首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxicogenomics represents the merging of toxicology with genomics and bioinformatics to investigate biological functions of genome in response to environmental contaminants. Aquatic species have traditionally been used as models in toxicology to characterize the actions of environmental stresses. Recent completion of the DNA sequencing for several fish species has spurred the development of DNA microarrays allowing investigators access to toxicogenomic approaches. However, since microarray technology is thus far limited to only a few aquatic species and derivation of biological meaning from microarray data is highly dependent on statistical arguments, the full potential of microarray in aquatic species research has yet to be realized. Herein we review some of the issues related to construction, probe design, statistical and bioinformatical data analyses, and current applications of DNA microarrays. As a model a recently developed medaka (Oryzias latipes) oligonucleotide microarray was described to highlight some of the issues related to array technology and its application in aquatic species exposed to hypoxia. Although there are known non-biological variations present in microarray data, it remains unquestionable that array technology will have a great impact on aquatic toxicology. Microarray applications in aquatic toxicogenomics will range from the discovery of diagnostic biomarkers, to establishment of stress-specific signatures and molecular pathways hallmarking the adaptation to new environmental conditions.  相似文献   

2.
DNA microarray technology has become an important research tool for microbiology and biotechnology as it allows for comprehensive DNA and RNA analyses to characterize genetic diversity and gene expression in a genome-wide manner. DNA microarrays have been applied extensively to study the biology of many bacteria including Mycobacterium tuberculosis, but only recently have they been used for the related high-GC Gram-positive Corynebacterium glutamicum, which is widely used for biotechnological amino acid production. Besides the design and generation of microarrays as well as their use in hybridization experiments and subsequent data analysis, recent applications of DNA microarray technology in C. glutamicum including the characterization of ribose-specific gene expression and the valine stress response will be described. Emerging perspectives of functional genomics to enlarge our insight into fundamental biology of C. glutamicum and their impact on applied biotechnology will be discussed.  相似文献   

3.
Spot Detection and Image Segmentation in DNA Microarray Data   总被引:3,自引:0,他引:3  
Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitative information from the spots, which represent genes in a given experiment. For this process, the initial stages are important and they influence future steps in the analysis. Identifying the spots and separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this review, we present an overview of state-of-the-art methods for microarray image segmentation. We discuss the foundations of the circle-shaped approach, adaptive shape segmentation, histogram-based methods and the recently introduced clustering-based techniques. We analytically show that clustering-based techniques are equivalent to the one-dimensional, standard k-means clustering algorithm that utilises the Euclidean distance.  相似文献   

4.
5.
DNA microarray experiments: biological and technological aspects   总被引:8,自引:0,他引:8  
Nguyen DV  Arpat AB  Wang N  Carroll RJ 《Biometrics》2002,58(4):701-717
DNA microarray technologies, such as cDNA and oligonucleotide microarrays, promise to revolutionize biological research and further our understanding of biological processes. Due to the complex nature and sheer amount of data produced from microarray experiments, biologists have sought the collaboration of experts in the analytical sciences, including statisticians, among others. However, the biological and technical intricacies of microarray experiments are not easily accessible to analytical experts. One aim for this review is to provide a bridge to some of the relevant biological and technical aspects involved in microarray experiments. While there is already a large literature on the broad applications of the technology, basic research on the technology itself and studies to understand process variation remain in their infancy. We emphasize the importance of basic research in DNA array technologies to improve the reliability of future experiments.  相似文献   

6.
7.
Over the past decade, microarrays have revolutionized the scientific world as dramatically as the internet has changed everyday life. From the initial applications of DNA microarrays to uncover gene expression patterns that are diagnostic and prognostic of cancer, understanding the interplay between immune responses and disease has been a prime application of this technology. More recent efforts have moved beyond genetic analysis to functional analysis of the molecules involved, including identification of immunodominant antigens and peptides as well as the role of post-translational glycosylation. Here, we focus on recent applications of microarray technology in understanding the detailed chemical biology of immune responses to disease in an effort to guide development of vaccines and other protective therapies.  相似文献   

8.
Microarrays in biology and medicine   总被引:1,自引:0,他引:1  
The remarkable speed with which biotechnology has become critical to the practice of life sciences owes much to a series of technological revolutions. Microarray is the latest invention in this ongoing technological revolution. This technology holds the promise to revolutionize the future of biology and medicine unlike any other technology that preceded it. Development of microarray technology has significantly changed the way questions about diseases and/or biological phenomena are addressed. This is because microarrays facilitate monitoring the expression of thousands of genes or proteins in a single experiment. This enormous power of microarrays has enabled scientists to monitor thousands of genes and their products in a given living organism in one experiment, and to understand how these genes function in an orchestrated manner. Obtaining such a global view of life at the molecular level was impossible using conventional molecular biological techniques. However, despite all the progress made in developing this technology, microarray is yet to reach a point where all data are obtained, analyzed, and shared in a standardized fashion. The present article is a brief overview of microarray technologies and their applications with an emphasis on DNA microarray.  相似文献   

9.
A major focus of systems biology is to characterize interactions between cellular components, in order to develop an accurate picture of the intricate networks within biological systems. Over the past decade, protein microarrays have greatly contributed to advances in proteomics and are becoming an important platform for systems biology. Protein microarrays are highly flexible, ranging from large-scale proteome microarrays to smaller customizable microarrays, making the technology amenable for detection of a broad spectrum of biochemical properties of proteins. In this article, we will focus on the numerous studies that have utilized protein microarrays to reconstruct biological networks including protein-DNA interactions, posttranslational protein modifications (PTMs), lectin-glycan recognition, pathogen-host interactions and hierarchical signaling cascades. The diversity in applications allows for integration of interaction data from numerous molecular classes and cellular states, providing insight into the structure of complex biological systems. We will also discuss emerging applications and future directions of protein microarray technology in the global frontier.  相似文献   

10.
Endothelial cells respond to inflammatory stimuli with complex genetic alterations that determine the immune response and the outcome of the inflammatory process. An additional layer of complexity is added by the different phenotypes and functional heterogeneity of endothelial cells in the various tissues. To understand these complex gene response patterns and the regulatory pathways involved, many investigators increasingly use DNA microarray analysis. There are, however, many potential pitfalls in the use of microarrays that can result in false data and erroneous conclusions. This review surveys the principles of DNA microarray technology and its applications in endothelial cell research. We also attempt to outline some of the caveats and standard criteria that have to be considered in order to realize the full potential of microarrays in inflammation research.  相似文献   

11.
Motivation: DNA microarrays are a well-known and established technology in biological and pharmaceutical research providing a wealth of information essential for understanding biological processes and aiding drug development. Protein microarrays are quickly emerging as a follow-up technology, which will also begin to experience rapid growth as the challenges in protein to spot methodologies are overcome. Like DNA microarrays, their protein counterparts produce large amounts of data that must be suitably analyzed in order to yield meaningful information that should eventually lead to novel drug targets and biomarkers. Although the statistical management of DNA microarray data has been well described, there is no available report that offers a successful consolidated approach to the analysis of high-throughput protein microarray data. We describe the novel application of a statistical methodology to analyze the data from an immune response profiling assay using human protein microarray with over 5000 proteins on each chip.  相似文献   

12.
ABSTRACT

Introduction: Protein microarray is a powerful tool for both biological study and clinical research. The most useful features of protein microarrays are their miniaturized size (low reagent and sample consumption), high sensitivity and their capability for parallel/high-throughput analysis. The major focus of this review is functional proteome microarray.

Areas covered: For proteome microarray, this review will discuss some recently constructed proteome microarrays and new concepts that have been used for constructing proteome microarrays and data interpretation in past few years, such as PAGES, M-NAPPA strategy, VirD technology, and the first protein microarray database. this review will summarize recent proteomic scale applications and address the limitations and future directions of proteome microarray technology.

Expert opinion: Proteome microarray is a powerful tool for basic biological and clinical research. It is expected to see improvements in the currently used proteome microarrays and the construction of more proteome microarrays for other species by using traditional strategies or novel concepts. It is anticipated that the maximum number of features on a single microarray and the number of possible applications will be increased, and the information that can be obtained from proteome microarray experiments will more in-depth in the future.  相似文献   

13.
Microarrays: technologies overview and data analysis   总被引:2,自引:0,他引:2  
DNA microarrays are a powerful tool to investigate differential gene expression for thousands of genes simultaneously. In this review, recent advances in DNA microarray technologies and their applications are examined. Various DNA microarray platforms are described along with their methods for fabrication and their use. In addition some algorithms and tools for the analysis of microarray expression data, including clustering methods, partitioning and machine learning methods are discussed.  相似文献   

14.
15.
The early applications of microarrays and detection technologies have been centered on DNA-based applications. The application of array technologies to proteomics is now occurring at a rapid rate. Numerous researchers have begun to develop technologies for the creation of microarrays of protein-based screening tools. The stability of antibody molecules when bound to surfaces has made antibody arrays a starting point for proteomic microarray technology. To minimize disadvantages due to size and availability, some researchers have instead opted for antibody fragments, antibody mimics or phage display technology to create libraries for protein chips. Even further removed from antibodies are libraries of aptamers, which are single-stranded oligonucleotides that express high affinity for protein molecules. A variation on the theme of protein chips arrayed with antibody mimics or other protein capture ligand is that of affinity MS where the protein chips are directly placed in a mass spectrometer for detection. Other approaches include the creation of intact protein microarrays directly on glass slides or chips. Although many of the proteins may likely be denatured, successful screening has been demonstrated. The investigation of protein-protein interactions has formed the basis of a technique called yeast two-hybrid. In this method, yeast "bait" proteins can be probed with other yeast "prey" proteins fused to DNA binding domains. Although the current interpretation of protein arrays emphasizes microarray grids of proteins or ligands on glass slides or chips, 2-D gels are technically macroarrays of authentic proteins. In an innovative departure from the traditional concept of protein chips, some researchers are implementing microfluidic printing of arrayed chemistries on individual protein spots blotted onto membranes. Other researchers are using in-jet printing technology to create protein microarrays on chips. The rapid growth of proteomics and the active climate for new technology is driving a new generation of companies and academic efforts that are developing novel protein microarray techniques for the future.  相似文献   

16.
Applications of DNA tiling arrays for whole-genome analysis   总被引:26,自引:0,他引:26  
  相似文献   

17.
DNA microarrays for functional plant genomics   总被引:16,自引:0,他引:16  
DNA microarray technology is a key element in today's functional genomics toolbox. The power of the method lies in miniaturization, automation and parallelism permitting large-scale and genome-wide acquisition of quantitative biological information from multiple samples. DNA microarrays are currently fabricated and assayed by two main approaches involving either in situ synthesis of oligonucleotides (`oligonucleotide microarrays') or deposition of pre-synthesized DNA fragments (`cDNA microarrays') on solid surfaces. To date, the main applications of microarrays are in comprehensive, simultaneous gene expression monitoring and in DNA variation analyses for the identification and genotyping of mutations and polymorphisms. Already at a relatively early stage of its application in plant science, microarrays are being utilized to examine a range of biological issues including the circadian clock, plant defence, environmental stress responses, fruit ripening, phytochrome A signalling, seed development and nitrate assimilation. Novel insights are obtained into the molecular mechanisms co-ordinating metabolic pathways, regulatory and signalling networks. Exciting new information will be gained in the years to come not only from genome-wide expression analyses on a few model plant species, but also from extensive studies of less thoroughly studied species on a more limited scale. The value of microarray technology to our understanding of living processes will depend both on the amount of data to be generated and on its clever exploration and integration with other biological knowledge arising from complementary functional genomics tools for `profiling' the genome, proteome, metabolome and phenome.  相似文献   

18.
FAST slides: a novel surface for microarrays   总被引:3,自引:0,他引:3  
We have evaluated FAST slides, a glass slide with a microporous polymeric surface that is a suitable substrate for microarray technology. The surface is a nitrocellulose-based polymer that binds DNA and proteins in a noncovalent but irreversible manner. FAST slides are compatible with robotic systems currently used to create microarrays and can easily accommodate volumes of 0.03-2 nL/spot. Our data indicate that FAST slides have a much higher binding capacity for DNA and better spot-to-spot consistency than traditional poly-lysine-coated slides. In addition, FAST slides are well suited for fluorescent detection because of their relatively low light scatter and efficient retention of arrayed DNA. These properties translate into fluorescent sensitivity comparable to modified glass surfaces. FAST slides are also ideal for arraying proteins, making them the only substrate of their kind currently available for microarray applications.  相似文献   

19.
The application of DNA microarrays in gene expression analysis   总被引:23,自引:0,他引:23  
DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号