首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four major basic proteins termed C, K, N and Q, which are synthesized very late in grain development, have been isolated from barley ( Hordum vulgare L.) mutant Bomi 1508. Immunoelectrophoretic monitoring assured a high degree of purity after a few ion exchange and gel filtration steps. Charge microheterogeneity of two of the four antigenically distinct proteins was observed. Some physico-chemical properties were determined, including molecular mass (C ∼ 28 000; K ∼ 30 000; N ∼ 11 000; Q ∼ 60000), isoelectric point(s) (C ∼ 9.7; K ∼ 10.1–10.3; N ∼ 9.3; Q ∼ 8.9–9.1 at 25°C), and amino acid composition. In total, the four proteins represent ∼ 5% of the salt-soluble protein in grains of some cultivated barleys. The most basic protein K is rich in lysine (∼ 7.9 mol %) and may account for ∼1% of the grain lysine content in these barleys.  相似文献   

2.
The major peroxidase of barley grain (BP 1) has enzymatic and spectroscopic properties that are very differeant from those of other known plant peroxidases (EC 1.11.1.7) and can therefore contribute to the understanding of the many physiological functions ascribed to these enzymes. To study the structure-function relationships of this unique model peroxidase, large-scale and Jaboratory-scale purifications have been developed. The two batches of pure BP 1 obtained were identical in their enzymatic and spectral properties, and confirmed that BP 1 is different from the prototypical horseradish peroxidase isoenzyme C (HRP C). However, when measuring the specific activity of BP 1 at pH 4.0 in the presence of 1 m M CaCl2, the enzyme was as competent as HRP C at neutral pH towards a variety of substrates (m M mg−1 min−1): coniferyl alcohol (930±48), caffeic acid (795±53), ABTS (2,2'-azino-di-[3-ethyl-benzothiazoline-(6)-sulfonic acid]) (840±47), ferulic acid (415±20), p -coumaric acid (325±12), and guaiacol (58±3). The absorption spectrum of BP 1 is blue-shifted compared to that of HRP C with a Soret maximum of 399–402 nm, depending on pH. The prosthetic group was shown to be iron-protoporphyrin IX, which is characteristic of plant peroxidases. BP 1 is stable from pH 3 to 11, indicating that its unusual spectral characteristics do not result from enzyme instability. The thermostability is also normal with a melting temperature of 75°C at pH 6.6, and 67°C at pH 4.0 and 8.3. It is clear that the unusual properties of BP 1 are genuine, and reflect a novel regulation of plant peroxidase function.  相似文献   

3.
The possible role for cyanogenic glycosides as nitrogen storage compounds was studied in barley, Hordeum vulgare (cv. Golf), cultivated under different nitrogen regimes. Cyanogenic glycosides were absent in seeds and roots but were synthesized in seedlings where they accumulated at a level of about 150 nmol shoot−1 in control plants and 110 nmol shoot−1 in nitrogen-starved plants. An enzyme involved in the breakdown of cyanogenic glycosides, β-glucosidase (EC 3.2.1.-) exhibited high activity in seeds and was also detected in roots and shoots. The activity of β-cyanoalanine synthase (EC 4.4.1.9), which is involved in the metabolism of HCN, was low in seeds but very high in roots and shoots. There was no correlation between the activities of the two enzymes and the content of cyanogenic glycosides or nitrogen. The relative content of nitrogen in cyanogenic glycosides never exceeded 0.3% of total nitrogen, and the amount of cyanogenic glycosides decreased at a low rate even at a stage when nitrogen limitation inhibited growth.  相似文献   

4.
Barley grains contain two imrnunochemically distinct inhibitors of chymotrypsin and microbial serine proteases. Both inhibitors are rich in lysine (9.5 and 11.5 g Lys/g protein). Hiproly high-lysine barley contains twenty-fold higher, high-lysine mutant 1508 five-fold higher amounts of these inhibitors than normally cultivated varieties. Inhibitors were extracted from Hiproly barley, and ammonium sulfate fractionation followed by gel filtration resulted in a neariy complete separation of the two inhibitors. No inactive protein impurities could be detected in a number of isoinhibitor preparations obtained in subsequent cation exchange chrotnatography steps. One inhibitor (CI-1) was composed of at leas# 4 molecular forms with isoelecfric points in the range 4.75–5.55 and a monomer molecular size of about 9 000. Most of this inhibitor was apparently present as dimer forms in grain extracts. The other inhibitor (CI-2) included at least 7 different molecular forms with isoelectric points in the range 6.05–7.90 and different molecular sizes in the range 6 500–9 000. Both dimer and monomer forms were present in grain extracts. In contrast to previously purified protease inhibitors of plant origin, the two barley inhibitors contain no cysteine. No interactions between the two inhibitors and trypsin were observed, but the inhibitors were immediately inactivated by pepsin at pH 2.0. Monospecific antibodies towards the two inhibitors were obtained after immunization with glutaraldehyde-polymerized inhibitor.
Inhibitor CI-1 is identical with an inhibitor of microbial alkaline proteases previously purified (Mikola and Suolinna 1971. Arch. Biochem. Biophys. 144: 566–575).  相似文献   

5.
The only inhibitor of human salivary α-amylase identified so far in Hordeum has been isolated from barley cv. Bomi endosperm. This protein has the same N-terminal sequence (23 residues), molecular mass, and isoelectric point as one of the subunits of the barley tetrameric inhibitor previously characterized. However, enzymatic cleavage of both proteins with endoproteinase Glu-C revealed that they are products of different genes. The two isoforms have diverged in their aggregative and inhibitory properties. Thus, the subunit previously characterized forms, along with two other subunits, a tetramer active towards insect but not human salivary α-amylase, while the isoform reported here behaves as a homodimer effective against the human enzyme. These results are discussed in the context of the evolution of the cereal α-amylase inhibitor family.  相似文献   

6.
The only inhibitor of human salivary α-amylase identified so far in Hordeum has been isolated from barley cv. Bomi endosperm. This protein has the same N-terminal sequence (23 residues), molecular mass, and isoelectric point as one of the subunits of the barley tetrameric inhibitor previously characterized. However, enzymatic cleavage of both proteins with endoproteinase Glu-C revealed that they are products of different genes. The two isoforms have diverged in their aggregative and inhibitory properties. Thus, the subunit previously characterized forms, along with two other subunits, a tetramer active towards insect but not human salivary α-amylase, while the isoform reported here behaves as a homodimer effective against the human enzyme. These results are discussed in the context of the evolution of the cereal α-amylase inhibitor family.  相似文献   

7.
The Russian barley cultivar Nevsky lacks 3 hordein and accumulates most of its hordein in the lumen of the endoplasmic reticulum and only a minor portion in the vacuole. In wild type barley and all other temperate cereals, storage proteins are deposited in the vacuole. F1 crosses revealed that the Nevsky phenotype is recessive; but the extent of hordein accumulation in the endoplasmic reticulum in F2 endosperm lacking 3 hordein was very much less than in the Nevsky parent. In order to study the Nevsky endosperm phenotype we have measured the levels of seven proteins and two mRNAs involved in protein folding in the ER lumen or ER to Golgi transport during endosperm development. The protein levels were unaltered in Nevsky as compared to the wild-type variety Bomi. When the levels of these seven proteins were correlated with the rate of hordein accumulation, four of these (HSP70, PDI, Sar1p and Sec18p) were consistently up-regulated with hordein synthesis. Accumulation of hordein in the endoplasmic reticulum appears to be determined by the absence of 3 hordein, or the product of a gene closely linked to it, plus one or more other recessive genes.  相似文献   

8.
Abstract. A monoclonal antibody prepared against barley ( Hordeum vulgare L., cv. Himalaya) nuclease (EC 3.1.30.2) was characterized with solid-state enzyme-linked immunosorbent assays and immuno-blotting. The antibody was specific for intracellular and secreted nuclease. Hormonal regulation of the synthesis and secretion of nuclease in isolated aleurone layers was investigated by immunoprecipitation of biosynthetically-labelled nuclease using polyclonal antibodies and by immunoblot analyses using the monoclonal antibody, respectively. Gibberellic acid (GA3) induced the de novo synthesis and secretion of nuclease in a time-and concentration-dependent manner. Nuclease was detected in aleurone layers incubated in 1 mmol m−3 GA3, after 24 h. The maximum rates of nuclease synthesis and secretion occurred 36–48 h after hormone treatment. A minimum concentration of 10−6 mol m−3 GA3 was required for nuclease synthesis and secretion, whereas the maximum rate of nuclease secretion occurred at concentrations of 10−5 mol m−3 and higher. In the presence of abscisic acid, the synthesis and secretion of nuclease from GA3-treated aleurone layers was almost completely inhibited. Based on these findings, the authors conclude that all nuclease within and secreted from aleurone layers treated with GA3 is the result of its de novo synthesis.  相似文献   

9.
Characterization of two antifungal endochitinases from barley grain   总被引:2,自引:0,他引:2  
A basic chitinase (chitinase T, EC 3.2.1.14, molecular mass 33 kDa, pI 9.8) was isolated and compared with a previously described chitinase (chitinase C, molecular mass 28 kDa, pI 9.7). The two chitinases were isolated in homogeneous form from barley ( Hordeum vulgare L.) Bomi mutant 1508 grains either by two cation exchange steps or by one affinity step followed by cation exchange. Both chitinases are endochitinases with specific activities of 168 and 54 nkat (mg protein)−1 for chitinase T and chitinase C, respectively. Both inhibit the growth of Trichoderma viride efficiently. The lysozyme activity of both chitinases is 104 times lower than that of hen egg-white lysozyme as measured by lysis of cell walls of Micrococcus lysodeikticus . The amino acid composition and two partial amino acid sequences of chitinase T were determined. A 23 residue sequence of the N-terminal domain of chitinase T, which was not present in chitinase C, showed 73% identity with domain B of wheat germ lectin and 65% identity with the N-terminal domain of an endochitinase from bean leaves (deduced from cDNA). A 9 amino acid sequence of a cyanogen bromide fragment of chitinase T was identical with a cDNA deduced sequence of a barley aleurone endochitinase but differed in one residue from chitinase C. Generally, the two grain chitinases have physico-chemical and enzymatic properties similar to the plant leaf chitinases characterized. Both chitinases are localized in the aleurone layer and starchy endosperm of developing and germinating grain, but not in the embryo. The appearance of chitinases T and C at a late state of grain development suggests a role for these enzymes as a defense against fungi in the quiescent and germinating grain.  相似文献   

10.
bltA is a barley gene which, as measured by steady state mRNA levels, is induced by a low positive temperature treatment of shoot meristems. The gene is also induced in shoot meristems by drought stress. We now report the response of this gene to foliar applications of abscisic acid. The striking similarity between the predicted amino acid sequence of bltA and two maize phospholipid transfer proteins indicates a biochemical function for the bltA gene product. This homology also demonstrates the hitherto unreported environmental regulation of expression of a phospholipid transfer protein which may involve abscisic acid in the signal transduction pathway.  相似文献   

11.
A beta-glucosidase from the medium of an autolyzed culture of Penicillium oxalicum has been purified by tannic acid precipitation, sephacryl S-200, DEAE-Biogel, CM-Biogel and Mono Q successively. The purification process produced a homogeneous band in the SDS-PAGE that correspond to a Mr of 133,500. The enzyme had a pl of 4, and the active optima were found at pH 5.5 and 55 degrees C. The enzyme hydrolyzed different substrates showing maximum affinity against p-nitrophenyl-beta-D-glucoside with a Km value of 0.37 mM. The beta-glucosidase was inhibited by Glucono-D-lactone but not by glucose in the concentration range of 1 to 10 mM. The enzyme was adsorbed by Concanavalin-A-Sepharose.  相似文献   

12.
13.
The complete amino acid sequence of one of the major wheat protein iso-inhibitors of α-amylase was determined. The sequence was deduced from analysis of fragments and peptides derived from the protein by cleavage with cyanogen bromide and by digestion with trypsin, chymotrypsin, thermolysin and the Staphylococcus aureus V8 protease. The molecule consists of a single polypeptide chain of 123 residues. Both serine and alanine were found in position 65, and further minor examples of microheterogeneity were observed in four other residues.  相似文献   

14.
15.
Diamine oxidase (DAO) (EC 1.4.3.6) was purified from pea epicotyls to homogeneity by the criterion of polyacrylamide gel electrophoresis (PAGE). The pu  相似文献   

16.
β-Galactosidase (EC 3.2.1.23) activity in barley ( Hordeum vulgare ) seedlings increases moderately during the first stages of germination. The level of activity in the whole seedling is the result of increasing activity of β-galactosidase in the roots and shoots and of declining enzyme activity in the grain. β-Galactosidase was purified during different developmental stages and from various parts of the barley seedling using affinity chromatography and was resolved into multiple forms by isoelectric focusing on polyacrylamide gels. The expression of the isoforms was shown to be under temporal and tissue-specific control. Four sets of isozymes were separated by DEAE-cellulose chromatography and were shown to be functionally similar. β-Galactosidase isoforms also exhibit size microheterogeneity, the more acidic entities having higher molecular masses. The differences in molecular weight are mainly restricted to the size of the small subunit. Multiplicity can not be attributed to glycosylation, since treatment of the enzyme preparation with N- or O-glycanase did not alter the isoelectric points or the molecular weights of the isoforms.  相似文献   

17.
Heat shock in barley ( Hordeum vulgare L. cv. Himalaya) aleurone layers induces the synthesis of heat shock proteins (hsps) and suppresses the synthesis and secretion of α-amylase, the principal secretory protein. This is accompanied by the destabilization of α-amylase mRNA and a concomitant dissociation of ER lamellae. In the absence of heat shock α-amylase mRNA is extremely stable (Belanger et al. 1986. Proc. Natl. Acad. Sci. USA 83: 1354–1358). In most organisms there is a direct correlation between the synthesis of hsps and thermotolerance. The ability of hsps to provide thermoprotection to secretory protein synthesis, α-amylase mRNA and ER lamellae was analyzed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of pulse-chased, [35S]-methionine-labeled proteins revealed that the half-life of hsps in barley aleurone cells recovering from heat shock was approximately 12 h. Within approximately 6 h, there was a recovery of α-amylase mRNA and a reformation of ER lamellae. Heat shock protein synthesis was induced by either heat shock (40°C) or arsenite, the cells were allowed to recover for 8 h, then were re-exposed to heat shock. Results from SDS-PAGE showed that, despite the presence of hsps, α-amylase synthesis was suppressed. Northern blot hybridizations showed that α-amylase mRNA levels were reduced in heat-shocked tissues. Transmission electron microscopy demonstrated that ER lamellar structures were dissociated. The synthesis of hsps did not enable barley aleurone cells to sustain the synthesis of any proteins at lethal temperature. In contrast, similar conditions established thermotolerance and provided thermoprotection to protein synthesis in germinating barley embryos. Our findings suggest that the aleurone layer does not become thermotolerant following the induction of hsp synthesis.  相似文献   

18.
A major cationic peroxidase had been isolated by CMC chromatography from protein isolate of suspension medium that had supported growth of cultured peanut cells. This major cationic peroxidase proved to be antigenically different from both the anionic and the minor cationic peroxidase. Affinity for Concanavalin A found earler for the anionic peroxidase could not be detected for the major cationic peroxidase. The carbohydrate content of the major cationic peroxidase is nearly 15%. The molecular mass of the overall molecule is close to 40,000. Amino acid analysis of the hydrolysate of this major peroxidase showed similarities to amino acids of the hydrolysates of the cationic horseradish peroxidases, but no immunological relatedness could be detected between the major peanut peroxidase and the horseradish peroxidase.  相似文献   

19.
Verification of putative quantitative trait loci (QTL) is an essential step towards implementing the use of marker-assisted selection (MAS) in cultivar improvement. In a previous study with 150 doubled haploid lines derived from the 6-row cross Steptoe/Morex (S/M), four regions (QTL1–4) of the barley genome were associated with differential genotypic expression for grain yield across environments. The objectives of this study were to verify the value of these four QTL for selection and to compare the efficiency of alternative MAS strategies using these QTL vs. conventional phenotypic selection for grain yield. A total of 92 DHLs derived from the S/M cross that were not used in the original mapping efforts were used for QTL verification. Confirmation of QTL effects was first accomplished by assessing yield differences between individuals carrying alternative alleles at each putative locus in three environments. QTL1 on chromosome 3 was confirmed as the most important and consistent locus to determine yield across sites, with the S allele being favorable. The M allele at QTL3 on chromosome 6 was beneficial for grain yield across sites, but to a lesser degree than QTL1. Magnitudes of allele effects at QTL2 (chromosome 2) and QTL4 (chromosome 7) were highly influenced by the environment where the genotypes were grown. Verification of QTL effects was best achieved by comparing realized selection response. Genotypic (MAS) and tandem genotypic and phenotypic selection were at least as good as phenotypic selection. Consistent selection responses were detected for QTL1 alone and together with QTL3. Genotypic selection for lines carrying the S allele at QTL1 resulted in the identification of high-yielding genotypes. Selection responses increased when the M allele at QTL3 was combined with the S allele at QTL1. Significant qualitative QTL × environment interactions for QTL2 and QTL4 were detected through differential realized selection responses at different sites. Without a thorough understanding of the physiological and agronomic particulars of any QTL and the target environment, MAS for QTL showing qualitative interactions should be minimized This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Chitinases (EC 3.2.1.14) and β -1.3 glucanases (EC 3.2.1.39) have been known to play a vital role in the defense of plants against fungal pathogens. The pattern of induction of these two enzymes subsequent to infection by powdery mildew was studied in 10 pairs of near-isogenic lines of barley ( Hordeum vulgare L.) which possess powdery mildew resistance genes. These isogenic lines have been grotiped according to their reaction to the fungus. The induction patterns varied between the resistant and the susceptible cultivars within each group and between different groups. More tsozymcs were induced in susceptible varieties of highly resistant groups and the overall levels and the number of isozymes of chitinases and β -1.3 glucanases were lower in groups with low resistance. The effect of powdery mildew infection and mechanical wounding on the cellular localization of chitinases and β -1.3 glucanases in barley leaves has also been studied. The 31 kDa leaf chitinase, L-CH2, and trace amounts of a 25 kDa chitinase. L-CH3. were present in healthy leaves. Wounding increased the levels of L-CH3 within I ft h. Powdery mildew infection increased the levels of L-CH3 both in intercellular fluid and in intracellular extract of leaves. A /3-I.3 glucanase. GH, also increased after infection and wounding. In infected barley leaves, GL-1 was present both in intercellular space and intracellular extract. It is concluded that powdery mildew resistance genes exhibit qualitative and quantitative differences in the expression of chitinases and β -1.3 glucanases. Further, chitinases and β -1.3 glucanases appear to be a response to active infection rather than the factors responsible for disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号