首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We investigated the effect of β-endorphin on the activities of mitogen-activated protein kinases in cultured human articular chondrocytes in order to elucidate its effect on cartilage. Monolayer cultures of chondrocytes obtained from patients undergoing total knee arthroplasty were treated with 60, 600, or 6000 ng/ml β-endorphin, or 100 ng/ml naltrexone combined with 600 ng/ml β-endorphin. The regulation of three major mitogen-activated protein kinases phosphorylation, ERKp44/p42, p38, and JNK, was determined by Western blotting. We also examined the influence of specific mitogen-activated protein kinase inhibitors on IL-1β protein levels during β-endorphin stimulation. The results demonstrate that β-endorphin, dependent on concentration and duration of stimulation, significantly affected the activation of the three mitogen-activated protein kinases in cultured human articular chondrocytes. Naltrexone in some cases significantly regulated the mitogen-activated protein kinases in different ways when added to β-endorphin 600 ng/ml. Furthermore, specific mitogen-activated protein kinase inhibitors hindered the increase of IL-1β during β-endorphin incubation. The effect of β-endorphin seen in this study is considered critical for the production of several mediators of cartilage damage in an arthritic joint.  相似文献   

3.
A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or Val at residue 129. These 6-residue segments of PrP centered on residue 129 are “steric zippers,” pairs of interacting β-sheets. Both structures of these “homozygous steric zippers” reveal direct intermolecular interactions between Met or Val in one sheet and the identical residue in the mating sheet. These two structures, plus a structure-based model of the heterozygous Met-Val steric zipper, suggest an explanation for the previously observed effects of this locus on prion disease susceptibility and progression.  相似文献   

4.
Besides its involvement in reproductive functions, estrogen protects against the development of cardiovascular diseases. The guanylate cyclase/cGMP system is known to exert potent effects on the regulation of blood pressure and electrolyte balance. We examined whether 17β-estradiol can affect soluble guanylate cyclase in PC12 cells. The results indicate that 17β-estradiol decreases cGMP levels in PC12 cells. 17β-Estradiol decreases sodium nitroprusside (SNP)-stimulated, but not atrial natriuretic factor-stimulated cGMP formation in PC12 cells, indicating that 17β-estradiol decreases cGMP levels by inhibiting the activity of soluble guanylate cyclase. 17β-Estradiol also stimulates protein tyrosine phosphatase activities in PC12 cells and dephosphorylates at least three proteins. Addition of sodium vanadate, a protein tyrosine phosphatase inhibitor, blocks the inhibitory effects of 17β-estradiol on soluble guanylate cyclase activity in PC12 cells. Furthermore, transfection of SHP-1, a protein tyrosine phosphatase, into PC12 cells inhibits both basal and SNP-stimulated guanylate cyclase activity. Amino acid analysis also reveals that the 70-kDa subunit of soluble guanylate cyclase contains the SHP-1 substrate consensus sequence. These results suggest that 17β-estradiol inhibits soluble guanylate cyclase activity through SHP-1.  相似文献   

5.
Transforming growth factor-β-activated kinase 1 (TAK1) plays an essential role in the tumor necrosis factor α (TNFα)- and interleukin-1β (IL-1β)-induced IκB kinase (IKK)/nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK)/activator protein 1 (AP-1) activation. Here we report that TNFα and IL-1β induce Lys63-linked TAK1 polyubiquitination at the Lys158 residue within the kinase domain. Tumor necrosis factor receptor-associated factors 2 and 6 (TRAF2 and -6) act as the ubiquitin E3 ligases to mediate Lys63-linked TAK1 polyubiquitination at the Lys158 residue in vivo and in vitro. Lys63-linked TAK1 polyubiquitination at the Lys158 residue is required for TAK1-mediated IKK complex recruitment. Reconstitution of TAK1-deficient mouse embryo fibroblast cells with TAK1 wild type or a TAK1 mutant containing a K158R mutation revealed the importance of this site in TNFα and IL-1β-mediated IKK/NF-κB and JNK/AP-1 activation as well as IL-6 gene expression. Our findings demonstrate that Lys63-linked polyubiquitination of TAK1 at Lys158 is essential for its own kinase activation and its ability to mediate its downstream signal transduction pathways in response to TNFα and IL-1β stimulation.  相似文献   

6.
7.
Bacterial biofilms resist host defenses and antibiotics partly because of their decreased metabolism. Some bacteria use proinflammatory cytokines, such as interleukin (IL)-1β, as cues to promote biofilm formation and to alter virulence. Although one potential bacterial IL-1β receptor has been identified, current knowledge of the bacterial IL-1β sensing mechanism is limited. In chronic biofilm infection, periodontitis, Aggregatibacter actinomycetemcomitans requires tight adherence (tad)-locus to form biofilms, and tissue destroying active lesions contain more IL-1β than inactive ones. The effect of IL-1β on the metabolic activity of A. actinomycetemcomitans biofilm was tested using alamarBlue™. The binding of IL-1β to A. actinomycetemcomitans cells was investigated using transmission electron microscopy and flow cytometry. To identify the proteins which interacted with IL-1β, different protein fractions from A. actinomycetemcomitans were run in native-PAGE and blotted using biotinylated IL-1β and avidin-HRP, and identified using mass spectroscopy. We show that although IL-1β slightly increases the biofilm formation of A. actinomycetemcomitans, it reduces the metabolic activity of the biofilm. A similar reduction was observed with all tad-locus mutants except the secretin mutant, although all tested mutant strains as well as wild type strains bound IL-1β. Our results suggest that IL-1β might be transported into the A. actinomycetemcomitans cells, and the trimeric form of intracellular ATP synthase subunit β interacted with IL-1β, possibly explaining the decreased metabolic activity. Because ATP synthase is highly conserved, it might universally enhance biofilm resistance to host defense by binding IL-1β during inflammation.  相似文献   

8.
We recently reported that glucosamine reversed the decrease in proteoglycan synthesis and in UDP-glucuronosyltransferase I mRNA expression induced by interleukin-1β (IL-1β) [Arthritis Rheum. 44 (2001) 351–360]. In the present work, we show that glucosamine does not exert the same effects when chondrocytes were stimulated with reactive oxygen species (ROS). In order to better understand its mechanism of action, we determined if glucosamine could prevent the binding of IL-1β to its cellular receptors or could interfere with its signaling pathway at a post-receptor level. Addition of glucosamine to rat chondrocytes treated with IL-1β or with ROS decreased the activation of the nuclear factor κB, but not the activator protein-1. After treatment with IL-1β, glucosamine increased the expression of mRNA encoding the type II IL-1β receptor. These results emphasize the potential role of two regulating proteins of the IL-1β signaling pathway that could account for the beneficial effect of glucosamine in osteoarthritis.  相似文献   

9.

Introduction

The present study assessed the potential functions of interleukin (IL)-32α on inflammatory arthritis and endotoxin shock models using IL-32α transgenic (Tg) mice. The potential signaling pathway for the IL-32-tumor necrosis factor (TNF)α axis was analyzed in vitro.

Methods

IL-32α Tg mice were generated under control of a ubiquitous promoter. Two disease models were used to examine in vivo effects of overexpressed IL-32α: Toll-like receptor (TLR) ligand-induced arthritis developed using a single injection of lipopolysaccharide (LPS) or zymosan into the knee joints; and endotoxin shock induced with intraperitoneal injection of LPS and D-galactosamine. TNFα antagonist etanercept was administered simultaneously with LPS in some mice. Using RAW264.7 cells, in vitro effects of exogenous IL-32α on TNFα, IL-6 or macrophage inflammatory protein 2 (MIP-2) production were assessed with or without inhibitors for nuclear factor kappa B (NFκB) or mitogen-activated protein kinase (MAPK).

Results

Single injection of LPS, but not zymosan, resulted in development of severe synovitis with substantial articular cartilage degradation in knees of the Tg mice. The expression of TNFα mRNA in inflamed synovia was highly upregulated in the LPS-injected Tg mice. Moreover, the Tg mice were more susceptive to endotoxin-induced lethality than the wild-type control mice 48 hours after LPS challenge; but blockade of TNFα by etanercept protected from endotoxin lethality. In cultured bone marrow cells derived from the Tg mice, overexpressed IL-32α accelerated production of TNFα upon stimulation with LPS. Of note, exogenously added IL-32α alone stimulated RAW264.7 cells to express TNFα, IL-6, and MIP-2 mRNAs. Particularly, IL-32α -induced TNFα, but not IL-6 or MIP-2, was inhibited by dehydroxymethylepoxyquinomicin (DHMEQ) and U0126, which are specific inhibitors of nuclear factor kappa B (NFκB) and extracellular signal regulated kinase1/2 (ERK1/2), respectively.

Conclusions

These results show that IL-32α contributed to the development of inflammatory arthritis and endotoxin lethality. Stimulation of TLR signaling with LPS appeared indispensable for activating the IL-32α-TNFα axis in vivo. However, IL-32α alone induced TNFα production in RAW264.7 cells through phosphorylation of inhibitor kappa B (IκB) and ERK1/2 MAPK. Further studies on the potential involvement of IL-32α-TNFα axis will be beneficial in better understanding the pathology of autoimmune-related arthritis and infectious immunity.  相似文献   

10.
11.
Disulfide formation in newly synthesized proteins entering the mammalian endoplasmic reticulum is catalyzed by protein disulfide isomerase (PDI), which is itself thought to be directly oxidized by Ero1α. The activity of Ero1α is tightly regulated by the formation of noncatalytic disulfides, which need to be broken to activate the enzyme. Here, we have developed a novel PDI oxidation assay, which is able to simultaneously determine the redox status of the individual active sites of PDI. We have used this assay to confirm that when PDI is incubated with Ero1α, only one of the active sites of PDI becomes directly oxidized with a slow turnover rate. In contrast, a deregulated mutant of Ero1α was able to oxidize both PDI active sites at an equivalent rate to the wild type enzyme. When the active sites of PDI were mutated to decrease their reduction potential, both were now oxidized by wild type Ero1α with a 12-fold increase in activity. These results demonstrate that the specificity of Ero1α toward the active sites of PDI requires the presence of the regulatory disulfides. In addition, the rate of PDI oxidation is limited by the reduction potential of the PDI active site disulfide. The inability of Ero1α to oxidize PDI efficiently likely reflects the requirement for PDI to act as both an oxidase and an isomerase during the formation of native disulfides in proteins entering the secretory pathway.  相似文献   

12.
LPS-activated neutrophils secrete IL-1β by activation of TLR-4. Based on studies in macrophages, it is likely that ROS and lysosomal destabilization regulated by Syk activation may also be involved. Since neutrophils have abundant expression of the ITIM-containing co-receptor CEACAM1 and Gram-negative bacteria such as Neisseria utilize CEACAM1 as a receptor that inhibits inflammation, we hypothesized that the overall production of IL-1β in LPS treated neutrophils may be negatively regulated by CEACAM1. We found that LPS treated neutrophils induced phosphorylation of Syk resulting in the formation of a complex including TLR4, p-Syk, and p-CEACAM1, which in turn, recruited the inhibitory phosphatase SHP-1. LPS treatment leads to ROS production, lysosomal damage, caspase-1 activation and IL-1β secretion in neutrophils. The absence of this regulation in Ceacam1−/− neutrophils led to hyper production of IL-1β in response to LPS. The hyper production of IL-1β was abrogated by in vivo reconstitution of wild type but not ITIM-mutated CEACAM1 bone marrow stem cells. Blocking Syk activation by kinase inhibitors or RNAi reduced Syk phosphorylation, lysosomal destabilization, ROS production, and caspase-1 activation in Ceacam1−/− neutrophils. We conclude that LPS treatment of neutrophils triggers formation of a complex of TLR4 with pSyk and pCEACAM1, which upon recruitment of SHP-1 to the ITIMs of pCEACAM1, inhibits IL-1β production by the inflammasome. Thus, CEACAM1 fine-tunes IL-1β production in LPS treated neutrophils, explaining why the additional utilization of CEACAM1 as a pathogen receptor would further inhibit inflammation.  相似文献   

13.
14.

Background

Gout is a prevalent inflammatory arthritis affecting 1–2% of adults characterized by activation of innate immune cells by monosodium urate (MSU) crystals resulting in the secretion of interleukin-1β (IL-1β). Since neutrophils play a major role in gout we sought to determine whether their activation may involve the formation of proinflammatory neutrophil extracellular traps (NETs) in relation to autophagy and IL-1β.

Methodology/Principal Findings

Synovial fluid neutrophils from six patients with gout crisis and peripheral blood neutrophils from six patients with acute gout and six control subjects were isolated. MSU crystals, as well as synovial fluid or serum obtained from patients with acute gout, were used for the treatment of control neutrophils. NET formation was assessed using immunofluorescence microscopy. MSU crystals or synovial fluid or serum from patients induced NET formation in control neutrophils. Importantly, NET production was observed in neutrophils isolated from synovial fluid or peripheral blood from patients with acute gout. NETs contained the alarmin high mobility group box 1 (HMGB1) supporting their pro-inflammatory potential. Inhibition of phosphatidylinositol 3-kinase signaling or phagolysosomal fusion prevented NET formation, implicating autophagy in this process. NET formation was driven at least in part by IL-1β as demonstrated by experiments involving IL-1β and its inhibitor anakinra.

Conclusions/Significance

These findings document for the first time that activation of neutrophils in gout is associated with the formation of proinflammatory NETs and links this process to both autophagy and IL-1β. Modulation of the autophagic machinery may represent an additional therapeutic study in crystalline arthritides.  相似文献   

15.
Wang R  Wan Q  Zhang Y  Huang F  Yu K  Xu D  Wang Q  Sun J 《Life sciences》2007,80(26):2481-2488
Previous findings indicate that emodin has anti-proliferation and anti-fibrosis effects on several cell lines. In this study, we investigated the effects of emodin on IL-1β induced proliferation of mesangial cells (MCs) and on their production of extracellular matrix (ECM), and explored the possible mechanisms. To test the therapeutic effect of emodin on progressive renal disease, we administered emodin to rats in renal failure models induced by subtotal nephrectomy, the renal function was analyzed. Our results showed emodin significantly suppressed IL-1β induced MC proliferation and arrested the cell-cycle progress in vitro. Fibronectin and collagen IV production by MC were significantly reduced after emodin treatment. P38 mRNA, protein levels of P-P38, P-MKK3/6 and P-MKK4 were quantified. We observed no alterations of P38 expression and P-MKK4 protein content; however, protein levels of P-P38 and P-MKK3/6 significantly decreased after emodin treatment. In the renal failure models, after administration of emodin for eight weeks, the rat renal lesions were significantly ameliorated, as evidenced by the decreased blood creatinine, urea, and the 24-hour urine protein. In conclusion, emodin suppresses IL-1β induced MC proliferation and ECM production in vitro. We hypothesize that this is achieved by inactivating MKK3/6 and P38. Emodin ameliorates renal failure in subtotal nephrectomized rats, which suggests a potential role of emodin in the treatment of progressive renal diseases.  相似文献   

16.
Piscine orthoreovirus (PRV) is associated with heart- and skeletal muscle inflammation (HSMI) of farmed Atlantic salmon (Salmo salar). We have performed detailed sequence analysis of the PRV genome with focus on putative encoded proteins, compared with prototype strains from mammalian (MRV T3D)- and avian orthoreoviruses (ARV-138), and aquareovirus (GCRV-873). Amino acid identities were low for most gene segments but detailed sequence analysis showed that many protein motifs or key amino acid residues known to be central to protein function are conserved for most PRV proteins. For M-class proteins this included a proline residue in μ2 which, for MRV, has been shown to play a key role in both the formation and structural organization of virus inclusion bodies, and affect interferon-β signaling and induction of myocarditis. Predicted structural similarities in the inner core-forming proteins λ1 and σ2 suggest a conserved core structure. In contrast, low amino acid identities in the predicted PRV surface proteins μ1, σ1 and σ3 suggested differences regarding cellular interactions between the reovirus genera. However, for σ1, amino acid residues central for MRV binding to sialic acids, and cleavage- and myristoylation sites in μ1 required for endosomal membrane penetration during infection are partially or wholly conserved in the homologous PRV proteins. In PRV σ3 the only conserved element found was a zinc finger motif. We provide evidence that the S1 segment encoding σ3 also encodes a 124 aa (p13) protein, which appears to be localized to intracellular Golgi-like structures. The S2 and L2 gene segments are also potentially polycistronic, predicted to encode a 71 aa- (p8) and a 98 aa (p11) protein, respectively. It is concluded that PRV has more properties in common with orthoreoviruses than with aquareoviruses.  相似文献   

17.

Background

The relation of serum uric acid (SUA) with systemic inflammation has been little explored in humans and results have been inconsistent. We analyzed the association between SUA and circulating levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor- α (TNF-α) and C-reactive protein (CRP).

Methods and Findings

This cross-sectional population-based study conducted in Lausanne, Switzerland, included 6085 participants aged 35 to 75 years. SUA was measured using uricase-PAP method. Plasma TNF-α, IL-1β and IL-6 were measured by a multiplexed particle-based flow cytometric assay and hs-CRP by an immunometric assay. The median levels of SUA, IL-6, TNF-α, CRP and IL-1β were 355 µmol/L, 1.46 pg/mL, 3.04 pg/mL, 1.2 mg/L and 0.34 pg/mL in men and 262 µmol/L, 1.21 pg/mL, 2.74 pg/mL, 1.3 mg/L and 0.45 pg/mL in women, respectively. SUA correlated positively with IL-6, TNF-α and CRP and negatively with IL-1β (Spearman r: 0.04, 0.07, 0.20 and 0.05 in men, and 0.09, 0.13, 0.30 and 0.07 in women, respectively, P<0.05). In multivariable analyses, SUA was associated positively with CRP (β coefficient ± SE = 0.35±0.02, P<0.001), TNF-α (0.08±0.02, P<0.001) and IL-6 (0.10±0.03, P<0.001), and negatively with IL-1β (−0.07±0.03, P = 0.027). Upon further adjustment for body mass index, these associations were substantially attenuated.

Conclusions

SUA was associated positively with IL-6, CRP and TNF-α and negatively with IL-1β, particularly in women. These results suggest that uric acid contributes to systemic inflammation in humans and are in line with experimental data showing that uric acid triggers sterile inflammation.  相似文献   

18.
Despite its central role in the protein folding process, the specific mechanism(s) behind β-sheet formation has yet to be determined. For example, whether the nucleation of β-sheets, often containing strands separated in sequence by many residues, is local or not remains hotly debated. Here, we investigate the initial nucleation step of β-sheet formation by performing an analysis of the smallest β-sheets in a non-redundant dataset on the grounds that the smallest sheets, having undergone little growth after nucleation, will be enriched for nucleating characteristics. We find that the residue propensities are similar for small and large β-sheets as are their interstrand pairing preferences, suggesting that nucleation is not primarily driven by specific residues or interacting pairs. Instead, an examination of the structural environments of the two-stranded sheets shows that virtually all of them are contained in single, compact structural modules, or when multiple modules are present, one or both of the chain termini are involved. We, therefore, find that β-nucleation is a local phenomenon resulting either from sequential or topological proximity. We propose that β-nucleation is a result of two opposite factors; that is, the relative rigidity of an associated folding module that holds two stretches of coil close together in topology coupled with sufficient chain flexibility that enables the stretches of coil to bring their backbones in close proximity. Our findings lend support to the hydrophobic zipper model of protein folding (Dill, K. A., Fiebig, K. M., and Chan, H. S. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 1942–1946). Implications for protein folding are discussed.  相似文献   

19.
Humicola insolens mutant Cel7B E197A is a powerful endo-glycosynthase displaying an acceptor substrate specificity restricted to β-d-glucosyl, β-d-xylosyl, β-d-mannosyl and β-d-glucosaminyl in +1 subsite. Our aim was to extend this substrate specificity to β-d-N-acetylglucosaminyl, in order to get access to a wider array of oligosaccharidic structures obtained through glycosynthase assisted synthesis. In a first approach a trisaccharide bearing a β-d-N-acetylglucosaminyl residue was docked at the +1 subsite of H. insolens Cel7B, indicating that the mutation of only one residue, His209, could lead to the expected wider acceptor specificity. Three H. insolens Cel7B glycosynthase mutants (H209A, H209G and H209A/A211T) were produced and expressed in Aspergillus oryzae. In parallel, sequence alignment investigations showed that several cellulases from family GH7 display an alanine residue instead of histidine at position 209. Amongst them, Trichoderma reesei Cel7B, an endoglucanase sharing the highest degree of sequence identity with Humicola Cel7B, was found to naturally accept a β-d-N-acetylglucosaminyl residue at +1 subsite. The T. reesei Cel7B mutant nucleophile E196A was produced and expressed in Saccharomyces cerevisiae, and its activity as glycosynthase, together with the H. insolens glycosynthase mutants, was evaluated toward various glycosidic acceptors.  相似文献   

20.
Long XB  Hu S  Wang N  Zhen HT  Cui YH  Liu Z 《PloS one》2012,7(4):e35960

Background

Clara cell 10-kDa protein (CC10) is a multifunctional protein with anti-inflammatory and immunomodulatory effects. Induction of CC10 expression by gene transfection may possess potential therapeutic effect. Nuclear factor κB (NF-κB) plays a key role in the inflammatory processes of airway diseases.

Method/Results

To investigate potential therapeutic effect of CC10 gene transfection in controlling airway inflammation and the underlying intracellular mechanisms, in this study, we constructed CC10 plasmid and transfected it into bronchial epithelial cell line BEAS-2B cells and CC10 knockout mice. In BEAS-2B cells, CC10''s effect on interleukin (IL)-1β induced IL-8 expression was explored by means of RT-PCR and ELISA and its effect on NF-κB classical signaling pathway was studied by luciferase reporter, western blot, and immunoprecipitation assay. The effect of endogenous CC10 on IL-1β evoked IL-8 expression was studied by means of nasal explant culture. In mice, CC10''s effect on IL-1β induced IL-8 and nuclear p65 expression was examined by immunohistochemistry. First, we found that the CC10 gene transfer could inhibit IL-1β induced IL-8 expression in BEAS-2B cells. Furthermore, we found that CC10 repressed IL-1β induced NF-κB activation by inhibiting the phosphorylation of IκB-α but not IκB kinase-α/β in BEAS-2B cells. Nevertheless, we did not observe a direct interaction between CC10 and p65 subunit in BEAS-2B cells. In nasal explant culture, we found that IL-1β induced IL-8 expression was inversely correlated with CC10 levels in human sinonasal mucosa. In vivo study revealed that CC10 gene transfer could attenuate the increase of IL-8 and nuclear p65 staining in nasal epithelial cells in CC10 knockout mice evoked by IL-1β administration.

Conclusion

These results indicate that CC10 gene transfer may inhibit airway inflammation through suppressing the activation of NF-κB, which may provide us a new consideration in the therapy of airway inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号