapid isolation of specific segments of DNA, together with bound proteins, from Escherichia coli K-12. The DNA to be sampled is generated as a discrete fragment within cells by the yeast I-SceI meganuclease, and is purified using FLAG-tagged LacI repressor and beads carrying anti-FLAG antibody. We illustrate the method by investigating the proteins bound to the colicin K gene regulatory region, either before or after induction of the colicin K gene promoter.  相似文献   

7.
Non-specifically bound nucleic acid contaminants are an unwanted feature of recombinant RNA-binding proteins purified from Escherichia coli (E. coli). Removal of these contaminants represents an important step for the proteins’ application in several biological assays and structural studies. The method described in this paper is a one-step protocol which is effective at removing tightly bound nucleic acids from overexpressed tagged HIV-1 Rev in E. coli. We combined affinity chromatography under denaturing conditions with subsequent on-column refolding, to prevent self-association of Rev while removing the nucleic acid contaminants from the end product. We compare this purification method with an established, multi-step protocol involving precipitation with polyethyleneimine (PEI). As our tailored protocol requires only one-step to simultaneously purify tagged proteins and eliminate bound cellular RNA and DNA, it represents a substantial advantage in time, effort, and expense.  相似文献   

8.
HMO1 proteins are abundant Saccharomyces cerevisiae (yeast) High Mobility Group Box (HMGB) protein (Kamau, Bauerla & Grove, 2004). HMGB proteins are nuclear proteins which are known to be architectural proteins (Travers, 2003). HMO1 possesses two HMGB box domains. It has been reported that double box HMGB proteins induce strong bends upon binding to DNA. It is also believed that they play an essential role in reorganizing chromatin and, therefore, are likely to be involved in gene activation. To characterize DNA binding we combine single molecule stretching experiments and AFM imaging of HMO1 proteins bound to DNA. By stretching DNA bound to HMO1, we determine the dissociation constant, measure protein induced average DNA bending angles, and determine the rate at which torsional constraint of the DNA is released by the protein. To further investigate the local nature of the binding, AFM images of HMO1-DNA complexes are imaged, and we probe the behavior of these complexes as a function of protein concentration. The results show that at lower concentrations, HMO1 preferentially binds to the ends of the double helix and links to the separate DNA strands. At higher concentrations HMO1 induces formation of a complex network that reorganizes DNA. Although HMG nuclear proteins are under intense investigation, little is known about HMO1. Our studies suggest that HMO1 proteins may facilitate interactions between multiple DNA molecules.  相似文献   

9.
To define the molecular architecture of the kinetochore in vertebrate cells, we measured the copy number of eight kinetochore proteins that link kinetochore microtubules (MTs [kMTs]) to centromeric DNA. We used a fluorescence ratio method and chicken DT40 cell lines in which endogenous loci encoding the analyzed proteins were deleted and complemented using integrated green fluorescent protein fusion transgenes. For a mean of 4.3 kMTs at metaphase, the protein copy number per kMT is between seven and nine for members of the MT-binding KNL-1/Mis12 complex/Ndc80 complex network. It was between six and nine for four members of the constitutive centromere-associated network: centromere protein C (CENP-C), CENP-H, CENP-I, and CENP-T. The similarity in copy number per kMT for all of these proteins suggests that each MT end is linked to DNA by six to nine fibrous unit attachment modules in vertebrate cells, a conclusion that indicates architectural conservation between multiple MT-binding vertebrate and single MT-binding budding yeast kinetochores.  相似文献   

10.
11.
12.
13.
Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments—helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.  相似文献   

14.
Single-molecule fluorescence microscopy is a powerful tool for observing biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Making use of short-distance energy-transfer mechanisms, only the fluorescence from those proteins that bind to their substrate is activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease on DNA in the presence of a background of hundreds of nanomolar Cy5 fluorophore.  相似文献   

15.
16.
Recent work has demonstrated concentration-dependent unbinding rates of proteins from DNA, using fluorescence visualization of the bacterial nucleoid protein Fis [Graham et al. (2011) (Concentration-dependent exchange accelerates turnover of proteins bound to double-stranded DNA. Nucleic Acids Res., 39:2249)]. The physical origin of this concentration-dependence is unexplained. We use a combination of coarse-grained simulation and theory to demonstrate that this behavior can be explained by taking into account the dimeric nature of the protein, which permits partial dissociation and exchange with other proteins in solution. Concentration-dependent unbinding is generated by this simple model, quantitatively explaining experimental data. This effect is likely to play a major role in determining binding lifetimes of proteins in vivo where there are very high concentrations of solvated molecules.  相似文献   

17.
18.
Magnetic nanoparticles prepared from an alkaline solution of divalent and trivalent iron ions could covalently bind protein via the activation ofN-ethyl-N-(3-dimethylaminopropyl) carbodiimide (EDC). Trypsin and avidin were taken as the model proteins for the formation of protein-nanoparticle conjugates. The immobilized yield of protein increased with molar ratio of EDC/nanoparticle. Higher concentrations of added protein could yield higher immobilized protein densities on the particles. In contrast to EDC, the yields of protein immobilization via the activation of cyanamide were relatively lower. Nanoparticles bound with avidin could attach a single-stranded DNA through the avidin-biotin interaction and hybridize with a DNA probe. The DNA hybridization was confirmed by fluorescence microscopy observations. Immobilized DNA on nanoparticles by this technique may have widespread applicability to the detection of specific nucleic acid sequence and targeting of DNA to particular cells.  相似文献   

19.
Summary A new method to localise specific DNA sequences in microscopic preparations by hybridocytochemistry using fluorochrome labelled complementary RNA has been described recently (Bauman et al. 1981). The present paper describes a procedure to increase the sensitivity of this method. RNA complementary to kinetoplasts DNA of Crithidia luciliae was labelled with fluorescein and hybridised with Sephadex beads to which kinetoplast DNA or heterologous DNA had been covalently bound as well as to Crithidia luciliae preparations. The fluorescein-labelled RNA was found to hybridize specifically with homologous DNA both on the beads and in the cells. The sensitivity of the hybrid detection could be increased by applying an indirect immunofluorescence reaction using rabbit antiserum raised against the hapten fluorescein as has been described for the amplification of a direct immunofluorescence reaction by Schmitz and Kampa (1979). The complete procedure resulted in an amplification of the original specific fluorescence both on the beads and in the cells. The increase was quantified by microfluorimetry. Several aspects of the immunocytochemical amplifying reaction were quantitatively investigated using Sephadex beads to which poly(A) or DNA was coupled and FITC-labelled poly(U) or cRNA was hybridised. A 5- to 10-fold amplification was obtained both in the beads and on the cell preparations. When the amplifying steps were repeated a proportional increase in background fluorescence was observed.This work was supported by the Netherlands Organisation for the Advancement of Pure Research (Z.W.O.)  相似文献   

20.
Zhou R  Kozlov AG  Roy R  Zhang J  Korolev S  Lohman TM  Ha T 《Cell》2011,146(2):222-232
SSB proteins bind to and control the accessibility of single-stranded DNA (ssDNA), likely facilitated by their ability to diffuse on ssDNA. Using a hybrid single-molecule method combining fluorescence and force, we probed how proteins with large binding site sizes can migrate rapidly on DNA and how protein-protein interactions and tension may modulate the motion. We observed force-induced progressive unraveling of ssDNA from the SSB surface between 1 and 6 pN, followed by SSB dissociation at ~10 pN, and obtained experimental evidence of a reptation mechanism for protein movement along DNA wherein a protein slides via DNA bulge formation and propagation. SSB diffusion persists even when bound with RecO and at forces under which the fully wrapped state is perturbed, suggesting that even in crowded cellular conditions SSB can act as a sliding platform to recruit and carry its interacting proteins for use in DNA replication, recombination and repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号