首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In cichlid, poecilid and centrarchid fishes luteinizing hormone releasing hormone (LHRH)-immunoreactive neurons are found in a cell group (nucleus olfactoretinalis) located at the transition between the ventral telencephalon and olfactory bulb. Processes of these neurons project to the contralateral retina, traveling along the border between the internal plexiform and internal nuclear layer, and probably terminating on amacrine or bipolar cells. Horseradish peroxidase (HRP) injected into the eye or optic nerve is transported retrogradely in the optic nerve to the contralateral nucleus olfactoretinalis where neuronal perikarya are labeled. Labeled processes leave this nucleus in a rostral direction and terminate in the olfactory bulb. The nucleus olfactoretinalis is present only in fishes, such as cichlids, poecilids and centrarchids, in which the olfactory bulbs border directly the telencephalic hemispheres. In cyprinid, silurid and notopterid fishes, in which the olfactory bulbs lie beneath the olfactory epithelium and are connected to the telencephalon via olfactory stalks, the nucleus olfactoretinalis or a comparable arrangement of LHRH-immunoreactive neurons is lacking. After retrograde transport of HRP in the optic nerve of these fishes no labeling of neurons in the telencephalon occurred. It is proposed that the nucleus olfactoretinalis anatomically and functionally interconnects and integrates parts of the olfactory and optic systems.  相似文献   

2.
Summary We have investigated the central connections of the classical olfactory system in the weakly electric fish Gnathonemus petersii using HRP and cobalt labelling techniques. The olfactory bulb projects bilaterally via the medial and lateral olfactory tracts to restricted areas of the telencephalon, namely to its rostromedial, lateral and posterior medial parts. The most extensive telencephalic target is the posterior terminal field, which arcs around the lateral forebrain bundle at levels posterior to the anterior commissure. Projections to the contralateral hemisphere cross in the ventral telencephalon rostral to the anterior commissure and via the posterior dorsal part of the anterior commissure; endings are also present within the anterior commissure. Bilateral projections to the preoptic area, to the nucleus posterior tuberis and to an area in the thalamus are apparent. In all cases, contralateral projections are less extensive than those on the side ipsilateral to the injected bulb. A projection via the medial olfactory tract can be followed to the contralateral bulb. Following injections into the olfactory bulb, retrogradely labelled neurons are found in the contralateral bulb and in six telencephalic areas; they are also present in the periventricular diencephalon and in an area lateral to the nucleus posterior tuberis. The present results support the suggestion that a reduction in olfactory input to the telencephalon occurs together with increased telencephalic differentiation in actinopterygian fishes.  相似文献   

3.
Summary This study showed that the olfactory mucus is a highly structured extracellular matrix. Several olfactory epithelial glycoconjugates in the frog Rana pipiens were localized ultrastructurally using rapid-freeze, freeze-substitution and post-embedding (Lowicryl K11M) immunocytochemistry. Two of these conjugates were obtained from membrane preparations of olfactory cilia, the glycoproteins gp95 and olfactomedin. The other conjugates have a carbohydrate group which in the olfactory bulb appears to be mostly on neural cell-adhesion molecules (N-CAMs); in the olfactory epithelium this carbohydrate is present on more molecules. Localization of the latter conjugates was determined with monoclonal antibodies 9-OE and 5-OE. Ultrastructurally all antigens localized in secretory granules of apical regions of frog olfactory supporting cells and in the mucus overlying the epithelial surface, where they all had different, but partly overlapping, distributions. Monoclonal antibody 18.1, to gp95, labeled the mucus throughout, whereas poly- and monoclonal anti-olfactomedin labeled a deep mucous layer surrounding dendritic endings, proximal parts of cilia, and supporting cell microvilli. Labeling was absent in the superficial mucous layer, which contained the distal parts of the olfactory cilia. Monoclonal antibody 9-OE labeled rather distinct areas of mucus. These areas sometimes surrounded dendritic endings and olfactory cilia. Monoclonal antibody 5-OE labeled membranes of dendritic endings and cilia, and their glycocalyces, and also dendritic membranes.  相似文献   

4.
Summary The central connections of the goldfish olfactory bulb were studied with the use of horseradish peroxidase methods. The olfactory bulb projects bilaterally to ventral and dorsolateral areas of the telencephalon; further targets include the nucleus praeopticus periventricularis and a caudal olfactory nucleus near the nucleus posterior tuberis in the diencephalon, bilaterally. The contralateral bulb and the anterior commissure also receive an input from the olfactory bulb. Contralateral projections cross in rostral and caudal portions of the anterior commissure and in the habenular commissure. Retrogradely labeled neurons are found in the contralateral bulb and in three nuclei in the telencephalon bilaterally; the neurons projecting to the olfactory bulb are far more numerous on the ipsilateral side than in the contralateral hemisphere. Afferents to the olfactory bulb are found to run almost entirely through the lateral part of the medial olfactory tract, while the bulb efferents are mediated by the medial part of the medial olfactory tract and the lateral olfactory tract. Selective tracing of olfactory sub-tracts reveals different pathways and targets of the three major tract components. Reciprocal connections between olfactory bulb and posterior terminal field suggest a laminated structure in the dorsolateral telencephalon.  相似文献   

5.
In early rat embryos when axons from sensory neurons first contact the olfactory bulb primordium, lactosamine-containing glycans (LCG) are detected on neurons that are broadly distributed within the olfactory epithelium, but that project axons to a very restricted region of the ventromedial olfactory bulb. LCG(+) axons extend through channels defined by the coexpression of galectin-1 and beta2-laminin. These two extracellular matrix molecules are differentially expressed, along with semaphorin 3A, by subsets of ensheathing cells in the ventral nerve layer of the olfactory bulb. The overlapping expression of these molecules creates an axon-sorting domain that is capable of promoting and repelling subsets of olfactory axons. Specifically, LCG(+) axons preferentially grow into the region of the nerve layer that expresses high amounts of galectin-1, beta2-laminin, and semaphorin 3A, whereas neuropilin-1(+) axons grow in a complementary pattern, avoiding the ventral nerve layer and projecting medially and laterally. These studies suggest that initial patterning of olfactory epithelium to olfactory bulb connections is, in part, dependent on extracellular components of the embryonic nerve layer that mediate convergence and divergence of specific axon subsets.  相似文献   

6.
鱼类嗅觉系统和性信息素受体的研究进展   总被引:1,自引:0,他引:1  
鱼类嗅觉系统包括外部嗅觉器官、嗅神经和嗅球三个部分.嗅觉器官也称为嗅囊,由嗅上皮和髓质组成.气味物质的化学信息主要由嗅上皮上随机分布的嗅觉感受神经元感知,通过嗅神经将嗅觉信息传递到嗅球,嗅球在空间上有不同的功能分区,嗅觉信息经过嗅球各分区整合后分别传入端脑,发挥其生理功能.性信息素在鱼类生殖过程中的作用是通过嗅觉系统来完成的,其中嗅觉感受神经元上的性信息素受体起着重要作用.鱼类性信息素受体的研究主要从两个方面入手,一是从低浓度特异的性信息素引起嗅觉器官电生理反应或行为反应入手,寻找特异的性信息素受体;二是参照哺乳动物嗅觉受体的研究结果,从嗅觉受体基因遗传保守性入手,研究鱼类性信息素受体的结构与功能.  相似文献   

7.
The expression of the neural cell adhesion molecules N-CAM and L1 was investigated in the olfactory system of the mouse using immunocytochemical and immunochemical techniques. In the olfactory epithelium, globose basal cells and olfactory neurons were stained by the polyclonal N-CAM antibody reacting with all three components of N-CAM (N-CAM total) in their adult and embryonic states. Dark basal cells and supporting cells were not found positive for N-CAM total. The embryonic form of N-CAM (E-N-CAM) was only observed on the majority of globose basal cells, the precursor cells of olfactory neurons, and some neuronal elements, probably immature neurons, since they were localized adjacent to the basal cell layer. Differentiated neurons in the olfactory epithelium did not express E-N-CAM. In contrast to N-CAM total, the 180-kDa component of N-CAM (N-CAM180) and E-N-CAM, L1 was not detectable on cell bodies in the olfactory epithelium. L1 and N-CAM180 were strongly expressed on axons leaving the olfactory epithelium. Olfactory axons were also labeled by antibodies to N-CAM180 and L1 in the lamina propria and the nerve fiber and glomerular layers of the olfactory bulb, but only some axons showed a positive immunoreaction for E-N-CAM. Ensheathing cells in the olfactory nerve were observed to bear some labeling for N-CAM total, L1, and N-CAM180, but not E-N-CAM. In the olfactory bulb, L1 was not present on glial cells. In contrast, N-CAM180 was detectable on some glia and N-CAM total on virtually all glia. Glia in the nerve fiber layer were labeled by E-N-CAM antibody only at the external glial limiting membrane. In the glomerular layer, E-N-CAM expression was particularly pronounced at contacts between olfactory axons and target cells. The presence of E-N-CAM in the adult olfactory epithelium and bulb was confirmed by Western blot analysis. The continued presence of E-N-CAM in adulthood on neuronal precursor cells, a subpopulation of olfactory axons, glial cells at the glia limitans, and contacts between olfactory axons and their target cells indicates the retention of embryonic features in the mammalian olfactory system, which may underlie its remarkable regenerative capacity.  相似文献   

8.
Summary The connections of the olfactory bulb were studied in the piranha using the Nauta and horseradish-peroxidase methods. Three olfactory tracts project to seven terminal fields in the telencephalon and one in the diencephalon, all of them bilaterally. The contralateral olfactory bulb also receives a small input. All contralateral projections decussate in the anterior commissure and are relatively weak compared to the ipsilateral projections. HRP-containing cells were found in all of the ipsilateral telencephalic aggregates receiving an olfactory tract projection; the contralateral side was free of labeled cell bodies. Although only about one fourth of the entire telencephalon receives a direct olfactory input, the high degree of differentiation of the olfactory system suggests that the piranha depends substantially on the sense of olfaction and that this species may be a good model for further studies on olfactory mechanisms.  相似文献   

9.
Kallmann syndrome is a genetically heterogeneous developmental disease characterised by a partial or complete lack of olfactory bulb development. Two genes underlying this disease have so far been identified: the KAL-1 gene, which encodes anosmin-1, an extracellular matrix protein that promotes axonal guidance and branch formation in vitro; and KAL-2, which encodes the known FGFR1. The implication of FGFR1 and anosmin-1 in the same developmental disease led us to test whether anosmin-1 and FGFR1 interact during the development of the olfactory system. In this paper, we showed that the two proteins co-localise in the olfactory bulb during development in rat. Using cross-immunoprecipitation assays of olfactory bulb extracts, we also demonstrated that anosmin-1 and FGFR1 are comprised within the same protein complex. Moreover, we show that anosmin-1 expression in CHO transfected cells increases FGFR1 accumulation, suggesting that anosmin-1 may act as a positive extracellular regulator of FGFR1 signalling. Taken together, our findings strongly suggest that anosmin-1 is an essential component of a FGFR1 pathway that plays a key role during olfactory bulb morphogenesis.  相似文献   

10.
This study investigated whether contact with the olfactory bulb was necessary for developing and renewing olfactory receptor neurons (ORNs) to attain normal odorant responsiveness, and whether the anatomical and functional recoveries of the olfactory epithelium were similar in both bulbectomized (BE) and bilaterally axotomized (AX) preparations. In vivo electrophysiological recordings were obtained in response to amino acids, a bile acid [taurolithocholic acid sulfate(TLCS)] and a pheromonal odorant [17α, 20β,-dihydroxy-4-pregnen-3-one (17,20P)] from sexually immature goldfish. Both transmission and scanning electron microscopy indicated that the olfactory epithelium degenerated in BE and AX goldfish. Within 1–2 weeks subsequent to the respective surgeries, responses to high concentrations (>0.1 mmol · l−1) of the more stimulatory amino acids remained, whereas responses were no longer obtainable to TLCS and 17,20P. At 4 weeks, responses to amino acid stimuli recovered to control levels, while responses to TLCS and 17,20P were minimal. By 7 weeks post bilateral axotomy, the olfactory epithelium recovered to a condition similar to control sensory epithelium; however, the rate of degeneration and proliferation of receptor neurons in BE preparations appeared to remain in balance, thus blocking further recovery of the olfactory epithelium. At 7 weeks post surgery, odorant responses of AX and BE goldfish to TLCS and 17,20P were still recovering. Accepted: 14 June 1997  相似文献   

11.
Summary The olfactory tract of the African catfish, Clarias gariepinus, consists of two tracts, the medial and lateral olfactory tract. Ovulated female catfish are attracted by male steroidal pheromones. Attraction tests with catfish in which the medial and lateral olfactory tract have been selectively lesioned show that the effects of these pheromones are mediated by the medial olfactory tract. The central connections of the medial and lateral olfactory tract have been studied by retro- and anterograde transport techniques using horseradish peroxidase as a tracer. Upon entering the forebrain, the medial olfactory tract innervates the posterior pars ventralis and pars supracommissuralis of the area ventralis telencephali and the nucleus preopticus periventricularis, the nucleus preopticus and the nucleus recessus posterioris. Application of horseradish peroxidase to the olfactory epithelium shows that part of the innervation of the area ventralis telencephali and the nucleus preopticus periventricularis can be attributed to the nervus terminalis, which appears to be embedded in the medial olfactory tract. The lateral olfactory tract sends projections to the same brain areas but also innervates the nucleus habenularis and a large terminal field in the area dorsalis telencephali pars lateralis ventralis. Furthermore, the medial olfactory tract carries numerous axons from groups of perikarya localized in the area dorsalis telencephali. Contralateral connections have been observed in the olfactory bulb, telencephalon, diencephalon and mesencephalon. It is suggested that processes of the medial olfactory tract innervating the preoptic region may influence the gonadotropin-releasing hormone system and in doing so may lead to behavioral and physiological changes related to spawning.  相似文献   

12.
用组织学方法研究家犬嗅球的结构,观察家犬嗅球内结构的性别和年龄差异,依据常规HE染色法及数理统计学原理对家犬嗅球各层宽度,主要细胞的数量进行比较统计学分析,探讨嗅球内部结构的发育过程以及性别差异对雌雄动物嗅觉差异的影响。结果表明:雌雄幼年家犬嗅球内各层结构差异不显著;成年家犬也表现出同样的结果,但是成年动物的僧帽细胞形态、数量差异极显著。分析发现,幼年家犬嗅球各层结构都已比较明显,成年家犬嗅球体积和重量明显增加,各层宽度明显变宽,各层细胞密度显著降低,说明嗅球也处在不断的发育完善过程之中。同时僧帽细胞的差异可能是造成雌雄动物嗅觉差别的原因之一。  相似文献   

13.
Summary Central connections of the olfactory bulb of Polypterus palmas were studied with the use of horseradish peroxidase and cobalt-tracing techniques. The olfactory bulb projects to subpallial and palliai areas in the ipsilateral telencephalon; a projection to the contralateral subpallium is noted via the habenular commissure. A further target of secondary olfactory fibers is a caudal olfactory projection area in the ipsilateral hypothalamus. No labeling was seen in the anterior commissure and in the contralateral olfactory bulb. The medial and the lateral pallium receive secondary olfactory fibers in distinct areas. Neurons projecting to the bulb are found in the ipsilateral subpallium, mainly in one dorsal longitudinal nucleus. The main connection with the tel- and diencephalon is mediated via the medial olfactory tract. This tract also contains fibers to the contralateral telencephalon, and to the hypothalamus. The smaller lateral olfactory tract mediates fibers to the lateral pallium. The organization of pathways of secondary olfactory fibers in the telencephalon is described. The present findings are compared to those obtained in species possessing an inverted forebrain.This investigation was supported by grants from the Deutsche Forschungsgemeinschaft to DLM  相似文献   

14.
A central nervous system isolate from an acquired immunodeficiency syndrome (AIDS) patient of 103 Cryptococcus neoformans cells was instilled intranasally into guinea pigs. These were killed to evaluate the fate of the organisms and the response of the olfactory mucosa. Olfactory epithelium prevented the penetration ofCryptococcus neoformans and showed focal hyperplastic responses. The organisms, which manifested an affinity for the olfactory portion of the nasal cavities, were cleared from the olfactory space with no intervention from the immune system cells. By the end of the fifth week almost no organisms could be found and there was no histological evidence of dissemination. In contrast, destruction of the olfactory epithelium with zinc sulfate allowed the invasion of the subepithelial tissues, demonstrating the role of the olfactory mucosa in preventing infection withCryptococcus neoformans through the nasal route. The results and the model described in this report may be useful in clarifying the pathogenic mechanisms of cryptococcosis and the non immune mediated host responses toCryptococcus neoformans.  相似文献   

15.
Experiments were performed to test the hypothesis that subsetsof olfactory receptor cells could be recognized based on theirlectin binding and that mapping of their projections onto theolfactory bulb would reveal details of anatomic organizationof the olfactory nerve projection to the olfactory bulb. Theresults from one lectin, Lotus, were examined in detail. Olfactoryreceptor cells in the lateral part of the main epithelium werelabeled, as well as scattered cells in the remainder of theepithelium. Glomeruli labled by Lotus were concentrated primarilyin the region of the olfactory bulb that receives its inputfrom the lateral epithelium, although scattered glomeruli couldbe identified in other regions. Within the terminal field ofthese axons there was a mosaic pattern, with some glomerulidensely labeled, some lightly labeled and others unlabeled.These findings support the notion that there are biochemicallydistinct populations of olfactory receptor cells having localizeddistributions in the epithelium, with axons that coalesce toterminate in specific glomeruli, rather than diffusely overtheir projection field. Chem. Senses 21: 13–18, 1996  相似文献   

16.
Insulin-like growth factor I (IGF-I) and its receptor (IGF-IR) are involved in growth of neurons. In the rat olfactory epithelium, we previously showed IGF-IR immunostaining in subsets of olfactory receptor neurons. We now report that IGF-IR staining was heaviest in the olfactory nerve layer of the rat olfactory bulb at embryonic days 18, and 19 and postnatal day 1, with labeling of protoglomeruli. In the adult, only a few glomeruli were IGF-IR-positive, some of which were unusually small and strongly labeled. Some IGF-IR-positive fibers penetrated deeper into the external plexiform layer, even in adults. In developing tissues, IGF-IR staining co-localized with that for olfactory marker protein and growth associated protein GAP-43, but to a lesser extent with synaptophysin. In the adult, IGF-IR-positive fibers were compartmentalized within glomeruli. IGF-I may play a role in glomerular synaptogenesis and/or plasticity, possibly contributing to development of coding patterns for odor detection or identification.  相似文献   

17.
Summary The olfactory organ of Helisoma trivolvis is located on the surface of the body at the base of the cephalic tentacles. An evagination of skin, the olfactory plica, at the base of the tentacle extends over the olfactory organ dorsally. The epithelium of the olfactory organs contains unspecialized epithelial cells, ciliated epithelial cells, basal cells, mucous secretory cells, and sensory dendrites. The surface of the epithelium has a complex brush border of thick plasmatic processes, which branch to form several terminal microvillar twigs. Long slender cytoplasmic processes form a dense spongy layer among the plasmatic processes beneath the level of the terminal twigs. Bipolar primary sensory neurons clustered beneath the epithelium of the olfactory organ send dendrites through the epithelium to the free surface. Some sensory endings have a few short cilia, but most bear only microvilli. Cilia of sensory endings and epithelial cells extend beyond the brush border of the epithelium. Small axons arise from the perikarya of the sensory neurons and enter a branch of the olfactory nerve. HRP tracing indicates that the axons pass to the cerebral ganglion without interruption. Histochemical tests indicate that the sensory neurons are neither aminergic nor cholinergic.  相似文献   

18.
Carnosine in the chemoreceptor neurons of the olfactory epithelium can be labeled in vivo by intranasal irrigation with either14C--alanine or14C-L-histidine. This newly synthesized carnosine (but not the precursor amino acids) is translocated to the olfactory bulb, where the olfactory chemoreceptor axons synapse with the dendrites of mitral cells and other second-order neurons. Labeled carnosine arrives in the bulb several hours after intranasal administration of precursor. Similar arrival time is seen for macromolecules after intranasal administration of [3H]L-fucose, [14C]L-proline, or [14C]L-histidine. Macromolecules labeled with [3H]uridine take much longer to reach the bulb. Carnosine is also labeled after [3H]uridine administration. No labeling of macromolecules is observed after administration of 1-[14C]--alanine. Oral administration of the same dose of [14C]--alanine gives almost no labeled carnosine in bulb or epithelium. This method has permitted us to estimate that the half-life of labeled carnosine in both the bulb and epithelium is about 20 h. This method provides a means of selectively prelabeling the olfactory chemoreceptor neurons in the olfactory epithelium and their synapses in the olfactory bulb prior to cellular and subcellular separation procedures, and may also enable us to monitor the influences of olfactory stimulation on synthesis and transport of carnosine.  相似文献   

19.
Summary The terminal nerve has been described in all vertebrate classes, with the exception of cyclostomes and birds. With regard to this question, we have examined representatives of these two classes using tracer techniques, and found a terminal nerve in larval lampreys and young domestic mallards. Horseradish peroxidase or cobaltous lysine was injected into the olfactory mucosa, which is known to be innervated by peripheral branches of the terminal nerve. The brains were then searched for labeled, centrally directed fibers of the terminal nerve that project further caudally than the glomerular layer of the olfactory bulb. In larval lampreys, centrally projecting fibers of the terminal nerve were found in the tel-, diand mesencephalon. Termination of labeled fibers was observed in the hypothalamus. Some fibers of the terminal nerve cross to the contralateral side via the commissure of the posterior tuberculum. In young ducks, the terminal nerve projects ipsilaterally along the medial edge of the telencephalon.  相似文献   

20.
Summary Central pathways of the nervus terminalis (n.t.) in the bichir, Polypterus palmas, were studied with the use of tracing techniques. After application of horseradish peroxidase to the unilateral olfactory mucosa labeled n.t. fibers were traced in seven distinct bundles through the subpallium. Projection areas are found in the precommissural ventral nucleus of the area ventralis telencephali ipsilaterally, the anterior commissure and commissural parts of the periventricular preoptic nucleus bilaterally; few n.t.-fibers cross via the anterior commissure to the contralateral side; no fibers were observed to turn rostrally to the contralateral olfactory bulb. Major targets of the n.t. include a restricted ventral part of the periventricular preoptic nucleus at the level of the optic chiasma bilaterally, and the periventricular nuclei located between the thalamic nuclei and the hypothalamus bilaterally. N.t. fibers continue their course through the ipsilateral hypothalamus and are traced as far as the mesencephalic tegmentum ipsilaterally. N.t. terminations are found consistently within the boundaries of periventricular cell nuclei, suggesting axosomatic synaptic contacts. We propose a differentiation of the n.t. ganglion cells into a distal (mucosal) and proximal (bulbar) type regarding the peripheral cell processes. Our findings are compared with those of other reports on the n.t. system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号