首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In vitro replication assays for detection and quantification of bypass of UV-induced DNA photoproducts were used to compare the capacity of extracts prepared from different human cell lines to replicate past the cis,syn cyclobutane thymine dimer ([c,s]TT). The results demonstrated that neither nucleotide excision repair (NER) nor mismatch repair (MMR) activities in the intact cells interfered with measurements of bypass replication efficiencies in vitro. Extracts prepared from HeLa (NER- and MMR-proficient), xeroderma pigmentosum group A (NER-deficient), and HCT116 (MMR-deficient) cells displayed similar capacity for translesion synthesis, when the substrate carried the site-specific [c,s]TT on the template for the leading or the lagging strand of nascent DNA. Extracts from xeroderma pigmentosum variant cells, which lack DNA polymerase eta, were devoid of bypass activity. Bypass-proficient extracts as a group (n=16 for 3 extracts) displayed higher efficiency (P=0.005) for replication past the [c,s]TT during leading strand synthesis (84+/-22%) than during lagging strand synthesis (64+/-13%). These findings are compared to previous results concerning the bypass of the (6-4) photoproduct [Biochemistry 40 (2001) 15215] and analyzed in the context of the reported characteristics of bypass DNA polymerases implicated in translesion synthesis of UV-induced DNA lesions. Models to explain how these enzymes might interact with the DNA replication machinery are considered. An alternative pathway of bypass replication, which avoids translesion synthesis, and the mutagenic potential of post-replication repair mechanisms that contribute to the duplication of the human genome damaged by UV are discussed.  相似文献   

2.
When cyclobutane pyrimidine dimers stall DNA replication by DNA polymerase (Pol) δ or ε, a switch occurs to allow translesion synthesis by DNA polymerase η, followed by another switch that allows normal replication to resume. In the present study, we investigate these switches using Saccharomyces cerevisiae Pol δ, Pol ε and Pol η and a series of matched and mismatched primer templates that mimic each incorporation needed to completely bypass a cissyn thymine–thymine (TT) dimer. We report a complementary pattern of substrate use indicating that enzymatic switching involving localized translesion synthesis by Pol η and mismatch excision and polymerization by a major replicative polymerase can account for the efficient and accurate dimer bypass known to suppress sunlight-induced mutagenesis and skin cancer.  相似文献   

3.
Cyclobutane thymine dimers (T-T) comprise the majority of DNA damage caused by short wavelength ultraviolet radiation. These lesions generally block replicative DNA polymerases and are repaired by nucleotide excision repair or bypassed by translesion polymerases in the nucleus. Mitochondria lack nucleotide excision repair, and therefore, it is important to understand how the sole mitochondrial DNA polymerase, pol γ, interacts with irreparable lesions such as T-T. We performed in vitro DNA polymerization assays to measure the kinetics of incorporation opposite the lesion and bypass of the lesion by pol γ with a dimer-containing template. Exonuclease-deficient pol γ bypassed thymine dimers with low relative efficiency; bypass was attenuated but still detectable when using exonuclease-proficient pol γ. When bypass did occur, pol γ misincorporated a guanine residue opposite the 3'-thymine of the dimer only 4-fold less efficiently than it incorporated an adenine. Surprisingly, the pol γ exonuclease-proficient enzyme excised the incorrectly incorporated guanine at similar rates irrespective of the nature of the thymines in the template. In the presence of all four dNTPs, pol γ extended the primer after incorporation of two adenines opposite the lesion with relatively higher efficiency compared with extension past either an adenine or a guanine incorporated opposite the 3'-thymine of the T-T. Our results suggest that T-T usually stalls mitochondrial DNA replication but also suggest a mechanism for the introduction of point mutations and deletions in the mitochondrial genomes of chronically UV-exposed cells.  相似文献   

4.
Individuals with Xeroderma pigmentosum (XP) syndrome have a genetic predisposition to sunlight-induced skin cancer. Genetically different forms of XP have been identified by cell fusion. Cells of individuals expressing the classical form of XP (complementation groups A through G) are deficient in the nucleotide excision repair (NER) pathway. In contrast, the cells belonging to the variant class of XP (XPV) are NER-proficient and are only slightly more sensitive than normal cells to the killing action of UV light radiation. The XPV fibroblasts replicate damaged DNA generating abnormally short fragments either in vivo [A.R. Lehmann, The relationship between pyramidine dimers and replicating DNA in UV-irradiated human fibroblasts, Nucleic Acids Res. 7 (1979) 1901-1912; S.D. Park, J.E. Cleaver, Postreplication repair: question of its definition and possible alteration in Xeroderma pigmentosum cell strains, Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 3927-3931.] or in vitro [S.M. Cordeiro, L.S. Zaritskaya, L.K. Price, W.K. Kaufmann, Replication fork bypass of a pyramidine dimer blocking leading strand DNA synthesis, J. Biol. Chem. 272 (1997) 13945-13954; D.L. Svoboda, L.P. Briley, J.M. Vos, Defective bypass replication of a leading strand cyclobutane thymine dimer in Xeroderma pigmentosum variant cell extracts, Cancer Res. 58 (1998) 2445-2448; I. Ensch-Simon, P.M. Burgers, J.S. Taylor, Bypass of a site-specific cis-syn thymine dimer in an SV40 vector during in vitro replication by HeLa and XPV cell-free extracts, Biochemistry 37 (1998) 8218-8226.], suggesting that in XPV cells, replication has an increased probability of being blocked at a lesion. Furthermore, extracts from XPV cells were found to be defective in translesion synthesis [A. Cordonnier, A.R. Lehmann, R.P.P. Fuchs, Impaired translesion synthesis in Xeroderma pigmentosum variant extracts, Mol. Cell. Biol. 19 (1999) 2206-2211.]. Recently, Masutani et al. [C. Masutani, M. Araki, A. Yamada, R. Kusomoto, T. Nogimori, T. Maekawa, S. Iwai, F. Hanaoka, Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity, EMBO J. 18 (1999) 3491-3501.] have shown that the XPV defect can be corrected by a novel human DNA polymerase, homologue to the yeast DNA polymerase eta, which is able to replicate past cyclobutane pyrimidine dimers in DNA templates. This review focuses on our current understanding of translesion synthesis in mammalian cells whose defect, unexpectedly, is responsible for the hypermutability of XPV cells and for the XPV pathology.  相似文献   

5.
Electron microscopy (EM) was used to visualize intermediates of in vitro replication of closed circular DNA plasmids. Cell-free extracts were prepared from human cells that are proficient (IDH4, HeLa) or deficient (CTag) in bypass replication of pyrimidine dimers. The DNA substrate was either undamaged or contained a single cis, syn thymine dimer. This lesion was inserted 385 bp downstream from the center of the SV40 origin of replication and sited specifically in the template to the leading strand of the newly synthesized DNA. Products from 30 minute reactions were crosslinked with psoralen and UV, linearized with restriction enzymes and spread for EM visualization. Extended single-stranded DNA regions were detected in damaged molecules replicated by either bypass-proficient or deficient extracts. These regions could be coated with Escherichia coli single-stranded DNA binding protein. The length of duplex DNA from a unique restriction site to the single-stranded DNA region was that predicted from blockage of leading strand synthesis by the site-specific dimer. These results were confirmed by S1nuclease treatment of replication products linearized with single cutting restriction enzymes, followed by detection of the diagnostic fragments by gel electrophoresis. The absence of an extended single-stranded DNA region in replication forks that were clearly beyond the dimer was taken as evidence of bypass replication. These criteria were fulfilled in 17 % of the molecules replicated by the IDH4 extract.  相似文献   

6.
Overexpression of the error-prone DNA polymerase beta (Pol beta) has been found to increase spontaneous mutagenesis by competing with the replicative polymerases during DNA replication. Here, we investigate an additional mechanism potentially used by Pol beta to enhance genetic instability via its ability to incorporate ribonucleotides into DNA. By using an in vitro primer extension assay, we show that purified human and calf thymus Pol beta can synthesize up to 8-mer long RNA. Moreover, Pol beta can efficiently incorporate rCTP opposite G in the absence of dCTP and, to a lesser extent, rATP opposite T in the absence of dATP and rGTP opposite C in the absence of dGTP. Recently, Pol beta was shown to catalyze in vitro translesion replication of a thymine cyclobutane pyrimidine dimer (CPD). Here, we investigate if ribonucleotides could be incorporated opposite the CPD damage and modulate the efficiency of the bypass process. We find that all four rNTPs can be incorporated opposite the CPD lesion, and that this process affects translesion synthesis. We discuss how incorporation of ribonucleotides into DNA may contribute to the high frequency of mutagenesis observed in Pol beta up-regulating cells.  相似文献   

7.
Promiscuous DNA synthesis by human DNA polymerase θ   总被引:1,自引:0,他引:1  
The biological role of human DNA polymerase θ (POLQ) is not yet clearly defined, but it has been proposed to participate in several cellular processes based on its translesion synthesis capabilities. POLQ is a low-fidelity polymerase capable of efficient bypass of blocking lesions such as abasic sites and thymine glycols as well as extension of mismatched primer termini. Here, we show that POLQ possesses a DNA polymerase activity that appears to be template independent and allows efficient extension of single-stranded DNA as well as duplex DNA with either protruding or multiply mismatched 3'-OH termini. We hypothesize that this DNA synthesis activity is related to the proposed role for POLQ in the repair or tolerance of double-strand breaks.  相似文献   

8.
In order to examine the possible role of Escherichia coli DNA polymerase II in SOS-induced translesion bypass, Weigle reactivation and mutation induction were measured with single-stranded phi X174 transfecting DNA containing individual lesions. No decrease in bypass of thymine glycol or cyclobutane pyrimidine dimers in the absence of DNA polymerase II was observed. Furthermore, DNA polymerase II did not affect bypass of abasic sites when either survival or mutagenesis was the endpoint. Lastly, repair of gapped DNA molecules, intermediates in methyl-directed mismatch repair, was also unaffected by the presence or absence of DNA polymerase II.  相似文献   

9.
In yeast, Rad6-Rad18-dependent lesion bypass involves translesion synthesis (TLS) by DNA polymerases eta or zeta or Rad5-dependent postreplication repair (PRR) in which error-free replication through the DNA lesion occurs by template switching. Rad5 functions in PRR via its two distinct activities-a ubiquitin ligase that promotes Mms2-Ubc13-mediated K63-linked polyubiquitination of PCNA at its lysine 164 residue and a DNA helicase that is specialized for replication fork regression. Both these activities are important for Rad5's ability to function in PRR. Here we provide evidence for the requirement of Rad5 in TLS mediated by Polzeta. Using duplex plasmids carrying different site-specific DNA lesions-an abasic site, a cis-syn TT dimer, a (6-4) TT photoproduct, or a G-AAF adduct-we show that Rad5 is needed for Polzeta-dependent TLS. Rad5 action in this role is likely to be structural, since neither the inactivation of its ubiquitin ligase activity nor the inactivation of its helicase activity impairs its role in TLS.  相似文献   

10.
McCulloch SD  Kunkel TA 《DNA Repair》2006,5(11):1373-1383
We hypothesize that enzymatic switching during translesion synthesis (TLS) to relieve stalled replication forks occurs during transitions from preferential to disfavored use of damaged primer-templates, and that the polymerase or 3'-exonuclease used for each successive nucleotide incorporated is the one whose properties result in the highest efficiency and the highest fidelity of bypass. Testing this hypothesis requires quantitative determination of the relative lesion bypass ability of both TLS polymerases and major replicative polymerases. As a model of the latter, here we measure the efficiency and fidelity of cis-syn TT dimer and abasic site bypass using the structurally well-characterized T7 DNA polymerase. No bypass of either lesion occurred during a single round of synthesis, and the exonuclease activity of wild-type T7 DNA polymerase was critical in preventing TLS. When repetitive cycling of the exonuclease-deficient enzyme was allowed, limited bypass did occur but hundreds to thousands of cycles were required to achieve even a single bypass event. Analysis of TLS fidelity indicated that these rare bypass events involved rearrangements of the template and primer strands, insertions opposite the lesion, and combinations of these events, with the choice among these strongly depending on the sequence context of the lesion. Moreover, the presence of a lesion affected the fidelity of copying adjacent undamaged template bases, even when lesion bypass itself was correct. The results also indicate that a TT dimer presents a different type of block to the polymerase than an abasic site, even though both lesions are extremely potent blocks to processive synthesis. The approaches used here to quantify the efficiency and fidelity of TLS can be applied to other polymerase-lesion combinations, to provide guidance as to which of many possible polymerases is most likely to bypass various lesions in biological contexts.  相似文献   

11.
Devadoss B  Lee I  Berdis AJ 《Biochemistry》2007,46(15):4486-4498
UV light causes the formation of thymine dimers that can be misreplicated to induce mutagenesis and carcinogenesis. This report describes the use of a series of non-natural indolyl nucleotides in probing the ability of the high-fidelity bacteriophage T4 DNA polymerase to replicate this class of DNA lesion. Kinetic data reveal that indolyl analogues containing large pi-electron surface areas are incorporated opposite the thymine dimer almost as effectively as an abasic site, a noninstructional lesion. However, there are notable differences in the kinetic parameters for each DNA lesion that indicate distinct mechanisms for their replication. For example, the rate constants for incorporation opposite a thymine dimer are considerably slower than those measured opposite an abasic site. In addition, the magnitude of these rate constants depends equally upon contributions from pi-electron density and the overall size of the analogue. In contrast, binding of a nucleotide opposite a thymine dimer is directly correlated with the overall pi-electron surface area of the incoming dXTP. In addition to defining the kinetics of polymerization, we also provide the first reported characterization of the enzymatic removal of natural and non-natural nucleotides paired opposite a thymine dimer through exonuclease degradation or pyrophosphorolysis activity. Surprisingly, the exonuclease activity of the bacteriophage enzyme is activated by a thymine dimer but not by an abasic site. This dichotomy suggests that the polymerase can "sense" bulky lesions to partition the damaged DNA into the exonuclease domain. The data for both nucleotide incorporation and excision are used to propose models accounting for polymerase "switching" during translesion DNA synthesis.  相似文献   

12.
We isolated active mutants in Saccharomyces cerevisiae DNA polymerase alpha that were associated with a defect in error discrimination. Among them, L868F DNA polymerase alpha has a spontaneous error frequency of 3 in 100 nucleotides and 570-fold lower replication fidelity than wild-type (WT) polymerase alpha. In vivo, mutant DNA polymerases confer a mutator phenotype and are synergistic with msh2 or msh6, suggesting that DNA polymerase alpha-dependent replication errors are recognized and repaired by mismatch repair. In vitro, L868F DNA polymerase alpha catalyzes efficient bypass of a cis-syn cyclobutane pyrimidine dimer, extending the 3' T 26000-fold more efficiently than the WT. Phe34 is equivalent to residue Leu868 in translesion DNA polymerase eta, and the F34L mutant of S. cerevisiae DNA polymerase eta has reduced translesion DNA synthesis activity in vitro. These data suggest that high-fidelity DNA synthesis by DNA polymerase alpha is required for genomic stability in yeast. The data also suggest that the phenylalanine and leucine residues in translesion and replicative DNA polymerases, respectively, might have played a role in the functional evolution of these enzyme classes.  相似文献   

13.
14.
Lesions in the template DNA strand block the progression of the replication fork. In the yeast Saccharomyces cerevisiae, replication through DNA lesions is mediated by different Rad6-Rad18-dependent means, which include translesion synthesis and a Rad5-dependent postreplicational repair pathway that repairs the discontinuities that form in the DNA synthesized from damaged templates. Although translesion synthesis is well characterized, little is known about the mechanisms that modulate Rad5-dependent postreplicational repair. Here we show that yeast Rad5 has a DNA helicase activity that is specialized for replication fork regression. On model replication fork structures, Rad5 concertedly unwinds and anneals the nascent and the parental strands without exposing extended single-stranded regions. These observations provide insight into the mechanism of postreplicational repair in which Rad5 action promotes template switching for error-free damage bypass.  相似文献   

15.
Poxviruses are large DNA viruses that replicate in the cytoplasm of infected cells and recombine at high frequencies. Calcium phosphate precipitates were used to cotransfect Shope fibroma virus-infected cells with different DNA substrates and the recombinant products assayed by genetic and biochemical methods. We have shown previously that bacteriophage lambda DNAs can be used as substrates in these experiments and recombinants assayed on Escherichia coli following DNA recovery and in vitro packaging. Using this assay it was observed that 2-3% of the phage recovered from crosses between point mutants retained heteroduplex at at least one of the mutant sites. The reliability of this genetic analysis was confirmed using DNA substrates that permitted the direct detection of heteroduplex molecules by denaturant gel electrophoresis and Southern blotting. It was further noted that heteroduplex formation coincided with the onset of both replication and recombination suggesting that poxviruses, like certain bacteriophage, make no clear biochemical distinction between these three processes. The fraction of heteroduplex molecules peaked about 12-hr postinfection then declined later in the infection. This decline was probably due to DNA replication rather than mismatch repair because, while high levels of induced DNA polymerase persisted beyond the time of maximal heteroduplex recovery, we were unable to detect any type of mismatch repair activity in cytoplasmic extracts. These results suggest that, although heteroduplex molecules are formed during the progress of poxviral infection, gene conversion through mismatch repair probably does not produce most of the recombinants. The significance of these observations are discussed considering some of the unique properties of poxviral biology.  相似文献   

16.
The ability of Escherichia coli DNA polymerase I and T7 DNA polymerase to bypass bulky C-8 guanyl-2-aminofluorene adducts in DNA was studied by in vitro DNA synthesis reactions on a site-specific aminofluorene-modified M13mp9 template. This site-specifically modified DNA was prepared by ligating an oligonucleotide containing a single aminofluorene adduct into a gapped heteroduplex of M13mp9 DNA (Johnson, D. L., Reid, T. M., Lee, M.-S., King, C. M., and Romano, L. J. (1986) Biochemistry 25, 449-456). The resulting covalently closed duplex DNA molecule was then cleaved with a restriction endonuclease, denatured, and annealed to a primer on the 3' side of the adduct to form a template specifically designed to study bypass. In this system, any synthesis that was not blocked by the bulky aminofluorene adduct would proceed to the 5' terminus of the single-stranded template, while synthesis interrupted by the adduct would terminate at or near the adduct location. We have measured DNA synthesis on this template and find that the amount of radiolabeled nucleotide incorporated by either E. coli DNA polymerase I (large fragment) or T7 DNA polymerase was much greater than would be predicted if the aminofluorene adduct were an absolute block to DNA synthesis. Furthermore, the products of similar reactions electrophoresed on polyacrylamide gels showed conclusively that the majority of the DNA synthesized by either the T7 DNA polymerase or E. coli DNA polymerase I bypassed the aminofluorene lesion. Substitution of Mn2+ for Mg2+ as the divalent cation resulted in even higher levels of translesion synthesis.  相似文献   

17.
18.
Heteroduplex repair in extracts of human HeLa cells   总被引:35,自引:0,他引:35  
A general repair process for DNA heteroduplexes has been detected in HeLa cell extracts. Using a variety of M13mp2 DNA substrates containing single-base mismatches and extra nucleotides, extensive repair is observed after incubation with HeLa cell cytoplasmic extracts and subsequent transfection of bacterial cells with the treated DNA. Most, but not all, mispairs as well as two frameshift heteroduplexes are repaired efficiently. Parallel measurements of repair in HeLa extracts and in Escherichia coli suggest that repair specificities are similar for the two systems. The presence of a nick in the molecule is required for efficient repair in HeLa cell extracts, and the strand containing the nick is the predominantly repaired strand. Mismatch-dependent DNA synthesis is observed when radiolabeled restriction fragments, produced by reaction of the extract with heteroduplex and homoduplex molecules, are compared. Specific labeling of fragments, representing a region of approximately 1,000 base pairs and containing the nick and the mismatch, is detected for the heteroduplex substrate but not the homoduplex. The repair reaction is complete after 20 min and requires added Mg2+, ATP, and an ATP-regenerating system, but not dNTPs, which are present at sufficient levels in the extract. An inhibitor of DNA polymerase beta, dideoxythimidine 5'-triphosphate, does not inhibit mismatch-specific DNA synthesis. Aphidicolin, an inhibitor of DNA polymerases alpha, delta, and epsilom, inhibits both semiconservative replication and repair synthesis in the extract. Butylphenyl-dGTP also inhibits both replicative and repair synthesis but at a concentration known to inhibit DNA polymerase alpha preferentially rather than delta or epsilon. This suggests that DNA polymerase alpha may function in mismatch repair.  相似文献   

19.
Lesion bypass is an important mechanism to overcome replication blockage by DNA damage. Translesion synthesis requires a DNA polymerase (Pol). Human Pol ι encoded by the RAD30B gene is a recently identified DNA polymerase that shares sequence similarity to Pol η. To investigate whether human Pol ι plays a role in lesion bypass we examined the response of this polymerase to several types of DNA damage in vitro. Surprisingly, 8-oxoguanine significantly blocked human Pol ι. Nevertheless, translesion DNA synthesis opposite 8-oxoguanine was observed with increasing concentrations of purified human Pol ι, resulting in predominant C and less frequent A incorporation opposite the lesion. Opposite a template abasic site human Pol ι efficiently incorporated a G, less frequently a T and even less frequently an A. Opposite an AAF-adducted guanine, human Pol ι was able to incorporate predominantly a C. In both cases, however, further DNA synthesis was not observed. Purified human Pol ι responded to a template TT (6–4) photoproduct by inserting predominantly an A opposite the 3′ T of the lesion before aborting DNA synthesis. In contrast, human Pol ι was largely unresponsive to a template TT cis-syn cyclobutane dimer. These results suggest a role for human Pol ι in DNA lesion bypass.  相似文献   

20.
The hyperthermophilic crenarchaeon Sulfolobus solfataricus P2 encodes three B-family DNA polymerase genes, B1 (Dpo1), B2 (Dpo2), and B3 (Dpo3), and one Y-family DNA polymerase gene, Dpo4, which are related to eukaryotic counterparts. Both mRNAs and proteins of all four DNA polymerases were constitutively expressed in all growth phases. Dpo2 and Dpo3 possessed very low DNA polymerase and 3' to 5' exonuclease activities in vitro. Steady-state kinetic efficiencies (k(cat)/K(m)) for correct nucleotide insertion by Dpo2 and Dpo3 were several orders of magnitude less than Dpo1 and Dpo4. Both the accessory proteins proliferating cell nuclear antigen and the clamp loader replication factor C facilitated DNA synthesis with Dpo3, as with Dpo1 and Dpo4, but very weakly with Dpo2. DNA synthesis by Dpo2 and Dpo3 was remarkably decreased by single-stranded binding protein, in contrast to Dpo1 and Dpo4. DNA synthesis in the presence of proliferating cell nuclear antigen, replication factor C, and single-stranded binding protein was most processive with Dpo1, whereas DNA lesion bypass was most effective with Dpo4. Both Dpo2 and Dpo3, but not Dpo1, bypassed hypoxanthine and 8-oxoguanine. Dpo2 and Dpo3 bypassed uracil and cis-syn cyclobutane thymine dimer, respectively. High concentrations of Dpo2 or Dpo3 did not attenuate DNA synthesis by Dpo1 or Dpo4. We conclude that Dpo2 and Dpo3 are much less functional and more thermolabile than Dpo1 and Dpo4 in vitro but have bypass activities across hypoxanthine, 8-oxoguanine, and either uracil or cis-syn cyclobutane thymine dimer, suggesting their catalytically limited roles in translesion DNA synthesis past deaminated, oxidized base lesions and/or UV-induced damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号