首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CoASH, Mg2+, ATP and (-)-carnitine were found to be essential for the production of palmitoylcarnitine from palmitate by purified barley etio-chloroplasts. It was concluded that long-chain acyl CoA synthetase (palmitoyl CoA synthetase, EC 6.2.1.3) and carnitine long-chain acyl-transferase (carnitine palmitoyltransferase, EC 2.3.1.21) activity were present in the etio-chloroplasts. It is suggested that the long-chain acylcarnitine formed may move more easily through membrane barriers than the long-chain acyl CoA compound. Also or alternatively this enzyme may spare CoA by transferring long-chain acyl groups from long-chain acyl CoA to carnitine.  相似文献   

2.
Protein-mediated transport of exogenous long-chain fatty acids across the membrane has been defined in a number of different systems. Central to understanding the mechanism underlying this process is the development of the appropriate experimental systems which can be manipulated using the tools of molecular genetics. Escherichia coli and Saccharomyces cerevisiae are ideally suited as model systems to study this process in that both [1] exhibit saturable long-chain fatty acid transport at low ligand concentration; [2] have specific membrane-bound and membrane-associated proteins that are components of the transport apparatus; and [3] can be easily manipulated using the tools of molecular genetics. In E. coli, this process requires the outer membrane-bound fatty acid transport protein FadL and the inner membrane associated fatty acyl CoA synthetase (FACS). FadL appears to represent a substrate specific channel for long-chain fatty acids while FACS activates these compounds to CoA thioesters thereby rendering this process unidirectional. This process requires both ATP generated from either substrate-level or oxidative phosphorylation and the proton electrochemical gradient across the inner membrane. In S. cerevisiae, the process of long-chain fatty acid transport requires at least the membrane-bound protein Fat1p. Exogenously supplied fatty acids are activated by the fatty acyl CoA synthetases Faa1p and Faa4p but unlike the case in E. coli, there is not a tight linkage between transport and activation. Studies evaluating the growth parameters in the presence of long-chain fatty acids and long-chain fatty acid transport profiles of a fat1 strain support the hypothesis that Fat1p is required for optimal levels of long-chain fatty acid transport.  相似文献   

3.
The presence of long-chain acyl:CoA synthetases in mammalian microsomes and mitochondria has been established previously [(1971) Biochim. Biophys. Acta 231, 32-47]. The presence of a plasma membrane-associated enzyme was investigated in human erythrocyte ghost plasma membranes, where an enzyme exhibiting high activity, and with a preferred substrate of 18 carbon chain length, was discovered. The results are consistent with the presence of a single enzyme. The effect of the degree of unsaturation of the fatty acid substrates was not as pronounced as that arising from the length of the carbon chain. The pattern of substrate preference of the enzyme was omega 3 polyenoics greater than omega 6 polyenoics greater than omega 9 monoenoics greater than saturated fatty acids. This may relate to the similar substrate preference pattern exhibited by the fatty acyl desaturase enzymes. However, the role played by long-chain acyl:CoA synthetase in erythrocyte metabolism is uncertain, but may relate to the transportation of polyenoic fatty acids in the circulation.  相似文献   

4.
Recent calculations of the apparent permeability coefficients for long-chain fatty acids (LCFA) in phospholipid bilayers provide a new perspective on their transport in a membrane. LCFA have permeabilities that are many orders of magnitude higher than glucose, amino acids, and ions. Transport of LCFA through membranes must therefore be considered to be much different from these nutrients, and there is no a priori requirement for catalysis by a membrane protein. New evidence indicates that the plasma membrane proteins postulated as catalysts for transporting LCFA into the cell fall into three categories. Some act as enzymes, mainly for the activation of LCFA to the acyl CoA, which is required for subsequent intracellular metabolism of LCFA. Other proteins appear to participate in sequestering and trafficking of LCFA. Finally, some proteins have undefined mechanisms. The established mechanisms are consistent with biophysical properties of LCFA in membranes, including fast free diffusion by "flip-flop" in the phospholipid bilayer.  相似文献   

5.
The properties of acyl coenzyme A (CoA) synthetase activity were characterized in cultured rabbit coronary microvessel endothelial cells. We report here that microvessel endothelial cells contain two long-chain acyl CoA synthetases. One shows activity with a variety of fatty acids, similar to long-chain non-selective fatty acyl CoA synthetases described previously. The other activity was selective for arachidonic acid and other structurally related substrates. Both activities required ATP, Mg2+ and CoA for optimal activity. The arachidonyl CoA and the non-selective acyl CoA synthetases showed different thermolabilities. Arachidonyl CoA formation was inhibited by greater than 50% after 1 min at 45 degrees C, whereas a 15 min heating treatment was necessary to produce the same relative inhibition of oleoyl CoA synthesis. Glucocorticoid pretreatment (10(-7) M dexamethasone) of the RCME cells did not affect the apparent Km or Vmax, nor the fatty acid selectivity for either acyl CoA synthetase. Therefore, although fatty acyl CoA synthetases may be involved in limiting eicosanoid formation, these activities do not appear to be glucocorticoid-responsive.  相似文献   

6.
Palmitoylcarnitine was oxidised by pea mitochondria.l-carnitine was an essential addition for the oxidation of palmitate or palmitoylCoA. When palmitate was sole substrate, ATP and Mg2+ were also essential additives for maximum oxidation. Additions of CoA inhibited the oxidation of palmitate. It was shown that CoA was acting as a competitive inhibitor of the carnitine-stimulated O2 uptake. It is suggested that palmitoylacarnitine and carnitine passed through the mitochondrial barrier with ease but palmitoylCoA and CoA did not. The presence of carnitine long-chain acyl (palmitoyl)transferase (EC 2.3.1.21) in pea-cotyledon mitochondria was shown. This enzyme may play a role in the transport of long-chain acyl groups through membrane barriers.Abbreviation Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

7.
Incubation of rat liver mitochondria in the presence of halothane induced a consistent impairment of mitochondrial oxidative phosphorylation without significantly affecting the steady-state of transmembrane electrical potential. These alterations of mitochondrial energy-linked processes were associated with a consistent accumulation of long-chain acyl CoA. Addition of L-carnitine partially prevented the effects of halothane on oxidative phosphorylation and completely abolished the halothane-induced long-chain acyl CoA accumulation. The possibility is discussed that the damaging action of halothane on mitochondrial functions might be partially ascribed to the noxious action of the excess of long-chain acyl CoA induced the anesthetic.  相似文献   

8.
Etio-chloroplasts of barley, purified on sucrose density gradients were shown to possess carnitine long-chain acyltransferase (carnitine palmitoyltransferase, EC 2.3.1.21) activity and carnitine short-chain acyltransferase (carnitine acetyltransferase EC 2.3.1.7) activity. These enzymes may play a role in the transport of acyl groups as acylcarnitines through the membrane barrier of barley etio-chloroplasts and also ‘or alternatively’ may spare CoA by transferring short- and long-chain acyl groups from short-and long-chain acyl CoA to carnitine.  相似文献   

9.
The gram negative bacterium Escherichia coli has evolved a highly specific system for the transport of exogenous long-chain fatty acids (C12-C18) across the cell envelope that requires the outer membrane protein FadL and the inner membrane associated fatty acyl CoA synthetase. The transport of oleate (C18:1) across the cell envelop responds to metabolic energy. In order to define the source of metabolic energy which drives this process, oleate transport was measured in wild-type and ATP synthase-defective (Deltaatp) strains which were (i) subjected to osmotic shock and (ii) starved and energized with glucose or d-lactate in the presence of different metabolic inhibitors. Osmotic shock did not eliminate transport but rather reduced the rate to 33-55% of wild-type levels. These results suggested a periplasmic protein may participate in this process or that osmotic shock disrupts the energized state of the cell which in turn reduces the rate of oleate transport. Transport systems which are osmotically sensitive also require ATP. The process of long-chain fatty acid transport requires ATP generated either by substrate-level or oxidative phosphorylation. Following starvation, the basal rate of transport for wild-type cells was 340.4 pmol/min/mg protein compared to 172.0 pmol/min/mg protein for the Deltaatp cells. When cells are energized with glucose, the rates of transport were increased and comparable (1242.6 and 1293.8 pmol/min/mg protein, respectively). This was in contrast to cells energized with d-lactate in which only the wild-type cells were responsive. The role of ATP is likely due to the ATP requirement of fatty acyl CoA synthetase for catalytic activity. The process of oleate transport is also influenced by the energized state of the inner membrane. In the presence of carbonyl cyanide-m-chlorophenylhydrazone oleate transport is depressed to 30-50% of wild-type levels in wild-type and Deltaatp strains under starvation conditions. These results are mirrored in cells energized with glucose and d-lactate, indicating that an energized membrane is required for optimal levels of oleate transport. These data support the hypothesis that the fatty acid transport system of E. coli responds to both intracellular pools of ATP and an energized membrane for maximal proficiency.  相似文献   

10.
Studies evaluating the uptake of long-chain fatty acids in Caulobacter crescentus are consistent with a protein-mediated process. Using oleic acid (C18:1) as a substrate, fatty acid uptake was linear for up to 15 min. This process was saturable giving apparent Vmax and Km values of 374 pmol oleate transported/min/mg total protein and 61 μM oleate, respectively, consistent with the notion that one or more proteins are likely involved. The rates of fatty acid uptake in C. crescentus were comparable to those defined in Escherichia coli. Uncoupling the electron transport chain inhibited oleic acid uptake, indicating that like the long-chain fatty acid uptake systems defined in other gram-negative bacteria, this process is energy-dependent in C. crescentus. Long-chain acyl CoA synthetase activities were also evaluated to address whether vectorial acylation represented a likely mechanism driving fatty acid uptake in C. crescentus. These gram-negative bacteria have considerable long-chain acyl CoA synthetase activity (940 pmol oleoyl CoA formed/min/mg total protein), consistent with the notion that the formation of acyl CoA is coincident with uptake. These results suggest that long-chain fatty acid uptake in C. crescentus proceeds through a mechanism that is likely to involve one or more proteins.  相似文献   

11.
Acetyl CoA carboxylase, the rate-limiting enzyme in regulating fatty acid synthesis, is thought to be controlled by allosteric effectors, its state of aggregation, covalent modulation and protein inhibitors. It is still obscure whether citrate, a positive allosteric effector, and long-chain fatty acyl CoA esters, negative allosteric effectors, function physiologically to regulate acetyl CoA carboxylase activity. New evidence from several laboratories reveals that the covalent phosphorylation may not involve regulation of acetyl CoA carboxylase activity. Protein inhibitors from liver cytosol and a peptide from fat cells were found to regulate acetyl CoA carboxylase both in vivo and in vitro. Coenzyme A, guanosine 5-monophosphate and phosphatidylinositol 4,5-bisphosphate may have an indirect effect, but certainly no direct involvement, on carboxylase activity.  相似文献   

12.
We sought a rapid and non-ultracentrifugal method of recovering large amounts of highly pure rough endoplasmic reticulum (RER) membranes from livers. By substantially modifying a 20-year-old calcium precipitation technique, we obtained a RER fraction from rat liver and established its high degree of purity by quantitating classic membrane markers for different subcellular organelles. This RER fraction is highly enriched in four known proteins (or enzyme activities) required for lipoprotein assembly: apolipoprotein B, microsomal triglyceride transfer protein, acyl CoA:diacylglycerol acyltransferase, and acyl CoA:cholesterol acyltransferase, when compared to two classical RER markers, RNA and glucose-6-phosphatase. From one 10-12 g rat liver, we recover ten to twelve RER pellets of 1.5-1.6 cm in diameter containing approximately 110-125 mg of total protein, about half of which is sodium carbonate-releasable. By electron microscopy, these large RER pellets from rat livers are homogeneously comprised largely of non-vesiculated short strips of ribosome-rich membranes. This novel technique for isolating RER membranes from liver may provide a useful tool for future studies on the assembly of apolipoprotein B-containing lipoproteins as well as for research focused on mechanisms of secretory and membrane protein translation, translocation, and folding.  相似文献   

13.
The induction of ischemia in the open chest dog, or anoxia in the perfused rat heart, causes dramatic changes in the tissue levels of free acyl carnitine and related metabolites. During the early phase of ischemia or anoxia the tissue levels of free carnitine decline, while acetyl carnitine rapidly increases. These changes are accompanied by elevation in long-chain acyl carnitine, long-chain acyl CoA, and lactate and by decreases in acetyl CoA, CoA, ATP, and creatine phosphate. As the degree of ischemia becomes more severe, carnitine appears to be lost from the myocardium. A scheme is presented which relates carnitine-linked mitochondrial metabolism to the activity of carnitine acyl transferase, ANT, carnitine/acyl carnitine translocase, creatine phosphokinase, and pyruvate dehydrogenase. It is suggested that the conversion of carnitine to acyl carnitine during the onset of ischemia may play an important role, by virtue of its effect on these enzymes, in the regulation of metabolism during the early or reversible phase of ischemia.  相似文献   

14.
Saccharomyces cerevisiae is an ideal model eukaryote for studying fatty-acid transport. Yeast are auxotrophic for unsaturated fatty acids when grown under hypoxic conditions or when the fatty-acid synthase inhibitor cerulenin is included in the growth media. The FAT1 gene encodes a protein, Fat1p, which is required for maximal levels of fatty-acid import and has an acyl CoA synthetase activity specific for very-long-chain fatty acids suggesting this protein plays a pivotal role in fatty-acid trafficking. In the present work, we present evidence that Fat1p and the murine fatty-acid transport protein (FATP) are functional homologues. FAT1 is essential for growth under hypoxic conditions and when cerulenin was included in the culture media in the presence or absence of unsaturated fatty acids. FAT1 disruptants (fat1Delta) fail to accumulate the fluorescent long-chain fatty acid fatty-acid analogue 4, 4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-do decanoic acid (C1-BODIPY-C12), have a greatly diminished capacity to transport exogenous long-chain fatty acids, and have very long-chain acyl CoA synthetase activities that were 40% wild-type. The depression in very long-chain acyl CoA synthetase activities were not apparent in cells grown in the presence of oleate. Additionally, beta-oxidation of exogenous long-chain fatty acids is depressed to 30% wild-type levels. The reduction of beta-oxidation was correlated with a depression of intracellular oleoyl CoA levels in the fat1Delta strain following incubation of the cells with exogenous oleate. Expression of either Fat1p or murine FATP from a plasmid in a fat1Delta strain restored these phenotypic and biochemical deficiencies. Fat1p and FATP restored growth of fat1Delta cells in the presence of cerulenin and under hypoxic conditions. Furthermore, fatty-acid transport was restored and was found to be chain length specific: octanoate, a medium-chain fatty acid was transported in a Fat1p- and FATP-independent manner while the long-chain fatty acids myristate, palmitate, and oleate required either Fat1p or FATP for maximal levels of transport. Lignoceryl CoA synthetase activities were restored to wild-type levels in fat1Delta strains expressing either Fat1p or FATP. Fat1p or FATP also restored wild-type levels of beta-oxidation of exogenous long-chain fatty acids. These data show that Fat1p and FATP are functionally equivalent when expressed in yeast and play a central role in fatty-acid trafficking.  相似文献   

15.
Sphingomyelin (SM) is a major phospholipid in most cell membranes. SMs are composed of a long-chain base (often sphingosine, 18:1(Δ4t)), and N-linked acyl chains (often 16:0, 18:0 or 24:1(Δ15c)). Cholesterol interacts with SM in cell membranes, but the acyl chain preference of this interaction is not fully elucidated. In this study we have examined the effects of hydrophobic mismatch and interdigitation on cholesterol/sphingomyelin interaction in complex bilayer membranes. We measured the capacity of cholestatrienol (CTL) and cholesterol to form sterol-enriched ordered domains with saturated SM species having different chain lengths (14 to 24 carbons) in ternary bilayer membranes. We also determined the equilibrium bilayer partitioning coefficient of CTL with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes containing 20mol% of saturated SM analogs. Ours results show that while CTL and cholesterol formed sterol-enriched domains with both short and long-chain SM species, the sterols preferred interaction with 16:0-SM over any other saturated chain length SM analog. When CTL membrane partitioning was determined with fluid POPC bilayers containing 20mol% of a saturated chain length SM analog, the highest affinity was seen with 16:0-SM (both at 23 and 37°C). These results indicate that hydrophobic mismatch and/or interdigitation attenuate sterol/SM association and thus affect lateral distribution of sterols in the bilayer membrane.  相似文献   

16.
Johnson PE  Rawsthorne S  Hills MJ 《Planta》2002,215(3):515-517
We report the first measurements of the kinetics of transmembrane transport of acyl chains in plants. This was achieved by separating the period of in vitro synthesis of fatty acids from their export and by making use of acyl-CoA-binding protein (ACBP), which specifically binds long-chain acyl-CoAs. In the absence of added CoA but in the presence of ACBP, newly synthesised acyl chains accumulated as free fatty acids (FFAs) in plastids isolated from embryos of oilseed rape (Brassica napus L.). When CoA was added to plastids that had accumulated FFAs, the acyl chains were converted to acyl-CoAs that, in the presence of ACBP, were exported to the incubation medium. The rate of export was dependent on the CoA concentration and, at a saturating CoA concentration, was similar to the rate at which the fatty acids had been synthesised prior to CoA addition.  相似文献   

17.
Localization of acyl carrier protein in Escherichia coli.   总被引:3,自引:1,他引:2       下载免费PDF全文
Acyl carrier protein was localized by immunoelectron microscopy in the cytoplasm of Escherichia coli. These data are inconsistent with the previous report of an association between acyl carrier protein and the inner membrane (H. Van den Bosch, J.R. Williamson, and P.R. Vagelos, Nature [London] 228:338-341, 1970). Moreover, bacterial membranes did not bind a significant amount of acyl carrier protein or its thioesters in vitro. A thioesterase activity specific for long-chain acyl-acyl carrier protein was associated with the inner membrane.  相似文献   

18.
The processes that govern the regulated transport of long-chain fatty acids across the plasma membrane are quite distinct compared to counterparts involved in the transport of hydrophilic solutes such as sugars and amino acids. These differences stem from the unique physical and chemical properties of long-chain fatty acids. To date, several distinct classes of proteins have been shown to participate in the transport of exogenous long-chain fatty acids across the membrane. More recent work is consistent with the hypothesis that in addition to the role played by proteins in this process, there is a diffusional component which must also be considered. Central to the development of this hypothesis are the appropriate experimental systems, which can be manipulated using the tools of molecular genetics. Escherichia coli and Saccharomyces cerevisiae are ideally suited as model systems to study this process in that both (i) exhibit saturable long-chain fatty acid transport at low ligand concentrations, (ii) have specific membrane-bound and membrane-associated proteins that are components of the transport apparatus, and (iii) can be easily manipulated using the tools of molecular genetics. In both systems, central players in the process of fatty acid transport are fatty acid transport proteins (FadL or Fat1p) and fatty acyl coenzyme A (CoA) synthetase (FACS; fatty acid CoA ligase [AMP forming] [EC 6.2.1.3]). FACS appears to function in concert with FadL (bacteria) or Fat1p (yeast) in the conversion of the free fatty acid to CoA thioesters concomitant with transport, thereby rendering this process unidirectional. This process of trapping transported fatty acids represents one fundamental mechanism operational in the transport of exogenous fatty acids.  相似文献   

19.
20.
The formation of coenzyme A thioesters from long-chain fatty acids represents a metabolic branch point. We have isolated, cloned and sequenced a long-chain fatty acyl CoA synthetase (LCFACoAS) that is localized to the endothelium of rabbit heart and aorta. Immunofluoresence and in situ hybridization studies show intense staining of the intimal layer of the aorta and coronary vessels. The microvessels, including the capillaries, of the coronary circulation also show intense immunofluoresence. The enzyme shares only about 30% to 70% homology with the primary amino acid sequence of the other known LCFACoAS. There is a region of 44 amino acids at the carboxy terminus, which is unique to the vascular enzyme. This domain contains the most hydrophobic region of the molecule, indicating that it may function as a membrane anchoring site. These results suggest that this LCFACoAS represents a novel isoform, whose functional significance remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号