首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neonatal meningitis Escherichia coli (NMEC) is one of the top causes of neonatal meningitis worldwide. Here, 85 NMEC and 204 fecal E. coli isolates from healthy humans (HFEC) were compared for possession of traits related to virulence, antimicrobial resistance, and plasmid content. This comparison was done to identify traits that typify NMEC and distinguish it from commensal strains to refine the definition of the NMEC subpathotype, identify traits that might contribute to NMEC pathogenesis, and facilitate choices of NMEC strains for future study. A large number of E. coli strains from both groups were untypeable, with the most common serogroups occurring among NMEC being O18, followed by O83, O7, O12, and O1. NMEC strains were more likely than HFEC strains to be assigned to the B2 phylogenetic group. Few NMEC or HFEC strains were resistant to antimicrobials. Genes that best discriminated between NMEC and HFEC strains and that were present in more than 50% of NMEC isolates were mainly from extraintestinal pathogenic E. coli genomic and plasmid pathogenicity islands. Several of these defining traits had not previously been associated with NMEC pathogenesis, are of unknown function, and are plasmid located. Several genes that had been previously associated with NMEC virulence did not dominate among the NMEC isolates. These data suggest that there is much about NMEC virulence that is unknown and that there are pitfalls to studying single NMEC isolates to represent the entire subpathotype.  相似文献   

2.
Escherichia coli K1 is the most common gram-negative bacterium causing neonatal meningitis. The outer membrane protein A (OmpA) assembles a beta-barrel structure having four surface-exposed loops in E. coli outer membrane. OmpA of meningitis-causing E. coli K1 is shown to contribute to invasion of the human brain microvascular endothelial cells (HBMEC), the main cellular component of the blood-brain barrier (BBB). However, the direct evidence of OmpA protein interacting with HBMEC is not clear. In this study, we showed that OmpA protein, solubilized from the outer membrane of E. coli, adhered to HBMEC surface. To verify OmpA interaction with the HBMEC, we purified N-terminal membrane-anchoring beta-barrel domain of OmpA and all surface-exposed loops deleted OmpA proteins, and showed that the surface-exposed loops of OmpA were responsible for adherence to HBMEC. These findings indicate that the OmpA is the adhesion molecule with HBMEC and the surface-exposed loops of OmpA are the determinant of this interaction.  相似文献   

3.
为进一步探讨大肠杆菌脑微血管内皮细胞侵袭基因ibeB的生物学特性 ,将ibeB基因克隆到pET2 8a(+)载体 ,以E .coliBL2 1 (DE3)为宿主菌 ,经IPTG诱导后 ,通过Ni2 + NTA树脂提纯IbeB蛋白 .SDS PAGE确定纯化蛋白的分子量 ;应用无蛋白酶的体外转录和翻译系统进一步鉴定ibeB基因表达蛋白的分子量 ;通过 [3 5S]Met标记的体内T7表达体系并结合膜蛋白分离技术定位IbeB蛋白在细菌中的亚细胞分布 ;利用细菌侵袭实验分析IbeB蛋白抗体对E .coliK1侵袭人脑微血管内皮细胞的封闭作用 .结果发现 ,ibeB基因的重组蛋白表达纯化产物呈现出 5 0kD和 34kD两种分子量大小 ,5 0kD存在于表达细菌的可溶性部分 ,而 34kD则存在于包涵体中 ;体外翻译实验也显示出较弱的 5 0kD和较浓的 34kD两个蛋白带 ;体内T7表达体系实验显示 34kD的IbeB成熟蛋白定位于E .coli的外膜 ;抗 34kDIbeB蛋白抗体能封闭E .coli对人脑微血管内皮细胞的侵袭 .这些结果提示 ,大肠杆菌脑微血管内皮细胞侵袭基因ibeB的编码产物为 5 0kD的外膜蛋白前体 ,该前体可通过分子内剪接形成成熟的 34kDIbeB蛋白  相似文献   

4.
Escherichia coli is one of the most important pathogens involved in the development of neonatal meningitis in many parts of the world. Traversal of E. coli across the blood-brain barrier is a crucial event in the pathogenesis of E. coli meningitis. Our previous studies have shown that outer membrane protein A (OmpA) expression is necessary in E. coli for a mechanism involving actin filaments in its passage through the endothelial cells. Focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI3K) have also been activated in host cells during the process of invasion. In an attempt to elucidate the mechanisms leading to actin filament condensation, we have focused our attention on protein kinase C (PKC), an enzyme central to many signaling events, including actin rearrangement. In the current study, specific PKC inhibitors, bisindolmaleimide and a PKC-inhibitory peptide, inhibited E. coli invasion of human brain microvascular endothelial cells (HBMEC) by more than 75% in a dose-dependent manner, indicating a significant role played by this enzyme in the invasion process. Our results further showed that OmpA+ E. coli induces significant activation of PKC in HBMEC as measured by the PepTag nonradioactive assay. In addition, we identified that the PKC isoform activated in E. coli invasion is a member of the conventional family of PKC, PKC-alpha, which requires calcium for activation. Immunocytochemical studies have indicated that the activated PKC-alpha is associated with actin condensation beneath the bacterial entry site. Overexpression of a dominant negative mutant of PKC-alpha in HBMEC abolished the E. coli invasion without significant changes in FAK phosphorylation or PI3K activity patterns. In contrast, in HBMEC overexpressing the mutant forms of either FAK or PI3K, E. coli-induced PKC activation was significantly blocked. Furthermore, our studies showed that activation of PKC-alpha induces the translocation of myristoylated alanine-rich protein kinase C substrate, an actin cross-linking protein and a substrate for PKC-alpha, from the membrane to cytosol. This is the first report of FAK- and PI3K-dependent PKC-alpha activation in bacterial invasion related to cytoskeletal reorganization.  相似文献   

5.
细菌非编码RNA(ncRNAs)是细菌生长和感染过程中至关重要的转录调控因子,对致病菌快速响应环境变化,调整自身基因表达抵御环境胁迫尤为重要。本研究通过对新生儿脑膜炎大肠杆菌K1 RS218的高通量转录物组测序,发现新生儿脑膜炎大肠杆菌K1 RS218(NMEC)表达丰富的ncRNAs。经生物信息学分析,在新生儿脑膜炎大肠杆菌K1 RS218中,共发现45个潜在的ncRNAs。通过与非致病性大肠杆菌K-12基因组比对,发现新生儿脑膜炎大肠杆菌K1-RS218基因组有300个大于100 bp的特异性序列。结合分析获得的非编码RNA,发现共有9个ncRNAs是新生儿脑膜炎大肠杆菌K1 RS218特异的。随机选择Nsr21,用小鼠尾静脉注射模型验证其作用,发现与野生型RS218对照组相比,注射Δnsr21的小鼠血液中的含菌量显著增加(P<0.01)。说明缺失Nsr21后,更有利于新生儿脑膜炎大肠杆菌K1 RS218在小鼠血液内生存和繁殖。通过qRT-PCR检测Nsr21表达发现,与体外培养环境相比,小鼠血液环境中Nsr21的表达显著下调(P<0.001)。说明新生儿脑膜炎大肠杆菌K1-RS218,是通过下调Nsr21的表达使其更有利于在血液中生存和繁殖。本研究提示,新生儿脑膜炎大肠杆菌K1 RS218基因组中包含大量的ncRNA,这些ncRNA可能与调控NMEC致病性相关。NMEC在感染血液过程中,通过下调Nsr21的表达使NMEC在血液中的繁殖能力增加。  相似文献   

6.
An early event in Salmonella infection is the invasion of non-phagocytic intestinal epithelial cells. The pathogen is taken up by macropinocytosis, induced by contact-dependent delivery of bacterial proteins that subvert signalling pathways and promote cytoskeletal rearrangement. SipB, a Salmonella protein required for delivery and invasion, was shown to localize to the cell surface of bacteria invading mammalian target cells and to fractionate with outer membrane proteins. To investigate the properties of SipB, we purified the native full-length protein following expression in recombinant Escherichia coli. Purified SipB assembled into hexamers via an N-terminal protease-resistant domain predicted to form a trimeric coiled coil, reminiscent of viral envelope proteins that direct homotypic membrane fusion. The SipB protein integrated into both mammalian cell membranes and phospholipid vesicles without disturbing bilayer integrity, and it induced liposomal fusion that was optimal at neutral pH and influenced by membrane lipid composition. SipB directed heterotypic fusion, allowing delivery of contents from E. coli-derived liposomes into the cytosol of living mammalian cells.  相似文献   

7.
8.
Escherichia coli K1 meningitis is a serious central nervous system disease with unchanged mortality and morbidity rates for last few decades. Intercellular adhesion molecule 1 (ICAM-1) is a cell adhesion molecule involved in leukocyte trafficking toward inflammatory stimuli at the vascular endothelium; however, the effect of E. coli invasion of endothelial cells on the expression of ICAM-1 is not known. We demonstrate here that E. coli K1 invasion of human brain microvascular endothelial cells (HBMEC) selectively up-regulates the expression of ICAM-1, which occurs only in HBMEC invaded by the bacteria. The interaction of outer membrane protein A (OmpA) of E. coli with its receptor, Ecgp, on HBMEC was critical for the up-regulation of ICAM-1 and was depend on PKC-alpha and PI3-kinase signaling. Of note, the E. coli-induced up-regulation of ICAM-1 was not due to the cytokines secreted by HBMEC upon bacterial infection. Activation of NF-kappaB was required for E. coli mediated expression of ICAM-1, which was significantly inhibited by over-expressing the dominant negative forms of PKC-alpha and p85 subunit of PI3-kinase. The increased expression of ICAM-1 also enhanced the binding of THP-1 cells to HBMEC. Taken together, these data suggest that localized increase in ICAM-1 expression in HBMEC invaded by E. coli requires a novel interaction between OmpA and its receptor, Ecgp.  相似文献   

9.
Outer membrane protein A (OmpA) has been implicated as an important virulence factor in several gram-negative bacterial infections such as Escherichia coli K1, a leading cause of neonatal meningitis associated with significant mortality and morbidity. In this study, we generated E. coli K1 mutants that express OmpA in which three or four amino acids from various extracellular loops were changed to alanines, and we examined their ability to survive in several immune cells. We observed that loop regions 1 and 2 play an important role in the survival of E. coli K1 inside neutrophils and dendritic cells, and loop regions 1 and 3 are needed for survival in macrophages. Concomitantly, E. coli K1 mutants expressing loop 1 and 2 mutations were unable to cause meningitis in a newborn mouse model. Of note, mutations in loop 4 of OmpA enhance the severity of the pathogenesis by allowing the pathogen to survive better in circulation and to produce high bacteremia levels. These results demonstrate, for the first time, the roles played by different regions of extracellular loops of OmpA of E. coli K1 in the pathogenesis of meningitis and may help in designing effective preventive strategies against this deadly disease.  相似文献   

10.
11.
Opacity proteins (Opa) of Neisseria gonorrhoeae, a family of variant outer membrane proteins implicated in pathogenesis, are subject to phase variation. In strain MS11, 11 different opa gene alleles have been identified, the expression of which can be turned on and off independently. Using a reverse genetic approach, we demonstrate that a single Opa protein variant of strain MS11, Opa50, enables gonococci to invade epithelial cells. The remaining variant Opa proteins show no, or very little, specificity for epithelial cells but instead confer interaction with human polymorphonuclear neutrophils (PMNs). Thus, depending on the opa allele expressed, gonococci are capable of invading epithelial cells or of interacting with human leukocytes. The respective properties of Opa proteins are maintained independent of the gonococcal strain; thus, the specificity for epithelial cells or leukocytes is intrinsic to Opa proteins. Significant homology exists in the surface exposed variable regions of two invasion supporting Opa proteins from independent strains. Efficient epithelial cell invasion is favoured by high level Opa production, however, a 10-fold reduction still allows significant invasion by gonococci. In contrast, recombinant Escherichia coli expressing Opa proteins adhered or invaded poorly under similar experimental conditions, thus indicating that additional factors besides Opa are required in the Opa-mediated interaction with human cells.  相似文献   

12.
Growing Escherichia coli release envelope material into the medium. Upon infection with T4 phage increased amounts of this material are released and at a greater rate. In order to determine whether both inner and outer membranes are present in this material, and whether the material released by growing cells differs from that released by infected cells, we have examined the protein composition of envelope released by growing and T4-infected E. coli B. Our results show: (a) the protein composition of envelope released from growing or infected cells is similar, (b) the proteins present are representative of the outer membrane, (c) the major outer membrane protein of E. coli B, protein II, is deficient in the released material. We therefore conclude that the envelope material released from growing or infected E. coli represents a special fraction of the outer membrane. This finding is discussed in relation to outer membrane structure and function. In addition, data are presented on the differing outer membrane protein composition of substrains of E. coli B obtained from different laboratories.  相似文献   

13.
Escherichia coli K1 is the most common gram-negative bacteria that cause meningitis during the neonatal period. The ibeA gene product in E. coli K1 has been characterized as a virulence factor that contributes to the binding to and invasion of brain microvascular endothelial cells (BMEC). Here, we identified a surface protein on human BMEC, vimentin, that interacts with the E. coli invasion protein IbeA. The binding sites of the IbeA-vimentin interaction are located in the 271-370 residue region of IbeA and the vimentin head domain. The regulatory protease factor Xa is able to cleave IbeA between R297 and K298 residues, and this cleavage abolishes the IbeA-vimentin interaction.  相似文献   

14.
Neonatal meningitis due to Escherichia coli K1 is a serious illness with unchanged morbidity and mortality rates for the last few decades. The lack of a comprehensive understanding of the mechanisms involved in the development of meningitis contributes to this poor outcome. Here, we demonstrate that depletion of macrophages in newborn mice renders the animals resistant to E. coli K1 induced meningitis. The entry of E. coli K1 into macrophages requires the interaction of outer membrane protein A (OmpA) of E. coli K1 with the alpha chain of Fcγ receptor I (FcγRIa, CD64) for which IgG opsonization is not necessary. Overexpression of full-length but not C-terminal truncated FcγRIa in COS-1 cells permits E. coli K1 to enter the cells. Moreover, OmpA binding to FcγRIa prevents the recruitment of the γ-chain and induces a different pattern of tyrosine phosphorylation of macrophage proteins compared to IgG2a induced phosphorylation. Of note, FcγRIa(-/-) mice are resistant to E. coli infection due to accelerated clearance of bacteria from circulation, which in turn was the result of increased expression of CR3 on macrophages. Reintroduction of human FcγRIa in mouse FcγRIa(-/-) macrophages in vitro increased bacterial survival by suppressing the expression of CR3. Adoptive transfer of wild type macrophages into FcγRIa(-/-) mice restored susceptibility to E. coli infection. Together, these results show that the interaction of FcγRI alpha chain with OmpA plays a key role in the development of neonatal meningitis by E. coli K1.  相似文献   

15.
Adherent-invasive Escherichia coli strain LF82 recovered from a chronic lesion of a patient with Crohn's disease is able to invade cultured intestinal epithelial cells. Three mutants with impaired ability to invade epithelial cells had the Tn5phoA transposon inserted in the yfgL gene encoding the YfgL lipoprotein. A yfgL- negative isogenic mutant showed a marked decrease both in its ability to invade Intestine-407 cells and in the amount of the outer membrane proteins OmpA and OmpC in the culture supernatant, as shown by analysis of the culture supernatant protein contents by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Transcomplementation of the LF82-DeltayfgL isogenic mutant with the cloned yfgL gene restored invasion ability and outer membrane protein release in the culture supernatant. The outer membrane proteins in the culture supernatant of strain LF82 resulted from the formation of vesicles. This was shown by Western blot analysis of periplasmic and outer membrane fraction markers typically found in outer membrane vesicles and by transmission electron microscopic analysis of ultracentrifuged cell-free LF82 supernatant pellets, indicating the presence of vesicles with a bilayered structure surrounding a central electron-dense core. Thus, deletion of the yfgL gene in strain LF82 resulted in a decreased ability to invade intestinal epithelial cells and a decreased release of outer membrane vesicles.  相似文献   

16.
NhhA, Neisseriahia/hsf homologue, or GNA0992, is an oligomeric outer membrane protein of Neisseria meningitidis, recently included in the family of trimeric autotransporter adhesins. In this study we present the structural and functional characterization of this protein. By expressing in Escherichia coli the full-length gene, deletion mutants and chimeric proteins of NhhA, we demonstrated that the last 72 C-terminal residues are able to allow trimerization and localization of the N-terminal protein domain to the bacterial surface. In addition, we investigated on the possible role of NhhA in bacterial-host interaction events. We assessed in vitro the ability of recombinant purified NhhA to bind human epithelial cells as well as laminin and heparan sulphate. Furthermore, we shown that E. coli strain expressing NhhA was able to adhere to epithelial cells, and observed a reduced adherence in a meningococcal isogenic MC58DeltaNhhA mutant. We concluded that this protein is a multifunctional adhesin, able to promote the bacterial adhesion to host cells and extracellular matrix components. Collectively, our results underline a putative role of NhhA in meningococcal pathogenesis and ascertain its structural and functional belonging to the emerging group of bacterial autotransporter adhesins with trimeric architecture.  相似文献   

17.
Escherichia coli is the most common Gram‐negative bacillary organism causing neonatal meningitis. Escherichia coli meningitis remains an important cause of mortality and morbidity, but the pathogenesis of E. coli penetration of the blood–brain barrier remains incompletely understood. Escherichia coli entry into the brain occurs in the meningeal and cortex capillaries, not in the choroid plexus, and exploits epidermal growth factor receptor (EGFR) and cysteinyl leukotrienes (CysLTs) for invasion of the blood–brain barrier. The present study examined whether EGFR and CysLTs are inter‐related in their contribution to E. coli invasion of the blood–brain barrier and whether counteracting EGFR and CysLTs is a beneficial adjunct to antibiotic therapy of E. coli meningitis. We showed that (a) meningitis isolates of E. coli exploit EGFR and CysLTs for invasion of the blood–brain barrier, (b) the contribution of EGFR is upstream of that of CysLTs, and (c) counteracting EGFR and CysLTs as an adjunctive therapy improved the outcome (survival, neuronal injury and memory impairment) of animals with E. coli meningitis. These findings suggest that investigation of host factors contributing to E. coli invasion of the blood–brain barrier will help in enhancing the pathogenesis and development of new therapeutic targets for E. coli meningitis in the era of increasing resistance to conventional antibiotics.  相似文献   

18.
The mortality and morbidity associated with neonatal gram-negative meningitis have remained significant despite advances in antimicrobial chemotherapy. Escherichia coli K1 is the most common gram-negative organism causing neonatal meningitis. Our incomplete knowledge of the pathogenesis of this disease is one of the main reasons for this high mortality and morbidity. We have previously established both in vitro and in vivo models of the blood-brain barrier (BBB) using human brain microvascular endothelial cells (HBMEC) and hematogenous meningitis in neonatal rats, respectively. With these in vitro and in vivo models, we have shown that successful crossing of the BBB by circulating E. coli requires a high-degree of bacteremia, E. coli binding to and invasion of HBMEC, and E. coli traversal of the BBB as live bacteria. Our previous studies using TnphoA, signature-tagged mutagenesis and differential fluorescence induction identified several E. coli K1 determinants such as OmpA, Ibe proteins, AslA, TraJ and CNF1 contributing to invasion of HBMEC in vitro and traversal of the blood-brain barrier in vivo. We have shown that some of these determinants interact with specific receptors on HBMEC, suggesting E. coli translocation of the BBB is the result of specific pathogen-host cell interactions. Recent studies using functional genomics techniques have identified additional E. coli K1 factors that contribute to the high degree of bacteremia and HBMEC binding/invasion/transcytosis. In this review, we summarize the current knowledge on the mechanisms underlying the successful E. coli translocation of the BBB.  相似文献   

19.
Diarrhoeagenic Escherichia coli strains of serotype O111:H12 are characterized by their aggregative pattern of adherence on cultured epithelial cells and thus are considered enteroaggregative E. coli (EAEC). We have previously shown that these EAEC strains lack the genes encoding the aggregative fimbriae I and II described in other heterologous EAEC strains. In this paper, we show compelling data suggesting that a plasmid-encoded outer membrane 58 kDa protein termed aggregative protein 58 (Ap58) produced by EAEC O111:H12 strains, is associated with the adherence capabilities and haemagglutination of animal red blood cells. This conclusion is supported by several lines of evidence: (i) adherent O111:H12 strains are able to produce Ap58; (ii) non-adherent O111:H12 strains are unable to produce Ap58; (iii) antibodies raised against Ap58 inhibited adherence and haemagglutination of epithelial and bovine red blood cells, respectively; (iv) a non-adherent E. coli K-12 host strain containing the ap58 gene determinant on plasmid pVM15 displayed abundant adherence to cultured HEp-2 cells; and (v) the purified Ap58 bound specifically to HEp-2 and bovine red blood cells. Our findings indicate that the aggregative adherence in the O111:H12 strains may be also mediated by non-fimbrial adhesins. We believe our data contribute to the understanding of the adherence mechanisms of these organisms.  相似文献   

20.
Extraintestinal pathogenic Escherichia coli are the cause of a diverse spectrum of invasive infections in humans and animals, leading to urinary tract infections, meningitis, or septicemia. In this study, we focused our attention on the identification of the outer membrane proteins of the pathogen in consideration of their important biological role and of their use as potential targets for prophylactic and therapeutic interventions. To this aim, we generated a DeltatolR mutant of the pathogenic IHE3034 strain that spontaneously released a large quantity of outer membrane vesicles in the culture supernatant. The vesicles were analyzed by two-dimensional electrophoresis coupled to mass spectrometry. The analysis led to the identification of 100 proteins, most of which are localized to the outer membrane and periplasmic compartments. Interestingly based on the genome sequences available in the current public database, seven of the identified proteins appear to be specific for pathogenic E. coli and enteric bacteria and therefore are potential targets for vaccine and drug development. Finally we demonstrated that the cytolethal distending toxin, a toxin exclusively produced by pathogenic bacteria, is released in association with the vesicles, supporting the recently proposed role of bacterial vesicles in toxin delivery to host cells. Overall, our data demonstrated that outer membrane vesicles represent an ideal tool to study Gram-negative periplasm and outer membrane compartments and to shed light on new mechanisms of bacterial pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号