首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
短暂性缺血对小脑皮质影响的组织化学研究   总被引:2,自引:1,他引:1  
为了探讨全脑短暂性缺血对小脑皮质蒲肯野细胞的影响 ,实验用组织化学方法对家兔全脑缺血 5分钟 (B组 )、 10分钟 (C组 )及缺血再灌 (D、 E组 )后蒲肯野细胞的酶组织化学变化进行了观察。结果显示 ,缺血 10分钟及缺血再灌后蒲肯野细胞的 SDH、Mg2 + - ATP活性及 PAS反应均降低 (P<0 .0 5 ) ,L DH增高 (P<0 .0 1)。结果提示家兔全脑缺血 10分钟和缺血再灌可损害小脑皮质蒲肯野细胞的能量代谢酶的活性  相似文献   

2.
川芎嗪对脑缺血/再灌注后所致肺损伤的影响   总被引:2,自引:0,他引:2  
目的:观察川芎嗪对脑缺血/再灌注后肺损伤的影响。方法:采用Pulsinelli等的方法建立大鼠急性全脑缺血/再灌注模型。将Wistar大鼠随机分为三组,即:对照组(Control)、缺血/再灌注组(I/R)、川芎嗪+缺血/再灌注组(TEP+I/R),分别测定各组肺功能(PaO2、PaCO2),肺系数(LI%)、血浆和肺组织中与自由基有关物质的含量。结果:川芎嗪可有效改善脑缺血/再灌注后肺功能,减轻肺水肿,减少胞浆酶的漏出,增加自由基清除醇的活性,抑制组织脂质过氧化的发生。结论:川芎嗪对脑缺血/再灌注后肺损伤具有保护作用,其机制可能与其抗氧自由基和膜保护作用有关。  相似文献   

3.
结扎蒙古沙土鼠双侧颈总动脉制作急性脑缺血模型,观察了急性脑缺血和再灌流后钙调素依赖性蛋白激酶Ⅱ(CaM-PKⅡ)和蛋白磷酸酶(CaM-PrP)活性的变化以及脑电图(EEG)的表现。结果表明:(1)CaM-PKⅡ活性随缺血时间延长而逐渐降低,缺血10min酶活性即显著降低;(2)缺血10min再灌流,CaM~PKⅡ活性可部分恢复;(3)急性脑缺血时CaM-PrP活性无明显改变;(4)缺血10min再灌流,EEG在1h基本恢复正常,缺血20min再灌流,EEG在3h仍未恢复正常。上述结果提示:CaM-PKⅡ活性对缺血非常敏感,而CaM-PrP活性对缺血不敏感,脑缺血再灌流后EEG的表现与CaM-PKⅡ活性有一定的相关性。  相似文献   

4.
目的:探讨ELAM-1和ICAM-1在局部脑缺血/再灌流炎性反应过程中的作用。方法:采用厅局级龙线栓堵大脑中动脉造成局部脑缺血/再灌流模型,用RT-PCR方法检测缺血侧脑组织缺血/再灌流不同时间点ELAM-1和ICAM-1mRNA的表达。结果:假手术组脑组织未见ELAM-1和ICAM-1mRNA的表达,手术组非缺血侧脑组织仅见少量表达。脑缺血/再灌流后1h,缺血侧脑组织ELAM-1和ICAM-1mRNA的表达量已开始升高;再灌流后3h,ICAM-1mRNA的上调达高峰,而ELAM-1mRNA的上调在缺血/再灌流后6h达高峰,且持续至缺血/再灌流后48h。结论:EL-AM-1和ICAM-1参与了局部缺血再灌流脑组织损伤的病理过程。二者在白细胞进入缺血区脑组织的病理过程中发挥着重要作用。  相似文献   

5.
目的观察局灶性脑缺血后缺血边缘区海马和皮层NG2细胞的动态表达,探讨其在脑缺血神经损伤与修复过程中所起的作用。方法将大鼠随机分为假手术组(sham)和脑缺血再灌注组,脑缺血再灌注组采用线栓法制备大鼠大脑中动脉阻塞再灌流模型(MCAO),假手术组不插入线栓,采用免疫荧光组织化学法结合共聚焦显微镜成像观察sham组及脑缺血后3d,7d,30d不同时间点缺血边缘区的海马CA1区和皮层区NG2的动态表达情况。结果脑缺血再灌注后缺血边缘区海马和皮层NG2胶质细胞表达增加,缺血后7d最明显。结论脑缺血后缺血边缘区存在NG2细胞的增生和形态变化可能与脑缺血后损伤修复密切相关。  相似文献   

6.
目的:研究人参二醇组皂甙(PDS)对大鼠脑缺血-再灌注海马超微结构、皮层和海马一氧化氮合酶(DNO)活性的影响。方法:双侧颈总动脉阻断和再灌注建立脑缺血-再灌流模型,电镜技术和NADPH-d组织化学技术。结果:电镜观察可见,缺血30min再灌注2h大鼠海马超微结构发生缺血性病理改变,PDS对缺血脑组织病变化有显著保护作用。NADPH-d组织化学实验表明,脑缺血15min和再灌注24h后,皮层海马N  相似文献   

7.
介绍一种大鼠大脑中动脉阻塞/再灌流模型   总被引:6,自引:0,他引:6  
介绍一种大鼠大脑中动脉阻塞/再灌流模型郑健董为伟1(第三军医大学新桥医院,重庆630037;重庆医科大学神经病学研究所)局灶脑缺血/再灌流动物模型的建立是研究“再灌流”损害的基础。我们对Nagasawa等建立的大鼠大脑中动脉线栓阻塞法局灶脑缺血模型做...  相似文献   

8.
研究粘附分子和白细胞与脑缺血/再灌流损伤的病理联系,运用原位杂交和免疫组化技术对36只SD大鼠脑缺血区细胞间粘附分子(ICAM-1)表达和淋巴细胞机能相关抗原(LFA-1)阳性细胞浸润进行了观察。结果显示,脑缺血区的毛细胞血管内皮细胞表达ICAM-1 mRNA发生于脑缺血1h,在脑缺血1h/再灌流8h达到高峰。而脑缺血区毛细血管ICAM-1蛋白质的表达则发生于脑缺血1h/再灌流2h,高峰出现于脑缺血1h/再灌流16h,LFA-1阳性细胞在脑缺血区的聚集发生在脑缺血1h,并随再灌流时间延长,其聚集数量逐渐增加。结果提示,脑缺血/再灌流能诱导缺血区的血管内皮细胞表达ICAM-1 mRNA和蛋白质,进而导致白细胞在脑缺血区的浸润,此可能是脑缺血/再灌流损伤的病理机制之一。  相似文献   

9.
目的:探讨促红细胞生成素(Epo)对大鼠脑缺血/再灌注损伤的保护作用。方法:32只SD大鼠,采用夹闭双侧颈总动脉30min再灌注24h制作脑缺血/再灌注模型。随机分为4组(n=8):假手术组、脑缺血/再灌注组、Epo组及阳性对照组(尼莫地平),观察缺血/再灌注后血清一氧化氮(NO)和脑组织匀浆中超氧化歧化酶(SOD)活性、丙二醛(MDA)含量及脑组织含水量的变化。结果:Epo组血清NO和脑组织匀浆中MDA含量显著下降,SOD活性显著升高,脑组织含水量显著下降,与缺血/再灌注组相比有显著性差异。结论:大鼠脑缺血/再灌注后,Epo能减轻脑组织的含水量,减少自由基的生成,减轻脂质过氧化反应,对脑缺血/再灌注损伤有保护作用。  相似文献   

10.
脑缺血再灌注大鼠模型eNOS和nNOS的变化   总被引:1,自引:0,他引:1  
目的通过对缺血再灌注早期eNOS与nNOS表达情况的观察,探讨NO在脑缺血再灌注损伤中发挥神经毒性作用时是否出现一氧化氮合酶(NOS)不同亚型的变化。方法采用线栓法制作大鼠脑缺血再灌注模型,激光多普勒灌流监测仪测血流来判断模型是否成功,Western blot方法检测eNOS与nNOS变化。结果血管内皮细胞内eNOS表达在缺血1h内升高,之后到再灌注2h内持续降低;而nNOS的表达在缺血到再灌注2h内持续上升。结论大鼠脑缺血再灌注模型中eNOS与nNOS的变化趋势不同。表明NO在缺血性脑损伤的病理过程的发挥作用与NOS亚型的变化有关。  相似文献   

11.
Ischemic preconditioning (IPC) of the brain describes the neuroprotection induced by a short, conditioning ischemic episode (CIE) to a subsequent severe (test) ischemic episode (TIE). Most of the supporting evidence for IPC is based on histological assessment, several days after TIE. The aim of this study is to investigate if changes induced by IPC can be detected within 30 min of reperfusion following the ischemic episode. A rat model of "four-vessel occlusion" transient global cerebral ischemia and parametric analysis of electrocorticogram were used. A control group was subjected directly to a 10 min TIE, and in a preconditioned group TIE was induced 48 h after a 3 min CIE. Quantitative histology was performed 48 h after TIE. Our key finding is that, 30 min after reperfusion, there is a significant increase in the electrocortical slow activity in the control group but not in the preconditioned group. Moreover the increase inversely correlates with the degree of electrocortical suppression during seconds 10 to 15 after the onset of the ischemic episode.  相似文献   

12.
Reperfusion after global brain ischemia results initially in a widespread suppression of protein synthesis in neurons that is due to inhibition of translation initiation as a result of the phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2). To address the role of the eIF2alpha kinase RNA-dependent protein kinase-like endoplasmic reticulum kinase (PERK) in the reperfused brain, transgenic mice with a targeted disruption of the Perk gene were subjected to 20 min of forebrain ischemia followed by 10 min of reperfusion. In wild-type mice, phosphorylated eIF2alpha was detected in the non-ischemic brain and its levels were elevated threefold after 10 min of reperfusion. Conversely, there was no phosphorylated eIF2alpha detected in the non-ischemic transgenic mice and there was no sizeable rise in phosphorylated eIF2alpha levels in the forebrain after ischemia and reperfusion. Moreover, there was a substantial rescue of protein translation in the reperfused transgenic mice. Neither group showed any change in total eIF2alpha, phosphorylated eukaryotic elongation factor 2 or total eukaryotic elongation factor 2 levels. These data demonstrate that PERK is responsible for the large increase in phosphorylated eIF2alpha and the suppression of translation early in reperfusion after transient global brain ischemia.  相似文献   

13.
C. Xu  C. L. Yang  X. L. Du  Q. Wei  C. Li 《Peptides》1986,7(6):973-976
The unilateral or bilateral carotid arteries were ligated in gerbils used as a model of cerebral ischemia. The effect of different times of bilateral ischemia on the content of CCK-8 in fore regions of gerbil brain and the effect of 30 min of unilateral ischemia on the content of CCK-8 of the same regions in gerbils with or without neurological signs were observed. Our results show that the content of CCK-8 of cortex, basal ganglia, thalamus and hypothalamus decreased significantly. But, in brain stem it remained basically unchanged no matter whether the ischemia was unilateral or bilateral. This suggests that there is a close relationship between CCK-8 and cerebral ischemia, and raises the possibility that CCK-8 may be involved in cerebral ischemia through a yet unclear mechanism.  相似文献   

14.
Cerebral acidosis occurring during ischemia has been proposed as one determinant of tissue damage. Newborn animals appear to be less susceptible to ischemic tissue damage than adults. One possible component of ischemic tolerance could derive from maturational differences in the extent of acid production and buffering in newborns compared to adults. The purpose of this study was to measure the dependency of acid production on the blood plasma glucose concentrations and acid buffering capacity of piglets at different stages of development. Complete ischemia was induced in 29 piglets ranging in postconceptual age from 111 to 156 days (normal term conception, 115 days). Brain buffering capacity during the first 30 min of ischemia was quantified in vivo, via 31P and 1H nuclear magnetic resonance (NMR) spectroscopy, by measuring the change in intracellular brain pH for a given change in the concentration of compounds that contribute to the production of hydrogen ions. Animals from all four age groups showed a similar linear correlation between preischemia blood glucose concentration and intracellular pH after 30 min of ischemia. For each animal the slope of the plot of intracellular pH versus cerebral buffer base deficit was used to calculate the buffer capacity. Using data obtained over the entire 30 min of ischemia, there was no difference in the mean buffer capacity of the different age groups, nor was there a significant correlation between buffer capacity and age. However, there was a significant increase in buffer capacity for the intracellular pH range 6.6-6.0, compared to 7.0-6.6, for all age groups. No significant differences in buffer capacity for these two pH ranges were observed between any of the age groups. Acid buffering capacity was also measured by performing pH titrations on brain tissue homogenized in the presence of inhibitors of glycolysis and creatine kinase. Plots of homogenate pH versus buffer base deficit showed a nonlinear trend similar to that seen in vivo, indicating an increase in buffer capacity as intracellular pH decreases. A comparison of newborn and 1-month-old brain tissue frozen under control conditions or after 45 min of ischemia revealed no differences that could be attributed to age and a slight decrease in buffer capacity of ischemic brain compared to control brain tissue homogenates. There was no difference between the brain buffering capacity measured in vivo using 31P and 1H NMR and that measured in vitro using brain homogenates.  相似文献   

15.
目的 探讨短暂性前脑缺血鼠海马脑源性促红细胞生成素蛋白的表达变化,揭示脑缺血时中枢神经系统发生内源性脑保护的机制。方法 阻断沙土鼠双侧颈总动脉3.5min造成前脑缺血模型,再灌注1h,6h,12h,1d,3d,7d,应用免疫组织化学和免疫印迹法观察海马脑源性促红细胞生成素蛋白的表达变化。结果 脑缺血再灌注6h,可检测到脑源性促红细胞生成素的表达,再灌注12h,脑源性促红细胞生成素表达达到较高水平,以后随时间延长逐渐下调。结论 脑源性促红细胞生成素在脑缺血再灌注后的表达,可能是机体发生内源性脑保护的机制之一。  相似文献   

16.
以小鼠断头脑缺血为模型,研究缺血小鼠脑内蛋白磷酸化脱磷酸化的改变。对缺血1min、5min、15min和30min及对照小鼠脑内蛋白磷酸化脱磷酸化的研究表明,有些磷蛋白如145kD、84kD、59kD和50kD的磷酸化随缺血时间延长而减弱,还有些磷蛋白如119kD、105kD、78kD和55kD的磷酸化随缺血时间延长而增加。对磷酸化程度变化显著的缺血15min小鼠脑内胞浆及膜上PKA、PKC、Ca~(2+)/CaMPK底物的磷酸化进行了研究,发现胞浆组分中与钙相关的PKC、Ca~(2+)/CaMPK底物磷酸化在缺血鼠脑中明显减弱。同时研究了脑内唯一依赖于Ca~(2+)/CaM的钙调神经磷酸酶(Calcineurin,CaN)底物的变化,发现缺血小鼠脑内CaN的某些底物磷酸化降低。  相似文献   

17.
Thirty minutes of total cerebral ischemia (decapitation) decreased total glutathione (GSH + GSSG) by 7% but had no detectable effect on the concentration of oxidized glutathione (GSSG), reduced ascorbate, or total ascorbate. In a model of reversible, bilateral hemispheric ischemia (four-vessel occlusion) no changes in glutathione or ascorbate were detected after 30 min of ischemia. During 24 h of reperfusion following such an insult no detectable change in total ascorbate, reduced ascorbate, or oxidized glutathione was noted; however, total brain glutathione declined by 25%. The findings are discussed in relation to the hypothesis that the deleterious effects of ischemia are due to an increase in free radical production which in turn leads to increased lipid peroxidation.  相似文献   

18.
ObjectiveTo study the protective effect of total flavonoid in rabdosia rubescens on BIT model by brain ischemic tolerance (hereinafter BIT) model of mice.MethodBIT model is used to block bilateral common carotid arteries and to copy BIT model of mice. After 10 min of transient ischemia for rats in preconditioning group, the mice in the nimodipine group and naoluotong capsule group were given the total flavonoid in rabdosia rubescens (300 mg/kg, 150 mg/kg, 75 mg/kg) for gavage, sham operation group, ischemia/reperfusion injury (hereinafter IRI) group and BIT group were fed with the same volume of 0.5% sodium carboxymethyl cellulose (CMC) once a day for 5 days. After administration for 1 h on day 5 (120 h), the rats in the other groups except for the sham operation group were treated with blood flow block for 30 min and reperfusion for 22 h. The serum NSE level were measured and the brain NO content and NOS activity changes was measured to observe the histopathological changes of brain tissue.ResultsBIT models of mice and in rats were both successfully replicated. The total flavonoid in rabdosia rubescens can decrease the mortality of mice, decrease serum NSE level, increase the content of NO and the activity of NOS in the brain tissue of mice, and improve the pathological damage of cortex and hippocampus of mice.ConclusionThe total flavonoid in rabdosia rubescens can stimulate an endogenous protective mechanism by inducing the release of low levels of cytokines NO and NOS, which reduces the release of serum NSE, relieves the brain tissue ischemia-reperfusion injury, and further improves the protection effect of ischemic preconditioning on brain injury. The damage of brain tissue ischemia and reperfusion, and further improve the ischemia Protective effect of preconditioning on brain injury.  相似文献   

19.
Abstract: To explore the possibility that peroxtdative degradation of brain tissue lipid constituents is an important mechanism of irreversible ischemic damage, we measured cortical fatty acids and phospholipids during reversible brain ischemia in the rat. Neither complete nor severe incomplete ischemia (5 and 30 min) caused any measurable breakdown of total or individual fatty acids or phospholipids. Except for a small (and reversible) decrease of inositol plus serine phosphoglycerides in the early postischemic period following 30 min of incomplete ischemia, there were no significant losses of fatty acids or phospholipids during recirculation. Since peroxidation, induced in brain cortical tissue in vitro , characteristically involves degradation of polyenoic fatty acids (arachidonic and docosahexaenoic acids) and of ethanolamine phosphoglycerides, the present in vivo results fail to support the hypothesis that peroxidation of membrane lipids is of primary importance for ischemic brain cell damage. Both complete and severe incomplete ischemia caused a similar increase in the tissue content of free fatty acids (FFA). Thus the FFA pool increased by about 10 times during a 30-min ischemic period, to constitute 1 - 2% of the total fatty acid pool. Since there was a relatively larger increase in polyenoic FFA (especially in arachidonic acid) than in saturated FFA, the release of FFA may be the result of activation of a phospholipase A2 unbalanced by reesterification. Increased levels of FFA persisted during the initial recirculation period, but a gradual normalization occurred and the ischemic changes were essentially reversed at 30 min after restoration of circulation. The pathophysiological implications of the changes in FFA are discussed with respect to mitochondrial dysfunction, formation of cellular edema and prostaglandin-mediated deterioration of postischemic circulation.  相似文献   

20.

Background

Tight-junction (TJ) protein degradation is a decisive step in hypoxic blood-brain barrier (BBB) breakdown in stroke. In this study we elucidated the impact of acute cerebral ischemia on TJ protein arrangement and the role of the apoptotic effector protease caspase-3 in this context.

Methodology/Principal Findings

We used an in vitro model of the neurovascular unit and the guinea pig whole brain preparation to analyze with immunohistochemical methods the BBB properties and neurovascular integrity. In both methodological approaches we observed rapid TJ protein disruptions after 30 min of oxygen and glucose deprivation or middle cerebral artery occlusion, which were accompanied by strong caspase-3 activation in brain endothelial cells (BEC). Surprisingly only few DNA-fragmentations were detected with TUNEL stainings in BEC. Z-DEVD-fmk, an irreversible caspase-3 inhibitor, partly blocked TJ disruptions and was protective on trans-endothelial electrical resistance.

Conclusions/Significance

Our data provide evidence that caspase-3 is rapidly activated during acute cerebral ischemia predominantly without triggering DNA-fragmentation in BEC. Further we detected fast TJ protein disruptions which could be partly blocked by caspase-3 inhibition with Z-DEVD-fmk. We suggest that the basis for clinically relevant BBB breakdown in form of TJ disruptions is initiated within minutes during ischemia and that caspase-3 contributes to this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号