首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
tRNA binding sites on the subunits of Escherichia coli ribosomes   总被引:2,自引:0,他引:2  
Programmed 30 S subunits expose only one binding site, to which the different classes of tRNA (deacylated tRNAPhe, Phe-tRNAPhe, and N-acetylphenylalanyl (AcPhe)-tRNAPhe) bind with about the same affinity. Elongation factor Tu within the ternary complex does not contribute to the binding of Phe-tRNA. Binding of acylated or deacylated tRNA to 30 S depends on the cognate codon; nonprogrammed 30 S subunits do not bind tRNA to any significant extent. The existence of only one binding site/30 S subunit (and not, for example, two sites in 50% of the subunits) could be shown with Phe-tRNAPhe as well as deacylated tRNAPhe pursuing different strategies. Upon 50 S association the 30 S-bound tRNA appears in the P site (except the ternary complex which is found at the A site). Inhibition experiments with tetracycline demonstrated that the 30 S inhibition pattern is identical to that of the P site but differs from that of the A site of 70 S ribosomes. In contrast to 30 S subunits the 50 S subunit exclusively binds up to 0.2 and 0.4 molecules of deacylated tRNAPhe/50 S subunit in the absence and presence of poly(U), respectively, but neither Phe-tRNA nor AcPhe-tRNA. Noncognate poly(A) did not stimulate the binding indicating codon-anticodon interaction at the 50 S site. The exclusive binding of deacylated tRNA and its dependence on the presence of cognate mRNA is reminiscent of the characteristics of the E site on 70 S ribosomes. 30 and 50 S subunits in one test tube expose one binding site more than the sum of binding capacities of the individual subunits. The results suggest that the small subunit contains the prospective P site and the large subunit the prospective E site, thus implying that the A site is generated upon 30 S-50 S association.  相似文献   

2.
tRNA binding sites of ribosomes from Escherichia coli   总被引:6,自引:0,他引:6  
70S tight-couple ribosomes from Escherichia coli were studied with respect to activity and number of tRNA binding sites. The nitrocellulose filtration and puromycin assays were used both in a direct manner and in the form of a competition binding assay, the latter allowing an unambiguous determination of the fraction of ribosomes being active in tRNA binding. It was found that, in the presence of poly(U), the active ribosomes bound two molecules of N-AcPhe-tRNAPhe, one in the P and the other in the A site, at Mg2+ concentrations between 6 and 20 mM. A third binding site in addition to P and A sites was observed for deacylated tRNAPhe. At Mg2+ concentrations of 10 mM and below, the occupancy of the additional site was very low. Dissociation of tRNA from this site was found to be rather fast, as compared to both P and A sites. These results suggest that the additional site during translocation functions as an exit site, to which deacylated tRNA is transiently bound before leaving the ribosome. Since tRNA binding to this site did not require the presence of poly(U), a function of exit site bound tRNA in the fixation of the mRNA appears unlikely. Both the affinity and stability of binding to the additional site were found lower for the heterologous tRNAPhe from yeast as compared to the homologous one. This difference possibly indicates some specificity of the E. coli ribosome for tRNAs from the same organism.  相似文献   

3.
We have studied the non-enzymic binding of phe-tRNA to ribosomes from rat liver using deacylated tRNA to inhibit binding to the P-site and puromycin (5 x 10-minus3M) to inhibit binding to the A-site. We conclude that at a low concentration of magnesium ions (10mM) phe-tRNA is bound only at the A-site of 80S irbosomes, whereas at a high concentration of magnesium ions (40mM) phe-tRNA is also bound at the P-site. Studies with edeine indicate that, during non-enzymic binding of phe-tRNA, eukaryotic ribosomes (in contrast to prokarotic ribosomes) have the A-site of the 60S subunit and the initiation site of the 40S subunit juxtaposed. This may account for the differences observed, in formation of diphenylalanyl-tRNA and phenylalanyl-puromycin, between phe-tRNA bound non-enzymically to the P-sites of eukaryotic and prokaryotic ribosomes.  相似文献   

4.
A method is described for the preparation of active "run-off" 80S ribosomes and 40S and 60S subunits of mouse liver. A polysome preparation was incubated at 37 degrees C for 10 min under the condition for protein synthesis (4 mM Mg2+, 100 mM KCL). Puromycin (10 mM)and 2 M KCL were added to a final concentration of 0.1 mM and 500 mM, respectively, and the reaction mixture was further incubated at 37 degrees C for 10 min. This latter treatment destabilized small polysomes and "stuck" 80S particles, which were remaining after the first incubation, leading to complete release of 40S and 60S particles. Thus, the present method minimized variations in yield of subunits due to polysome preparations and preincubation conditions. The subunits were separated by sucrose density-gradient centrifugation or recovered by precipitation following reassociation into 80S particles (run-off 80S). The reformation of 80S particles from the subunits occurred spontaneously at 5 mM Mg2+ and 100mM KCL. The isolated 40S and 60S subunits, separately, showed low phenylalanine-incorporating activity in the presence of poly(U), but when recombined, polymerized up to 10 phenylalanine residues per couple.  相似文献   

5.
Affinities of tRNA binding sites of ribosomes from Escherichia coli   总被引:8,自引:0,他引:8  
The binding affinities of tRNAPhe, Phe-tRNAPhe, and N-AcPhe-tRNAPhe from either Escherichia coli or yeast to the P, A, and E sites of E. coli 70S ribosomes were determined at various ionic conditions. For the titrations, both equilibrium (fluorescence) and nonequilibrium (filtration) techniques were used. Site-specific rather than stoichiometric binding constants were determined by taking advantage of the varying affinities, stabilities, and specificities of the three binding sites. The P site of poly(U)-programmed ribosomes binds tRNAPhe and N-AcPhe-tRNAPhe with binding constants in the range of 10(8) M-1 and 5 X 10(9) M-1, respectively. Binding to the A site is 10-200 times weaker, depending on the Mg2+ concentration. Phe-tRNAPhe binds to the A site with a similar affinity. Coupling A site binding of Phe-tRNAPhe to GTP hydrolysis, by the addition of elongation factor Tu and GTP, leads to an apparent increase of the equilibrium constant by at least a factor of 10(4). Upon omission of poly(U), the affinity of the P site is lowered by 2-4 orders of magnitude, depending on the ionic conditions, while A site binding is not detectable anymore. The affinity of the E site, which specifically binds deacylated tRNAPhe, is comparable to that of the A site. In contrast to P and A sites, binding to the E site is labile and insensitive to changes of the ionic strength. Omission of the mRNA lowers the affinity at most by a factor of 4, suggesting that there is no efficient codon-anticodon interaction in the E site. On the basis of the equilibrium constants, the displacement step of translocation, to be exergonic, requires that the tRNA leaving the P site is bound to the E site. Under in vivo conditions, the functional role of transient binding of the leaving tRNA to the E site, or a related site, most likely is to enhance the rate of translocation.  相似文献   

6.
Non-acylated tRNA binding on rat liver 60S subunits   总被引:1,自引:0,他引:1  
The ability of rat liver ribosomes and subunits to form complexes with non-acylated tRNAs in the absence of mRNA has been studied using nitrocellulose membrane filtration technique. Binding to 60S subunits required the integrity of the pCpCpA end of the tRNA molecule and was not decreased when unpaired guanine had been modified using kethoxal. Scatchard plot analysis suggests that large subunits have two binding sites, whose affinity constant values, relatively high, vary according to the ionic composition of the medium. Thus, the affinity constant of the stronger site (about 3. 109 M?1) is from 7 to 21 times higher than that of the weaker. High Mg2+ and low K+ concentrations stabilized binding to both sites. tRNA is at least partly retained on the subunits by heat-labile bonds.  相似文献   

7.
8.
The inhibitory effects of ethionine treatment of female rats for 4 h on the protein-synthesizing machineries of 80 S ribosomes and 40 S ribosomal subunits of the liver were investigated. The following results were obtained. (1) The translation of globin mRNA by 80 S ribosomes or 40 S ribosomal subunits, in combination with mouse 60 S subunits, was markedly inhibited by ethionine treatment in a complete cell-free system containing partially purified initiation factors of rabbit reticulocytes and the rat liver pH 5 fraction. (2) The polysome formation of 80 S ribosomes in the complete system described above was inhibited by ethionine treatment. Similar inhibitions by ethionine treatment were observed in the case of incubation of 40 S subunits with reticulocyte lysate, although the polysome formation was rather low even in the case of control 40 S subunits. (3) The pattern of CsCl isopycnic centrifugation of rat liver native 40 S subunits uniformly labeled with [14C]- or [3H]orotic acid showed that the content of non-ribosomal proteins of native 40 S subunits was decreased by ethionine treatment. The analysis of proteins of native 40 S subunits by SDS-polyacrylamide slab gel electrophoresis revealed that eIF-3 subunits and two unidentified protein fractions of molecular weight of 2.3·104 and 2.1·104 were decreased in ethionine-treated rat liver. (4) 40 S subunits from ethionine-treated or control rat livers were labeled with N-[3H]ethylmaleimide or N-[14C]ethylmaleimide, and the 3H to 14C ratios of individual 40 S proteins on two-dimensional polyacrylamide gel electrophoresis were measured. The results suggested that the conformation of rat liver 40 S subunits was changed by ethionine treatment. (5) These results may indicate that ethionine treatment decreases the activity of rat liver 40 S subunits for the interaction with initiation factors, especially eIF-3, as the results of conformational changes of 40 S subunits.  相似文献   

9.
10.
11.
D J Goss  D J Rounds 《Biochemistry》1988,27(10):3610-3613
The rate constants for eucaryotic initiation factor 3 (eIF3) association and dissociation with 40S ribosomal subunits and 80S monosomes have been determined. These rate constants were determined by laser light scattering with unmodified eIF3. The affinity of eIF3 for 40S subunits is about 30-fold greater than for 80S ribosomes. This difference in affinity resides mainly in the association rate constants. Rate constants of 8.8 X 10(7) and 7.3 X 10(6) M-1 s-1 were obtained for eIF3 binding to 40S subunits and 80S ribosomes, respectively. From thermodynamic cycles, the affinity of eIF3-40S subunits for 60S subunits is about 30-fold lower than free 40S subunits for 60S subunits. A calculation shows that under these conditions and assuming simple equilibria, approximately 12% of ribosomal subunits would associate via a reaction of 40S-eIF3 with 60S subunits as opposed to a path where eIF3 dissociates from the 40S subunits prior to association with 60S subunits.  相似文献   

12.
The involvement of 5S RNA in the binding of tRNA to ribosomes   总被引:29,自引:0,他引:29  
The tRNA fragment TpψpCpGp was found to bind to 5S RNA. This binding is ten times increased when a specific 5S RNA-protein complex is used. The ability of TpψpCpGp to bind to the complex could be abolished by selective chemical modification of two adenines in 5S RNA. Such 5S RNA, when incorporated into 50S ribosomal subunits, yielded particles with greatly reduced biological activities. From the results presented we conclude that 5S RNA is most likely part of a site with which the TψC-loop of tRNA interacts on the ribosome.  相似文献   

13.
A systematic study of protein environment of tRNA in ribosomes in model complexes representing different translation steps was carried out using the affinity labelling of the ribosomes with tRNA derivatives bearing aryl azide groups scattered statistically over tRNA guanine residues. Analysis of the proteins crosslinked to tRNA derivatives showed that the location of the derivatives in the aminoacyl (A) site led to the labelling of the proteins S5 and S7 in all complexes studied, whereas the labelling of the proteins S2, S8, S9, S11, S14, S16, S17, S18, S19, S21 as well as L9, L11, L14, L15, L21, L23, L24, L29 depended on the state of tRNA in A site. Similarly, the location of tRNA derivatives in the peptidyl (P) site resulted in the labelling of the proteins L27, S11, S13 and S19 in all states, whereas the labelling of the proteins S5, S7, S9, S12, S14, S20, S21 as well as L2, L13, L14, L17, L24, L27, L31, L32, L33 depended on the type of complex. The derivatives of tRNA(fMet) were found to crosslink to S1, S3, S5, S7, S9, S14 and L1, L2, L7/L12, L27. Based on the data obtained, a general principle of the dynamic functioning of ribosomes has been proposed: (i) the formation of each type of ribosomal complex is accompanied by changes in mutual arrangement of proteins - 'conformational adjustment' of the ribosome - and (ii) a ribosome can dynamically change its internal structure at each step of initiation and elongation; on the 70 S ribosome there are no rigidly fixed structures forming tRNA-binding sites (primarily A and P sites).  相似文献   

14.
40 S subunits from rat liver ribosomes are able to bind, after heat activation, two molecules of either Phe-tRNAPhe, Ac-Phe-tRNAPhe or deacylated tRNAPhe. Addition of 60 S subunits to the quaternary complex 40 S.poly(U).(Phe-tRNAPhe)2 results in quantitative formation of (Phe)2-tRNAPhe. This indicates that the two binding sites for tRNA on 40 S subunits should be considered as the constituent of P and A sites of 80 S ribosomes.  相似文献   

15.
16.
17.
We have shown recently that, in the absence of mRNA, 1 molecule of nonacylated tRNA binds to the large ribosomal subunit of rat liver with a high affinity constant (Buisson, M., Reboud, A.M., Dubost, S., and Reboud, J. P. (1979) Biochem. Biophys. Res. Commun. 90,634-640). In this paper, free and tRNA-bound 60 S subunits were treated with increasing concentrations of LiCl to obtain information on tRNA binding site. The rationale for using deacylated tRNA was that it is assumed to bind to the peptidyl donor site. We observed that tRNA has a strong protective effect on subunit modifications produced by LiCl: tRNA prevents subunit inactivation as measured by puromycin reaction and polyphenylalanine synthesis and it shifts the Li+/Mg2+ ratio value needed to reach 50% inactivation, from 60 to 250; it also prevents ribosomal protein and 5 S RNA release and large sedimentation changes of subunits, induced by LiCl. To explain the mechanism of 60 S subunit stabilization by tRNA, two hypotheses are considered: stabilization can be consequent on direct interaction of tRNA with specific proteins, or on maintenance on subunits of essential cations which are otherwise displaced by Li+, or both.  相似文献   

18.
19.
20.
tRNA structure and binding sites for cations   总被引:4,自引:0,他引:4  
A Danchin 《Biopolymers》1972,11(7):1317-1333
Equilibrium dialysis and electronic and nuclear resonance spectroscopy show that tRNA cooperatively binds divalent metal ions at very low concentrations (free metal concentration 3 × 10 ?6 M). The first two methods show that different purified tRNAs have a very similar behavior, including initiator tRNAFmet. tRNAs with an extra arm in the clover-leaf model, however, appear to have a slightly different behavior. The binding can be described in terms of two classes of sites. The cooperative association of divalent ions binding first does not parallel a cooperative change in the hyperchromism of the tRNA, while the non-cooperative association of the second class of divalent ions corresponds to the concentrations needed to obtain a cooperative melting of the tRNA. The temperature dependence of the number of binding sites and of their binding constants is also presented. The nature of the divalent ion gives the following efficiency: for the cooperativity Co++>Mg++>Mn++ for the weak binding sites Mn++>Co++>Mg++  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号