首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular models for the study of the neuropeptide melanin-concentrating hormone (MCH) have become indispensable tools for pharmacological profiling and signaling analysis of MCH and its synthetic analogues. Although expression of MCH receptors is most abundant in the brain, MCH-R1 is also found in different peripheral tissues. Therefore, not only cell lines derived from nervous tissue but also from peripheral tissues that naturally express MCH receptors have been used to study receptor signaling and regulation. For screening of novel compounds, however, heterologous expression of MCH-R1 or MCH-R2 genes in HEK293, Chinese hamster ovary, COS-7, or 3T3-L1 cells, or amplified MCH-R1 expression/signaling in IRM23 cells transfected with the Gq protein gene are the preferred tools because of more distinct pharmacological effects induced by MCH, which include inhibition of cAMP formation, stimulation of inositol triphosphate production, increase in intracellular free Ca2+ and/or activation of mitogen-activated protein kinases. Most of the published data originate from this type of model system, whereas data based on studies with cell lines endogenously expressing MCH receptors are more limited. This review presents an update on the different cellular models currently used for the analysis of MCH receptor interaction and signaling.  相似文献   

2.
AT1R has been reported to play an important role in the progression of HIV-associated nephropathy (HIVAN); however, the effect of AT2R has not been studied. Age and sex matched control (FVB/N) and Tg26 mice aged 4, 8, and 16 weeks were studied for renal tissue expression of AT1R and AT2R (Protocol A). Renal tissue mRNA expression of AT2R was lower in Tg26 mice when compared with control mice. In Protocol B, Tg26 mice were treated with either saline, telmisartan (TEL, AT1 blocker), PD123319 (PD, AT2R blocker), or TEL + PD for two weeks. TEL-receiving Tg26 (TRTg) displayed less advanced glomerular and tubular lesions when compared with saline-receiving Tg26 (SRTg). TRTgs displayed enhanced renal tissue AT2R expression when compared to SRTgs. Diminution of renal tissue AT2R expression was associated with advanced renal lesions in SRTgs; whereas, upregulation of AT2R expression in TRTgs was associated with attenuated renal lesions. PD-receiving Tg26 mice (PDRTg) did not show any alteration in the course of HIVAN; whereas, PD + TEL-receiving Tg26 (PD-TRTg) showed worsening of renal lesions when compared to TRTgs. Interestingly, plasma as well as renal tissues of Tg26 mice displayed several fold higher concentration of Ang III, a ligand of AT2R.  相似文献   

3.
The present study was designed to investigate the role of endogenous sulfur dioxide (SO2) in vascular smooth muscle cell (VSMC) proliferation, and explore the possible role of cross-talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathways in this action. By cell counting, growth curve depict, flow cytometry and bromodeoxyuridine (BrdU) labeling assays, we found that SO2 inhibited VSMC proliferation by preventing cell cycle progression from G1 to S phase and by reducing DNA synthesis. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) overexpression significantly inhibited serum-induced proliferating cell nuclear antigen (PCNA) protein expression in VSMCs, demonstrated by western blot analysis. Moreover, overexpression of AAT1 or AAT2 markedly reduced incorporation of BrdU in serum-treated VSMCs. By contrast, either AAT1 or AAT2 knockdown significantly exacerbated serum-stimulated VSMC proliferation. Thus, both exogenous- and endogenous-derived SO2 suppressed serum-induced VSMC proliferation. However, annexin V-propidium iodide (PI) staining and cell cycle analysis demonstrated that SO2 did not influence VSMC apoptosis in the serum-induced proliferation model. In a platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation model, SO2 dephosphorylated the active sites of Erk1/2, MAPK kinase 1/2 and RAF proto-oncogene serine/threonine-protein kinase (c-Raf) induced by PDGF-BB. However, the inactivation of the three kinases of the Erk/MAPK pathway was not due to the separate interferences on them by SO2 simultaneously, but a consequence of the influence on the upstream activity of the c-Raf molecule. Hence, we examined the cAMP/PKA pathway, which could inhibit Erk/MAPK transduction in VSMCs. The results showed that SO2 could stimulate the cAMP/PKA pathway to block c-Raf activation, whereas the Ser259 site on c-Raf had an important role in SO2-induced suppression of Erk/MAPK pathway. The present study firstly demonstrated that SO2 exerted a negative regulation of VSMC proliferation via suppressing the Erk/MAPK pathway mediated by cAMP/PKA signaling.  相似文献   

4.
This study was conducted to investigate the amount of CLA synthesized endogenously by rat mammary tissues in response to TVA (a precursor for cis-9, trans-11 CLA endogenous synthesis) treatment as well as the differences in the protein expression of genes encoding the biosynthesis of CLA in rat mammary tissue and mouse mammary gland epithelia cells (HC11). Treatment with TVA resulted in improved CLA productivity. Furthermore, 2-DE revealed two spots in samples of mammary tissues and one spot in samples of mammary gland epithelia cells (HC11) that were consistently altered in the TVA treatment groups when compared with the control group (non-fatty acid). The mRNA expression patterns of three of the proteins (PDI, PRDX2, LAMR1), as measured by real-time PCR, were similar to the pattern of protein abundance. In addition, the expression of SCD mRNA in the mammary tissue of rats and HC11 cell treated with TVA was higher than in the control group. Our results suggest that the identified proteins may be related to CLA biosynthesis in mammary tissue.  相似文献   

5.
6.
Human tissues express cannabinoid CB1 and CB2 receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB1/CB2 receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ9-tetrahydrocannabinol (Δ9-THC)) and Sativex (Δ9-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson''s and Huntington''s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB2 receptors, and/or (v) adjunctive ‘multi-targeting’.  相似文献   

7.
为了确定γ-氨基丁酸B受体(gamma-aminobutyric acid B receptor,GABABR)基因在异育银鲫(Carassius auratus gibelio)不同组织中的表达,本实验分别对异育银鲫不同组织中GABABR1基因进行RT-PCR扩增,并进行了克隆和测序,在与GenBank基因库中已知GABABR1序列进行同源性比对的基础上采用邻接法构建系统发育树,并进一步分析其在异育银鲫不同组织内的表达水平。经克隆获得异育银鲫GABABR1基因CDS区序列383 bp,编码127个氨基酸。荧光定量PCR结果显示,GABABR1基因在异育银鲫脑、肝、肾、心、肠、鳔、鳃、肌、尾鳍、脾、卵巢、精巢组织中均有表达,且在不同组织中的表达水平由高到低依次是:脑>尾鳍>精巢>心、肠、鳔>卵巢、脾、鳃、肌>肝、肾。本研究证实了GABABR1基因在异育银鲫各组织中表达的广泛性,且有明显的组织特异性。  相似文献   

8.
Prostacyclin alternatively called prostaglandin (PG) I2 is an unstable metabolite synthesized by the arachidonate cyclooxygenase pathway. Earlier studies have suggested that prostacyclin analogues can act as a potent effector of adipose differentiation. However, biosynthesis of PGI2 has not been determined comprehensively at different life stages of adipocytes. PGI2 is rapidly hydrolyzed to the stable product, 6-keto-PGF, in biological fluids. Therefore, the generation of PGI2 can be quantified as the amount of 6-keto-PGF. In this study, we attempted to develop a solid-phase enzyme-linked immunosorbent assay (ELISA) using a mouse antiserum specific for 6-keto-PGF. According to the typical calibration curve of our ELISA, 6-keto-PGF can be quantified from 0.8 pg to 7.7 ng in an assay. The evaluation of our ELISA revealed the higher specificity of our antiserum without the cross-reaction with other related prostanoids while it exhibited only the cross-reaction of 1.5 % with PGF. The resulting ELISA was applied to the quantification of 6-keto-PGF generated endogenously by cultured 3T3-L1 cells at different stages. The cultured cells showed the highest capability to generate 6-keto-PGF during the maturation phase of 4–6 days, which was consistent with the coordinated changes in the gene expression of PGI synthase and the IP receptor for PGI2. Following these events, the accumulation of fats was continuously promoted up to 14 days. Thus, our immunological assay specific for 6-keto-PGF is useful for monitoring the endogenous levels of the unstable parent PGI2 at different life stages of adipogenesis and for further studies on the potential association with the up-regulation of adipogenesis in cultured adipocytes.  相似文献   

9.
The pineal hormone melatonin activates two G-protein coupled receptors (MT1 and MT2) to regulate in part biological functions. The MT1 and MT2 melatonin receptors are heterogeneously distributed in the mammalian brain including humans. In the mouse, only a few reports have assessed the expression of the MT1 melatonin receptor expression using 2-iodomelatonin binding, in situ hybridization and/or polymerase chain reaction (PCR). Here, we described a transgenic mouse in which red fluorescence protein (RFP) is expressed under the control of the endogenous MT1 promoter, by inserting RFP cDNA at the start codon of MTNR1a gene within a bacterial artificial chromosome (BAC) and expressing this construct as a transgene. The expression of RFP in the brain of this mouse was examined either directly under a fluorescent microscope or immunohistochemically using an antibody against RFP (RFP-MT1). RFP-MT1 expression was observed in many brain regions including the subcommissural organ, parts of the ependyma lining the lateral and third ventricles, the aqueduct, the hippocampus, the cerebellum, the pars tuberalis, the habenula and the habenula commissure. This RFP-MT1 transgenic model provides a unique tool for studying the distribution of the MT1 receptor in the brain of mice, its cell-specific expression and its function in vivo.  相似文献   

10.
Hydrogen sulfide (H2S), a gasotransmitter, is formed from l-cysteine by multiple enzymes including cystathionine-γ-lyase (CSE). We have shown that an H2S donor, NaHS, causes hyperalgesia in rodents, an effect inhibited by knockdown of Cav3.2 T-type Ca2+ channels (T-channels), and that NaHS facilitates T-channel-dependent currents (T-currents) in NG108-15 cells that naturally express Cav3.2. In the present study, we asked if endogenous and exogenous H2S participates in regulation of the channel functions in Cav3.2-transfected HEK293 (Cav3.2-HEK293) cells. dl-Propargylglycine (PPG), a CSE inhibitor, significantly decreased T-currents in Cav3.2-HEK293 cells, but not in NG108-15 cells. NaHS at 1.5 mM did not affect T-currents in Cav3.2-HEK293 cells, but enhanced T-currents in NG108-15 cells. In the presence of PPG, NaHS at 1.5 mM, but not 0.1–0.3 mM, increased T-currents in Cav3.2-HEK293 cells. Similarly, Na2S, another H2S donor, at 0.1–0.3 mM significantly increased T-currents in the presence, but not absence, of PPG in Cav3.2-HEK293 cells. Expression of CSE was detected at protein and mRNA levels in HEK293 cells. Intraplantar administration of Na2S, like NaHS, caused mechanical hyperalgesia, an effect blocked by NNC 55-0396, a T-channel inhibitor. The in vivo potency of Na2S was higher than NaHS. These results suggest that the function of Cav3.2 T-channels is tonically enhanced by endogenous H2S synthesized by CSE in Cav3.2-HEK293 cells, and that exogenous H2S is capable of enhancing Cav3.2 function when endogenous H2S production by CSE is inhibited. In addition, Na2S is considered a more potent H2S donor than NaHS in vitro as well as in vivo.  相似文献   

11.
12.
This research investigated the SO2-induced effects on photosynthetic apparatus in two barley (Hordeum vulgare L.) cultivars (cv), Panda and Express. Following a chronic treatment with SO2 (80 ppb, 75 d) neither cv showed any visible signs of injury or chlorosis on leaf surfaces, while a significant reduction in Amax and Gw was detected in both cvs, although to different extents. Thylakoids of SO2-treated plants showed a decrease in the electron transport activity at the whole chain, photosystem II (PSII) and photosystem I (PSI) level in both cvs. The high performance liquid chromatography (HPLC) analysis of leaf pigments revealed a significant decrease in both cvs, more pronounced in Panda than in Express. Deriphat-polyacrilamide gel electrophoresis (Deriphat-PAGE) and two dimensional (2-D) electrophoretic analyses of the pigment-protein complexes did not show differences in SO2-treated samples of either cv. HPLC analysis of the green bands also showed no differences in the pigment content of fumigated samples of either cv, except for a decrease in β-carotene content and xanthophyll cycle pigment (VAZ) content respectively at band 1 (PSI) and band 5 (minor light-harvesting polypeptides of PSII) level in cv Panda, where the de-epoxidation index (DEP) significantly increased, while in Express, an increase in VAZ content and DEP value of band 5 was observed. These results suggest that the decrease in the photosynthetic activity can be ascribed, in addition to stomata closure induced by SO2, to a generalised, rather than specific, pollutant effect on photosynthetic apparatus, which could be interpreted as an adaptation to the adverse environment.  相似文献   

13.

Background

The development of COPD in subjects with alpha-1 antitrypsin (AAT) deficiency is likely to be influenced by modifier genes. Genome-wide association studies and integrative genomics approaches in COPD have demonstrated significant associations with SNPs in the chromosome 15q region that includes CHRNA3 (cholinergic nicotine receptor alpha3) and IREB2 (iron regulatory binding protein 2).We investigated whether SNPs in the chromosome 15q region would be modifiers for lung function and COPD in AAT deficiency.

Methods

The current analysis included 378 PIZZ subjects in the AAT Genetic Modifiers Study and a replication cohort of 458 subjects from the UK AAT Deficiency National Registry. Nine SNPs in LOC123688, CHRNA3 and IREB2 were selected for genotyping. FEV1 percent of predicted and FEV1/FVC ratio were analyzed as quantitative phenotypes. Family-based association analysis was performed in the AAT Genetic Modifiers Study. In the replication set, general linear models were used for quantitative phenotypes and logistic regression models were used for the presence/absence of emphysema or COPD.

Results

Three SNPs (rs2568494 in IREB2, rs8034191 in LOC123688, and rs1051730 in CHRNA3) were associated with pre-bronchodilator FEV1 percent of predicted in the AAT Genetic Modifiers Study. Two SNPs (rs2568494 and rs1051730) were associated with the post-bronchodilator FEV1 percent of predicted and pre-bronchodilator FEV1/FVC ratio; SNP-by-gender interactions were observed. In the UK National Registry dataset, rs2568494 was significantly associated with emphysema in the male subgroup; significant SNP-by-smoking interactions were observed.

Conclusions

IREB2 and CHRNA3 are potential genetic modifiers of COPD phenotypes in individuals with severe AAT deficiency and may be sex-specific in their impact.  相似文献   

14.
BackgroundCancer cells often have altered iron metabolism relative to non-malignant cells with increased transferrin receptor and ferritin expression. Targeting iron regulatory proteins as part of a cancer therapy regimen is currently being investigated in various malignancies. Anti-cancer therapies that exploit the differences in iron metabolism between malignant and non-malignant cells (e.g. pharmacological ascorbate and iron chelation therapy) have shown promise in various cancers, including glioblastoma, lung, and pancreas cancers. Non-invasive techniques that probe tissue iron metabolism may provide valuable information for the personalization of iron-based cancer therapies. T2* mapping is a clinically available MRI technique that assesses tissue iron content in the heart and liver. We aimed to investigate the capacity of T2* mapping to detect iron stores in soft tissue sarcomas (STS).MethodsIn this study, we evaluated T2* relaxation times ex vivo in five STS samples from subjects enrolled on a phase Ib/IIa clinical trial combining pharmacological ascorbate with neoadjuvant radiation therapy. Iron protein expression levels (ferritin, transferrin receptor, iron response protein 2) were evaluated by Western blot analysis. Bioinformatic data relating clinical outcomes in STS patients and iron protein expression levels were evaluated using the KMplotter database.ResultsThere was a high level of inter-subject variability in the expression of iron protein and T2* relaxation times. We identified that T2* relaxation time is capable of accurately detecting ferritin-heavy chain expression (r = -0.96) in these samples. Bioinformatic data acquired from the KMplot database revealed that transferrin receptor and iron-responsive protein 2 may be negative prognostic markers while ferritin expression may be a positive prognostic marker in the management of STS.ConclusionThese data suggest that targeting iron regulatory proteins may provide a therapeutic approach to enhance STS management. Additionally, T2* mapping has the potential to be used a clinically accessible, non-invasive marker of STS iron regulatory protein expression and influence cancer therapy decisions that warrants further investigation. Level of Evidence: IV  相似文献   

15.
Monthly uptake rates and the annual deposition of gaseous SO2 via the stomata of six Norway spruce canopies (Picea abies (L.) Karst.) in Germany (Königstein im Taunus, Witzenhausen, Grebenau, Frankenberg, Spessart, Fürth im Odenwald) were calculated (i) from statistical response functions of stomatal aperture depending on meteorological data, and (ii) from the synchronously measured SO2 immission at these stands. The stomatal response functions had been derived on the basis of thorough stomatal water conductance measurements in the field. Calculations of the SO2 conductance of spruce twigs and SO2 uptake rates via stomata need continuously measured complete data sets of the (i) light intensity, (ii) air temperature, (iii) air humidity and (iv) SO2 concentration in spruce forests from all the year. These data were recorded half hourly in different German spruce forests. The apparent needle water vapour pressure difference and transpiration rates were calculated from meteorological data. Additional use of canopy through flow data in dry years allowed the estimation of the mean stomatal conductance for H2O and SO2 of whole spruce canopies. The annual SO2 uptake of a mean unit needle surface in spruce forests was 32% of the SO2 uptake rate of exposed needles at the top of spruce crowns. There is significant SO2 uptake all the year. The mean SO2 dose at all sites and years received through the stomata was (0.25±0.07) mol SO2 m-2 (total needle surface) (nPa Pa-1)-1 (annual mean of SO2 immission; 1 nPa (SO2) Pa-1 (air) = 1 ppb) day-1 (vegetation period per year). Comparison of calculated SO2 uptake rates into needles with measured SO4 2- accumulation rates in needles from the mentioned sites and additionally from Würzburg, Schneeberg (Fichtelgebirge) and from three sites in the eastern Erzgebirge (Höckendorf, Kahleberg, Oberbärenburg) revealed that oxidative SO2 detoxification (SO4 2- formation) dominates only at sites with high SO2 immission and short vegetation periods. Under these conditions 70 to 90% of the annual stomatal SO2 uptake is detoxified via SO4 2- accumulation in needles. Cations are needed for neutralization of accumulating SO4 2- which are inavailable to support growth. Thus, SO2 induces a dominant and competitive additional nutrient cation demand, cation deficiency symptoms and enhanced needle loss (spruce decline symptoms) mainly at sites, where the ratio R=(SO2 immission): (length of the vegetation period) is higher than R=0.07 nPa Pa-1 day-1. Correlation analysis of the relative needle loss versus the SO2-dependent SO4 2- formation rate revealed a significant increase of needle loss at the 98% level (Student). At sites with small SO2 immission and long vegetation periods (R<0.07 nPa Pa-1 day-1) reductive SO2 detoxification via growth (and/or phloem export of SO4 2-) is not kinetically overburdened. Under these conditions only 30% of the annual SO2 uptake is detoxified via SO4 2- formation and spruce decline is small or absent. On the basis of the critical value R0.07 nPa Pa-1 day-1 recommended SO2 immission limits can be deduced on a mere ecophysiological basis. These deduced values are close to the proposed SO2 immission limits of the IUFRO, WHO and the UNECE.  相似文献   

16.
Mutations in FBN1 cause Marfan syndrome, a heritable disorder of connective tissue. FBN1 encodes the extracellular matrix protein, fibrillin. Our objective was to elucidate the extent that variation in RNA splicing contributes to FBN1 isoforms. To identify FBN1 splice variants, we scanned each of its 64 internal exons in a set of pooled human brain cDNA samples. FBN1 splicing is generally efficient as we identified only two variants. Neither variant has previously been reported in the literature and include (i) an isoform which contains a cryptic 105 basepair exon between exons 54 and 55 (54A-FBN1) and (ii) an isoform which contains a cryptic 62 basepair exon between exons 57 and 58 (57A-FBN1). We compared 57A-FBN1 and FBN1 expression in multiple human tissues, including adult skeletal muscle and brain, as well as fetal skeletal muscle, brain, liver, aorta, lung, skin, and heart. 57A-FBN1 represents 8–44% of FBN1 mRNA and varies in a tissue- and development-specific fashion. In adult brain, 57A-FBN1 represented 39 ± 3 (%, mean ± SD) of total FBN1 expression. In contrast, 57A-FBN1 represented 19 ± 2 (%, mean ± SD) of FBN1 expression in skeletal muscle. In fetal tissue, the 57A-FBN1 proportion was highest in brain (27%) and low elsewhere, e.g., skin, aorta and lung (9–13%). In summary, a significant proportion of FBN1 is expressed as 57A-FBN1 and this proportion varies in a tissue- and development-specific fashion. Since the 57A insertion creates a premature stop codon that mimics Marfan-associated mutations, the protein encoded by 57A-FBN1 is likely to not be functional. These results suggest that altered splicing may modulate disease severity, regulate FBN1 expression, and potentially represent a therapeutic target.  相似文献   

17.
In vitro chaperone-like activity of the serpin family member and plasma acute-phase component human α1-antitrypsin (AAT) has been shown for the first time. Results of light-scattering experiments demonstrated that AAT efficiently inhibits both heat- and chemical-induced aggregation of various test proteins including alcohol dehydrogenase, aldolase, carbonic anhydrase, catalase, citrate synthase, enolase, glutathione S-transferase, l-lactate dehydrogenase, and βL-crystallin. The results suggest that the unique metastable serpin architecture enables dual function, protease inhibiton as well as chaperone activity and highlight the serpin superfamily as a possible source of additional intra- and extracellular chaperones (e.g. α1-antichymotrypsin). The present finding is surprising in the light of the well-known role of mutated forms of AAT and other serpins in the pathogenesis of diseases called serpinopathies that featured with aberrant conformational transitions and consequent self-aggregation of serpin proteins.  相似文献   

18.
Amyloid fibrils, crystal-like fibrillar aggregates of proteins associated with various amyloidoses, have the potential to propagate via a prion-like mechanism. Among known methodologies to dissolve preformed amyloid fibrils, acid treatment has been used with the expectation that the acids will degrade amyloid fibrils similar to acid inactivation of protein functions. Contrary to our expectation, treatment with strong acids, such as HCl or H2SO4, of β2-microglobulin (β2m) or insulin actually promoted amyloid fibril formation, proportionally to the concentration of acid used. A similar promotion was observed at pH 2.0 upon the addition of salts, such as NaCl or Na2SO4. Although trichloroacetic acid, another strong acid, promoted amyloid fibril formation of β2m, formic acid, a weak acid, did not, suggesting the dominant role of anions in promoting fibril formation of this protein. Comparison of the effects of acids and salts confirmed the critical role of anions, indicating that strong acids likely induce amyloid fibril formation via an anion-binding mechanism. The results suggest that although the addition of strong acids decreases pH, it is not useful for degrading amyloid fibrils, but rather induces or stabilizes amyloid fibrils via an anion-binding mechanism.  相似文献   

19.
Hydrogen sulfide (H2S) is considered as a cellular signaling intermediate in higher plants, but corresponding molecular mechanisms and signal transduction pathways in plant biology are still limited. In the present study, a combination of pharmacological and biochemical approaches was used to study the effect of H2S on the alleviation of GA-induced programmed cell death (PCD) in wheat aleurone cells. The results showed that in contrast with the responses of ABA, GA brought about a gradual decrease of l-cysteine desulfhydrase (LCD) activity and H2S production, and thereafter PCD occurred. Exogenous H2S donor sodium hydrosulfide (NaHS) not only effectively blocked the decrease of endogenous H2S release, but also alleviated GA-triggered PCD in wheat aleurone cells. These responses were sensitive to hypotaurine (HT), a H2S scavenger, suggesting that this effect of NaHS was in an H2S-dependent fashion. Further experiment confirmed that H2S, rather than other sodium- or sulphur-containing compounds derived from the decomposing of NaHS, was attributed to the rescuing response. Importantly, the reversing effect was associated with glutathione (GSH) because the NaHS triggered increases of endogenous GSH content and the ratio of GSH/oxidized GSH (GSSG) in GA-treated layers, and the NaHS-mediated alleviation of PCD was markedly eliminated by l-buthionine-sulfoximine (BSO, a selective inhibitor of GSH biosynthesis). The inducible effect of NaHS was also ascribed to the modulation of heme oxygenase-1 (HO-1), because the specific inhibitor of HO-1 zinc protoporphyrin IX (ZnPP) significantly suppressed the NaHS-related responses. By contrast, the above inhibitory effects were reversed partially when carbon monoxide (CO) aqueous solution or bilirubin (BR), two of the by-products of HO-1, was added, respectively. NaHS-triggered HO-1 gene expression in GA-treated layers was also confirmed. Together, the above results clearly suggested that the H2S-delayed PCD in GA-treated wheat aleurone cells was associated with the modulation of GSH homeostasis and HO-1 gene expression.  相似文献   

20.
Tissue-specific esterases of the xiphophorine fishes Platypoecilus maculatus (platyfish), Xiphophorus helleri (swordtail), and their F1 hybrid have been analyzed using disc electrophoresis. Seven esterase zones (resolved into a maximum of nine bands) exist in these fishes, and these have been classified by employing specific inhibitors. Five of the seven zones, EST-1, EST-2, EST-5, EST-6, and EST-7, appeared to be carboxylesterases; while the two remaining zones, EST-3 and EST-4, were classified as cholinesterases. In the liver of the platyfish, all seven esterase zones were detected, while the liver of the swordtail exhibited only five esterase zones. EST-1 and EST-3 were lacking in the liver tissue of the swordtail. All seven esterase loci were expressed in the liver tissue of the F1 hybrid. The reciprocal crosses gave the same results. In the fin, skin, skeletal muscle, and eye tissues from all three genotypes, three major esterase zones, EST-2, EST-5, and EST-7, were detected. In addition, EST-1 was frequently detected in all these tissues of the platyfish and the F1, but was lacking in the swordtail. Serum from three genotypes showed one prominent esterase zone, EST-5; however, trace activity of EST-2 and EST-7 zones could also be detected. It seems that in all tissues of the F1 hybrid there is expression of all the esterase genes from the platyfish. The results of the present study are discussed in comparison to those from other studies on teleost esterases.This research was supported by grants from the Sonderforschungsbereich 103 Zellenergetik und Zelldifferenzierung (Marburg). M. R. A. is a Richard-Merton Guest Professor supported by the Deutsche Forschungsgemeinschaft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号