首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liver fibrosis represents a process of healing and scarring in response to chronic liver injury. Augmenter of liver regeneration (ALR) has been shown to protect hepatocytes from various toxins. The aim of this study was to investigate the effects of ALR gene therapy on liver injury and fibrosis induced by CCl(4) in rats and further explore the underlying mechanisms. Human ALR expression plasmid was delivered via the tail vein. ALR gene therapy might protect the liver from CCl(4)-induced injury and fibrogenesis by attenuating the mitochondrial dysfunction, suppressing oxidative stress, and inhibiting activation of HSCs. This report demonstrated that ALR gene therapy protected against the ATP loss, increased the activity of ATPase, decreased intrahepatic reactive oxygen species level, and down-regulated transforming growth factor-β1, platelet-derived growth factor-BB, and α-smooth muscle actin expression. Following gene transfer liver function tests were significantly improved. In brief, ALR gene therapy might be an effective therapeutic reagent for liver fibrosis with potential clinical applications.  相似文献   

2.
Hepatic COX-2 overexpression is sufficient to induce hepatitis, but its role on liver fibrosis remains unknown. We aim to elucidate possible biological effects of COX-2 in liver fibrosis using both gain-of-function and loss-of-function mouse models. COX-2 transgenic (TG) mice that specifically overexpress the human COX-2 cDNA in the liver, knockout (KO), and wild type (WT) mice were studied in two different murine fibrosis models induced by carbon tetrachloride (CCl4) injection or methionine and choline-deficient (MCD) diet. Liver injury was assessed by serum ALT and bilirubin levels and histological examination. Hepatic collagen content was determined by picrosirius red stain morphometry assay and quantitation of hydroxyproline. Hepatic stellate cell (HSC) activation was determined by immunohistochemical analysis of α-smooth muscle actin (α-SMA). mRNA expression of fibrogenic genes was assayed by real-time quantitative PCR. COX-2 protein was overexpressed in the liver of TG mice compared with WT littermates. CCl4 or MCD-induced liver fibrotic injury was equally severe in TG and WT mice, as demonstrated by similar elevated levels of hepatic collagen contents. Enhanced COX-2 expression in TG liver did not affect HSC activation and fibrogenic gene expression upon CCl4 or MCD treatment. Importantly, CCl4-treated KO mice did not show significant difference in liver fibrotic damage and fibrogenic gene expression compared with the WT counterparts. This is the first report on the effect of COX-2 in liver fibrosis based on genetic mouse models. The results suggest that COX-2 does not appear to mediate the development of liver fibrosis.  相似文献   

3.
4.
The importance of TNF-α signals mediated by tumor necrosis factor receptor type 1 (TNFR1) in inflammation and fibrosis induced by carbon tetrachloride (CCl4), and in post-injury liver regeneration including a GFP/CCl4 model developed as a liver repair model by bone marrow cell (BMC) infusion, was investigated. In mice in which TNFR1 was suppressed by antagonist administration or by knockout, liver fibrosis induced by CCl4 was significantly decreased. In these mice, intrahepatic macrophage infiltration and TGF-β1 expression were reduced and stellate cell activity was decreased; however, expression of MMP-9 was also decreased. With GFP-positive BMC (TNFR1 wild-type, WT) infusion in these mice, fibrosis proliferation, including host endogenous intrahepatic macrophage infiltration, TGF-β1 expression and stellate cell activity, increased significantly. There was no significant increase of MMP-9 expression. In this study, TNFR1 in hosts had a promoting effect on CCl4-induced hepatotoxicity and fibrosis, whereas BMC infusion in TNFR1 knockout mice enhanced host-derived intrahepatic inflammation and fibrosis proliferation. These findings differed from those in WT recipient mice, in which improvement in inflammation and fibrosis with BMC infusion had previously been reported. TNFR1-mediated signaling might be important to induce the improvement of liver fibrosis by bone marrow cell infusion.  相似文献   

5.
6.
Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) are cell surface-located transmembrane ecto-enzymes of the CD39 superfamily which regulate inflammation and tissue repair by catalyzing the phosphohydrolysis of extracellular nucleotides and modulating purinergic signaling. In the liver, NTPDase2 is reportedly expressed on portal fibroblasts, but its functional role in regulating tissue regeneration and fibrosis is incompletely understood. Here, we studied the role of NTPDase2 in several models of liver injury using global knockout mice. Liver regeneration and severity of fibrosis were analyzed at different time points after exposure to carbon tetrachloride (CCl4) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or partial hepatectomy in C57BL/6 wild-type and globally NTPDase2-deficient (Entpd2 null) mice. After chronic CCl4 intoxication, Entpd2 null mice exhibit significantly more severe liver fibrosis, as assessed by collagen content and histology. In contrast, deletion of NTPDase2 does not have a substantial effect on biliary-type fibrosis in the setting of DDC feeding. In injured livers, NTPDase2 expression extends from the portal areas to fibrotic septae in pan-lobular (CCl4-induced) liver fibrosis; the same pattern was observed, albeit to a lesser extent in biliary-type (DDC-induced) fibrosis. Liver regeneration after partial hepatectomy is not substantively impaired in global Entpd2 null mice. NTPDase2 protects from liver fibrosis resulting from hepatocellular injury induced by CCl4. In contrast, Entpd2 deletion does not significantly impact fibrosis secondary to DDC injury or liver regeneration after partial hepatectomy. Our observations highlight mechanisms relating to purinergic signaling in the liver and indicate possible therapeutic avenues and new cellular targets to test in the management of hepatic fibrosis.  相似文献   

7.
Milk fat globule-EGF factor 8 (MFGE8) has been reported to play various roles in acute injury and inflammation response. However, the role of MFGE8 in liver injury is poorly investigated. The present research was designed to clarify the expression and function of MFGE8 in carbon tetrachloride (CCl4)-induced liver injury. Using serum cytokine arrays, we selected a promising cytokine MFGE8 as the candidate in the process of hepatitis-fibrosis-hepatocellular carcinoma (HCC) progression, based on the elevated expression in both hepatic fibrosis and HCC models. We validated the increased expression of MFGE8 in liver tissues and serum samples of acute and chronic CCl4-induced mice. Immunohistochemistry staining of mouse liver tissues indicated that elevated MFGE8 expression was mainly derived from the injured hepatocytes. In addition, MFGE8 expression in the supernatant of primary hepatocytes was accumulated with prolongation of culture time, and CCl4 treatment further increased the expression of MFGE8. Moreover, a strong correlation between serum MFGE8 expression and liver transaminase activities suggested that MFGE8 may be a novel candidate in liver injury. Intriguingly, mice pretreated with MFGE8 were protected from CCl4-induced liver injury through antiapoptosis role in the early stage and proproliferation role in the late stage. MFGE8 reduced apoptosis by inhibiting the activation of IRE1α/ASK1/JNK pathway and promoted proliferation by phosphorylation of ERK and AKT. Moreover, serum MFGE8 expression was increased in hepatitis patients while decreased in liver cirrhosis patients. All the results suggest MFGE8 as a novel marker and promising therapeutic agent of liver injury.  相似文献   

8.
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is critical in the pathogenesis of alcoholic liver cirrhosis. However, the effect of ALHD2 on liver fibrosis remains to be further elucidated. This study aimed to demonstrate whether ALDH2 regulates carbon tetrachloride (CCl4)‐induced liver fibrosis and to investigate the efficacy of Alda‐1, a specific activator of ALDH2, on attenuating liver fibrosis. ALDH2 expression was increased after chronic CCl4 exposure. ALDH2 deficiency accentuated CCl4‐induced liver fibrosis in mice, accompanied by increased expression of collagen 1α1, α‐SMA and TIMP‐1. Moreover, ALDH2 knockout triggered more ROS generation, hepatocyte apoptosis and impaired mitophagy after CCl4 treatment. In cultured HSC‐T6 cells, ALDH2 knockdown by transfecting with lentivirus vector increased ROS generation and α‐SMA expression in an in vitro hepatocyte fibrosis model using TGF‐β1. ALDH2 overexpression by lentivirus or activation by Alda‐1 administration partly reversed the effect of TGF‐β1, whereas ALDH2 knockdown totally blocked the protective effect of Alda‐1. Furthermore, Alda‐1 administration protected against liver fibrosis in vivo, which might be mediated through up‐regulation of Nrf2/HO‐1 cascade and activation of Parkin‐related mitophagy. These findings indicate that ALDH2 deficiency aggravated CCl4‐induced hepatic fibrosis through ROS overproduction, increased apoptosis and mitochondrial damage, whereas ALDH2 activation through Alda‐1 administration alleviated hepatic fibrosis partly through activation of the Nrf2/HO‐1 antioxidant pathway and Parkin‐related mitophagy, which indicate ALDH2 as a promising anti‐fibrotic target and Alda‐1 as a potential therapeutic agent in treating CCl4‐induced liver fibrosis.  相似文献   

9.
Chronic liver diseases are accompanied by changes in the biochemical pathways related to the regulation of apoptosis and extra-cellular matrix deposition. The present study was designed to investigate, using low density arrays, changes in the hepatic gene expression together with hepatic biochemical and histological alterations in rats that had liver impairment induced by chronic exposure to CCl4. Further, we examined the possible recovery of genetic and pathological changes following the cessation of the hepatotoxic injury. Experimental fibrosis was induced in male Wistar rats by CCl4 administration. Animals were subdivided into two groups. One group was given CCl4 and animals were killed at 8 and 12 weeks of treatment. The other group was treated with CCl4 for 6 weeks, the CCl4 was then stopped and, subsequently, subgroups of animals were killed after 1 and 2 weeks of recovery. CCl4 administration over 12 weeks was associated with significant changes in B-cell leukemia/lymphoma 2, procollagen type I α 2, matrix metalloproteinases 3 and 8, tissue inhibitors of metalloproteinases 1, 2, and 3 and the inhibitor of apoptosis 4 gene expressions. Recovery after CCl4 cessation was associated with changes in procollagen type I α 2, matrix metalloproteinase 7, tissue inhibitors of metalloproteinases 1 and 2, inhibitor of apoptosis 4, and survivin gene expressions. This study shows an association between changes in the expression of several genes regulating hepatic cell apoptosis, the fibrosis process, and the recovery of the hepatic function after removal of the toxic injury.  相似文献   

10.
Anti-fibrotic and organ protective effects of brain natriuretic peptide (BNP) have been reported. In this study, effects of BNP on liver fibrosis were examined in the carbon tetrachloride (CCl4)-induced liver fibrosis model using BNP-transgenic (Tg) and wild-type (WT) mice. Twice-a-week intraperitoneal injections of CCl4 for 8 weeks resulted in massive liver fibrosis, augmented transforming growth factor (TGF)-β1 and type I procollagen α1 chain (Col1a1) mRNA expression, and the hepatic stellate cell (HSC) activation in WT mice, all of which were significantly suppressed in Tg mice. These observations indicate that BNP inhibits liver fibrosis by attenuating the activation of HSCs.  相似文献   

11.
Activated factor X has a central role in the coagulation activation and also contributes to chronic inflammation and tissue fibrosis. In this study, rivaroxaban, a direct factor X inhibitor, attenuates liver fibrosis induced by carbon tetrachloride (CCl4). Male rats were randomly allocated into three groups: a control group, CCl 4 fibrotic group, and CCl 4+rivaroxaban (5 mg/kg) group. Liver fibrosis was induced by subcutaneous injection of CCl 4 twice a week for 6 weeks. Rivaroxaban significantly restored the biochemical parameter including inflammatory and fibrosis markers with histopathological evidence using routine and Masson trichrome staining. It reduced also the expression of tissue factor, fibrin, transforming growth factor and α‐smooth muscle actin in the liver tissues. This concludes that rivaroxaban attenuates liver injury caused by CCl 4, at least in part by inhibiting coagulation and proinflammatory activation. In conclusion, rivaroxaban may be used for the management of liver fibrosis.  相似文献   

12.
Liver fibrosis is the excessive accumulation of extracellular matrix (ECM) proteins including collagen that occurs in most types of chronic liver diseases. Studies concerning the capacity of mesenchymal stem cells (MSCs) and simvasatain (SIMV) to repair fibrotic tissues through reducing inflammation, collagen deposition, are still controversial. This study aimed to investigate the therapeutic efficacy of bone marrow (BM)-derived MSCs and SIMV on carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Rats were divided into: normal, CCl4, CCl4/MSCs, CCl4/SIMV, CCl4/MSCs/SIMV, and SIMV groups. BM-derived MSCs were detected by RT-PCR of CD29 and were then infused into the tail vein of female rats that received CCl4 injection to induce liver fibrosis. Sex-determining region Y (SRY) gene on Y-chromosome gene was assessed by PCR to confirm homing of the male stem cells in liver tissue of the female recipients. Serum liver function tests, liver procollagens I and III, tissue inhibitors of metalloproteinase-1 (TIMP-1), endoglin, matrix metalloproteinase-1 (MMP-1) gene expressions, transforming growth factor-beta (TGF-β1) immunostaining, and histopathologicl examination were performed. MSCs and SIMV decreased liver procollagens I and III, TIMP-1 and endoglin gene expressions, TGF-β1 immunostaining, and serum liver function tests compared with the CCl4 group. MMP-1 expression was increased in the CCl4/MSCs group. Histopathological examination as well as fibrosis score supports the biochemical and molecular findings. It can be concluded that MSCs and SIMV were effective in the treatment of hepatic CCl4-induced fibrosis-rat model. Treatment with MSCs was superior to SIMV. This antifibrotic effect can be attributed to their effect on the MMPs/TIMPs balance which is central in fibrogenesis.  相似文献   

13.
14.
Hepatic fibrosis is a chronic inflammatory and reversible repair reaction of the liver under the continuous action of virus or various injuries. In this study, we aimed at identifying the role of miR-326 in the hepatic stellate cell (HSC) activation and liver fibrosis and its potential mechanism. In this study, the liver fibrosis mouse model was developed by injecting CCl4. Liver tissue morphology was observed and the expression level of α-smooth muscle actin, collagen1α1 and miR-326 was measured. Target gene identification was performed by loss-of-function and gain-of-function. The effect of miR-326 on the expression level of the cytokines associated with the TLR4/MyD88/nuclear factor-κB (NF-κB) pathway was assessed in vitro and in vivo. We show that miR-326 was downregulated in CCl4-induced fibrotic mice and activated HSCs. The target gene of miR-326 is TLR4. Moreover, miR-326 inhibited the activation of HSCs in vitro through TLR4/MyD88/NF-κB signaling. miR-326 attenuated hepatic fibrosis and inflammation of CCl4-induced mice in vivo. Our results demonstrate for the first time that miR-326 inhibits HSC activation through TLR4/MyD88/NF-κB signaling. Furthermore, miR-326 plays critical roles in attenuating liver fibrosis and inflammation, suggesting the therapeutic potential of miRNAs.  相似文献   

15.
In an animal models, carbon tetrachloride (CCl4) is a carcinogenic agent that causes liver fibrosis. The current study aims to investigate whether induction in liver-fibrosis by CCl4 in the mouse model could promote the initiation of fibrosis in lymph node and spleen due to sustained increase of inflammatory signals and also aimed to clarify the protective therapeutic effects of propolis. The male mice (BALB/c) were categorized into three experimental sets and each group involved 15 mice. Control group falls into first group; group-II and group-III were injected with CCl4 to induce liver-fibrosis and oral supplementation with propolis was provided in group-III for 4-weeks. A major improvement with hepatic collagen and α-smooth muscle actin (α-SMA) production was aligned with the activation of liver fibrosis from CCl4. Mice treated with CCl4 exhibited collagen deposition towards liver sections, pathological alterations in spleen and lymph node architectures, and a significantly increase the circulation of both T&B cells in secondary lymphoid organs. Mechanically, the secondary lymphoid organs treated with CCl4 in mice exposed a positive growth in α-SMA and collagen expression, increased in proinflammatory cytokine levels and a significant increase in TGF-β, NO and ROS levels. A manifest intensification in the expression of Nrf2, COX-2, and eNOS and upregulation of ASK1 and P38 phosphorylation. Interestingly, addition of propolis-treated CCl4 mice, substantially suppressed deposition of liver collagen, repealed inflammatory signals and resorted CCl4-mediated alterations in signaling cascades, thereby repairing the architectures of the secondary lymphoid organs. Our findings revealed benefits of propolis against fibrotic complications and enhancing secondary lymphoid organ architecture.  相似文献   

16.
We previously reported that fibroblast growth factor 2 (FGF2) facilitated the differentiation of transplanted bone marrow cells (BMCs) into hepatocytes. Our earlier study also demonstrated that administration of FGF2 in combination with bone marrow transplantation (BMT) synergistically activated tumor necrosis factor-alpha signaling and significantly improved liver function and prognosis more than BMT alone. However, the way that it affected the extracellular matrix remained unclear. Here, we investigated the effect of FGF2 treatment together with BMT on liver fibrosis in mice treated with carbon tetrachloride (CCl4). Transplantation of BMCs and concurrent treatment with FGF2 caused a statistically significant reduction in CCl4-induced liver fibrosis that was accompanied by strong expression of matrix metalloproteinase 9 as compared with FGF2-only treatment or BMT alone. Moreover, in this process, the proliferation of bone-marrow-derived cells was accelerated without causing apoptosis. Thus, the administration of FGF2 in combination with BMT synergistically improves CCl4-induced liver fibrosis in mice. This treatment has the potential of being an effective therapy for patients with liver cirrhosis. This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (nos. 16390211 and 16590597) and for translational research from the Ministry of Health, Labor and Welfare (H-trans-5 and H17-Special-015).  相似文献   

17.
18.
Angiogenesis is a fundamental part of the response to tissue injury, which is involved in the development of hepatic fibrosis. Vascular endothelial growth factor plays an important role in angiogenesis. The expression of VEGF is increased during hepatic fibrogenesis and correlates with the micro-vessel density. In this study, we investigated the effects of bevacizumab, an anti-angiogenetic drug, on the formation of hepatic fibrosis. We found that bevacizumab could attenuate the development of hepatic fibrosis and contribute to the protection of liver function. Bevacizumab was also found to downregulate the expression α-SMA and TGF-β1, which have been reported to be profibrogenic genes in vivo. We also observed that the expression of VEGF increased significantly during the development of hepatic fibrosis and CCl4 was found to induce hepatocytes to secrete VEGF, which led to the activation and proliferation of HSCs. Bevacizumab was also found to block the effects of the hepatocytes on the activation and proliferation of HSCs. Our results suggest that bevacizumab might alleviate liver fibrosis by blocking the effect of VEGF on HSCs. Bevacizumab might be suitable as a potential agent for hepatic fibrosis therapy.  相似文献   

19.

Background

Augmenter of liver regeneration (ALR) protects liver from various injuries, however, the association of ALR with liver fibrosis, particularly its effect on hepatic stellate cells (HSC), remains unclear. In this study, we investigated the impact of ALR on the activation of HSC, a pivotal event in occurrence of liver fibrosis.

Methods

Liver fibrosis was induced in vivo in mice with heterozygous ALR knockdown (ALR-KD) by administration of CCl4 or bile duct ligation. The effect of ALR-KD and ALR-overexpression on liver fibrosis was studied in mice and in HSC cells as well.

Results

Hepatic collagen deposition and expression of α-smooth muscle actin (α-SMA) were significantly increased in the ALR-KD mice compared to wild-type mice. In vitro, ALR-shRNA resulted in the activation of HSC cell line (LX-2). Furthermore, ALR-shRNA promoted LX-2 cell migration, accompanied by increased filamentous actin (F-actin) assembly. The ALR-KD-mediated increase in HSC migration was associated with mitochondrial fusion, resulting in mitochondria elongation and enhancing ATP production. In contrast, ALR transfection (ALR-Tx) decelerated HSC migration and inhibited F-actin assembly, concomitantly enhancing mitochondrial fission and reducing ATP synthesis. Mechanically, stimulation of HSC migration by ALR-shRNA was attributed to the increased mitochondrial Ca2+ influx in HSCs. Treatment of ALR-shRNA-cells with Ruthenium Red (RuR), a specific inhibitor of mitochondrial calcium uniporter (MCU), significantly suppressed mitochondrial Ca2+ influx, HSC migration, mitochondrial fusion and ATP production. ALR-KD-induced HSC migration was verified in vitro in primary mouse HSCs.

Conclusion

Inhibition of ALR expression aggravates liver fibrosis, probably via promoting HSC migration and mitochondrial fusion.  相似文献   

20.
Lipocalin-2 is expressed under pernicious conditions such as intoxication, infection, inflammation and other forms of cellular stress. Experimental liver injury induces rapid and sustained LCN2 production by injured hepatocytes. However, the precise biological function of LCN2 in liver is still unknown. In this study, LCN2?/? mice were exposed to short term application of CCl4, lipopolysaccharide and Concanavalin A, or subjected to bile duct ligation. Subsequent injuries were assessed by liver function analysis, qRT-PCR for chemokine and cytokine expression, liver tissue Western blot, histology and TUNEL assay. Serum LCN2 levels from patients suffering from liver disease were assessed and evaluated. Acute CCl4 intoxication showed increased liver damage in LCN2?/? mice indicated by higher levels of aminotransferases, and increased expression of inflammatory cytokines and chemokines such as IL-1β, IL-6, TNF-α and MCP-1/CCL2, resulting in sustained activation of STAT1, STAT3 and JNK pathways. Hepatocytes of LCN2?/? mice showed lipid droplet accumulation and increased apoptosis. Hepatocyte apoptosis was confirmed in the Concanavalin A and lipopolysaccharide models. In chronic models (4 weeks bile duct ligation or 8 weeks CCl4 application), LCN2?/? mice showed slightly increased fibrosis compared to controls. Interestingly, serum LCN2 levels in diseased human livers were significantly higher compared to controls, but no differences were observed between cirrhotic and non-cirrhotic patients. Upregulation of LCN2 is a reliable indicator of liver damage and has significant hepato-protective effect in acute liver injury. LCN2 levels provide no correlation to the degree of liver fibrosis but show significant positive correlation to inflammation instead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号