首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Although insect herbivores have many well documented effects on plant performance, there are few studies that assess the impact of above-ground herbivory on below-ground plant growth. For a seven year period in which no large-scale herbivore outbreaks occurred, a broad spectrum insecticide was utilized to suppress herbivorous insects in a natural community dominated by Solidago altissima. Ramet heights, rhizome lengths, rhizome biomass, and the number of daughter rhizomes all were lower in the control plots than in the insecticidetreated plots. These effects should lead to a decrease in the fitness of genets in the control plots relative to the fitness of genets in the insecticide-treated plots. We also found that ramets in the control plots appear to have compensated for herbivory: the ratio of rhizome length to rhizome biomass was greatest in the control plots, which indicates that clones moved farther per unit biomass in these plots than in the insecticide-treated plots. Clonal growth models show that this shift in allocation patterns greatly reduced the magnitude of treatment differences in long-term clonal displacements.Previous work has shown, and this study verified, that clonal growth in S. altissima is well represented by random-walk and diffusion models. Therefore, we used these models to examine possible treatment differences in rates of clonal expansion. Although rhizome lengths were greater in the insecticide-treated plots, results from the models suggest that our treatments had little impact on the short- and long-term displacement of S. altissima ramets from a point of origin. This occurred because S. altissima ramets backtrack often, and thus, treatment differences in net displacements are less pronounced than treatment differences in rhizome lengths.  相似文献   

2.
Michael L. Cain 《Oecologia》1990,82(2):201-209
Summary For the rhizomatous perennial, Solidago altissima, I identified clonal fragments in the field, mapped ramet spatial locations, and documented patterns of ramet recruitment, growth, and mortality. Parent ramet size influenced the size and number of daughter ramets produced, and small ramets had lower survivorship and fecundity than large ramets. Similarly, small rhizomes tended to develop into small ramets, and ramets that survived to produce daughter ramets had longer parent-daughter rhizome connections than ramets that did not survive. In addition, most ramets that died during the growing season were connected to (genetically identical) ramets that persisted. There were large size inequalities among rhizomes, ramets, and clonal fragments. Inequalities in the size of ramets increased during the early part of the growing season, then decreased at the end of the season; similar patterns were observed for the growth of clonal fragments. In both instances, the decrease in size inequality could be attributed to the mortality of small individuals (ramets or clonal fragments). I found little evidence that ramet size hierarchies were structured by intraspecific competition. For example, path analyses and randomization tests indicated that size variation among S. altissima ramets was influenced little by the size of their near neighbors (but was influenced by parent size and rhizome size). In addition, within-season variation for the relative size and growth rate of individual ramets led to poor correlations between early and final ramet size; this result suggests that there was no stable hierarchy of dominant and suppressed ramets. I discuss implications of my results for contrasting interpretations of clonal plant population dynamics.  相似文献   

3.
Solidago altissima L. was introduced into Europe as an ornamental plant from North America more than 100 years ago and the phytophagous insect fauna of it was recently examined in Switzerland where it has become an important weed in disturbed habitats. Rhizomes and aerial parts were examined and all insects collected in summer were tested in a no-choice feeding test. 18 out of 55 phytophagous insects were found feeding on S. altissima in Switzerland and for the remaining 37 the relation with the plant was not determined. The insects that have expanded their host range to feed on S. altissima since its introduction to Switzerland are almost solely opportunistic, unspecialized ectophages not closely attuned to the growth cycle of S. altissima. Only 4% of the insects were specialists and 9% endophagous. In contrast in North America S. altissima supports 25% specialists and 17% endophages. The native Solidago virgaurea L. in Switzerland supports many more specialists (28%) and endophages (23%) than S. altissima here. Possible reasons why almost none of these have switched to S. altissima are discussed. A comparison is made between the number of insects recruited by S. altissima in Switzerland with the number recruited by the exotic plants Heracleum mantegazzianum Som. & Lev. (Apiaceae) in Switzerland and Xanthium occidentale Bertol. (Asteraceae) in Australia. Reasons for different levels of insect recruitment are discussed. The high number of phytophagous insect species found on S. altissima in North America shows that there should be no shortage of possible control agents and any insects imported into Switzerland for the biological control of S. altissima would find largely unexploited food sources awaiting them.  相似文献   

4.
Summary Ramets from six Solidago altissima clones of known resistance to the stem gallmaker Eurosta solidaginis were grown with and without supplemental nutrients. In a greenhouse experiment, mated female Eurosta were allowed to oviposit in ramets that were subsequently grown through flowering and then harvested to determine biomass allocation. Supplemental nutrients increased plant biomass but did not affect resistance to this gallmaking herbivore. This result does not conform to the plant carbon/nutrient balance hypothesis which predicts that enhanced mineral nutrition will indirectly cause a reduction in carbon-based defensive chemistry. Our results indicate a strong genetic basis to ball gallmaker resistance since modification of host phenotype did not influence susceptibility. We suggest that evaluating the degree of genotypic or environmental control of plant resistance will be especially helpful in clarifying the patterns of defensive chemical responses.  相似文献   

5.
We studied the indirect effects of an aphid Uroleucon nigrotuberculatum on density and performance of herbivorous insects through tending ants and modification of plant traits on a tall goldenrod Solidago altissima in Japan. To examine ant-mediated indirect effects of the aphid on the leafhopper and geometrid moth caterpillars, we conducted an experiment in which we manipulated aphid densities. The aphid decreased the density of these herbivorous insects through ant-mediated indirect effects, because honeydew scattered by the aphid-attracted ants that then removed them. To examine plant-mediated indirect effects of the aphid on two temporally separated insects, a scale insect and a grasshopper, we compared the density and performance of these herbivorous insects on aphid-inoculated plants and aphid-free plants. Aphid-induced plant modifications had different effects on the scale insect and grasshopper. The aphid indirectly decreased the density and survivorship of the scale insect. On the other hand, the number of grasshoppers increased as a result of the increased number of leaves and the increased nitrogen content induced by prior aphid feeding. However, aphid infestation did not affect the survival of the grasshopper. Thus, the aphid has large indirect effects on co-occurring herbivorous insects through the removal behavior of tending ants and on temporally separated herbivorous insects through changes in quality and quantity of the tall goldenrod.  相似文献   

6.
7.
Summary Compensatory growth in response to simulated belowground herbivory was studied in the old-field clonal perennialSolidago canadensis. We grew rootpruned plants and plants with intact root systems in soil with or without fertilizer. For individual current shoots (aerial shoot with rhizome and roots) and for whole clones the following predictions were tested: a) root removal is compensated by increased root growth, b) fertilizer application leads to increased allocation to aboveground plant organs and increased leaf turnover, c) effects of fertilizer application are reduced in rootpruned plants. When most roots (90%) were removed current shoots quickly restored equilibrium between above-and belowground parts by compensatory belowground growth whereas the whole clone responded with reduced aboveground growth. This suggests that parts of a clone which are shared by actively growing shoots act as a buffer that can be used as source of material for compensatory growth in response to herbivory. Current shoots increased aboveground mass and whole clones reduced belowground mass in response to fertilizer application, both leading to increased allocation to aboverground parts. Also with fertilizer application both root-pruned and not root-pruned plants increased leaf and shoot turnover. Unfertilized plants, whether rootpruned or not, showed practically no aboveground growth and very little leaf and shoot turnover. Effects of root removal were as severe or more severe under conditions of high as under conditions of low nutrients, suggesting that negative effects of belowground herbivory are not ameliorated by abundant nutrients. Root removal may negate some effects of fertilizer application on the growth of current shoots and whole clones.  相似文献   

8.
Summary Larvae of the tephritid fly Eurosta solidaginis induce ball-shaped galls on the stem of tall goldenrod, Solidago altissima. Survival probability depends on gall size; in small galls the larva is vulnerable to parasitoid oviposition, whereas larvae in large galls are more frequently eaten by avian predators. Fly populations from 20 natural old fields in central Pennsylvania were monitored in 1983 and 1984 to examine the distribution of the selection intensity imposed by natural enemies, the parasitoids Eurytoma gigantea and E. obtusiventris, the inquiline Mordellistena unicolor, and the predatory birds Dendrocopus pubescens and Parus atricapillus. Mordellistena and E. obtusiventris are able to attack galls of all diameters while E. gigantea and the predatory birds preferentially assaulted small and large diameter galls, respectively. Eurosta in intermediate sized galls had the highest survivorship, hence selection had a stabilizing component. However, parasitoid attack was more frequent than bird attack, and the two did not exactly balance, thus there was also a directional component. The mean directional selection intensity on gall size was 0.21 standard deviations of the mean, indicating that larger gall size was favored. Interactions among the insect members of the Eurosta natural enemy guild are complex and frequent.  相似文献   

9.
Summary Genetic variation in resistance to 16 species of herbivorous insects was studied in 18 clones of Solidago altissima growing in an old field near Ithaca, New York, USA. Resistance to each insect, defined as the abundance of a species attacking a particular host genotype relative to other genotypes, was measured in both the natural stand and in two experimental gardens. The heritability of resistance was estimated by parent-offspring regression and sibcorrelation. The primary result was that clones differed in resistance to 15 of 16 insect species. The resistance of genotypes to these insect species remained relatively constant over the four years of the study. However, for only 10 of these resistances were the heritability estimates significantly different from zero. Thus the common assumption of plant-insect studies — that phenotypic variation in insect abundance is closely correlated with underlying genetic variation — is only conditionally true. There is heritable variation in resistance to many insects, but not all. The insects for which we observed heritable variation in plant resistance represent five different orders and several functional groups, including leaf chewers, phloem and xylem feeders, and gall formers. There was no apparent pattern between the degree of heritability of plant resistance and the destructiveness, feeding method, breadth of host range, or taxonomic group of the insects. The lack of marked heritable variation in resistance to some insects may be the result of (a) reduced variation caused by strong selection during prolonged or repeated insect outbreaks, and (b) genotype-environment interactions that obscure differences among genotypes.  相似文献   

10.
A fieldsurvey was made to elucidate whether salt spray is a major factor in preventing a common inland weed,Solidago altissima, from being established on the seashore of Boso Peninsula. Seasonal changes in the intensity of salt spray, sodium content in the soil water and soil water contents were measured at the seashore and inland. Seeds ofS. altissima were sown at both sites with those of a common maritime species,Chrysanthemum pacificum. The number of surviving shoots of the seedlings were periodically counted for 1 year. The intensity of the salt spray, sodium content and water contents of the soil on the seashore fluctuated seasonally. There were some periods when the intensity of salt spray was comparable to that of the inland site. Most of theS. altissima seedlings survived at the inland site. AllS. altissima seedlings germinated at the seashore were completely eliminated. The death rate ofS altissima seedlings at the seashore was not constant. Ninety-five percent of theS. altissima seedling in total died out during the four periods of intensive salt spray. The death rate ofC. pacificum seedlings on the seashore was not especially high during those periods. Correlation between seasonal changes in the death rate ofS. altissima seedlings and the sodium content or water content of the soil was low. These results indicate that intensive salt spray, intermittently blown in from the sea, is one of the most critical environmental factors that eliminatesS. altissima from the seashore.  相似文献   

11.
Summary Armstrong (1982, 1983) predicted that all ramets within a clone should have the same ratio of biomass allocation to sexual reproduction versus vegetative growth. He presented data (1984) that he interpreted as showing that Solidago altissima ramets in a clone do have the predicted constant allocation ratio. Reanalysis of his methods shows that this conclusion was an artifact of his analysis. A simulation using random numbers and Armstrong's analysis showed the same pattern as his data. Data from S. altissima ramets of a single clone grown in a greenhouse experiment, using a different analysis, illustrated that the allocation ratios within a clone can be highly variable.  相似文献   

12.
Summary It has been shown in clonal perennial herbs that shoot natality decreases, and shoot mortality increases, in stands of increasing density. In a two-year garden experiment, we have tested Hutchings' (1979) hypothesis that these responses are the result of physiological integration, i.e. the exchange of resources and growth substances between shoots of a single clone. Dense monocultures of two rhizomatous graminoids, Brachypodium pinnatum and Carex flacca, were created that differed more than 10-fold in the density of clones (genets), but that had similar densities of shoots. A more effective shoot density control was expected in stands with the smaller clone densities (larger clones) due to more extensive clonal connections. Shoot turnover was evaluated by counting living and dead shoots at different times. In the summer of the second year, when shoot densities and stand structure were similar between treatments, shoot natality (the number of shoots born per plot) and shoot mortality (the number of shoots that died per plot) were usually unrelated to clone density in either species. If there was a significant treatment effect, it could be attributed to (small) differences in shoot density. Over the whole range of shoot densities, natality was negatively density-dependent. The number of shoots that died in a given growth period was proportional to the number of shoots present, suggesting that mortality rates were density independent. In Carex, however, there were some indications that mortality rate increased with increasing density. Our study confirms that clonal herbaceous species can effectively prevent an overproduction of shoots, but in contrast to Hutchings' (1979) propositions, we found no evidence that physiological integration may be the responsible mechanism. An alternative explanation for the observed patterns is proposed.  相似文献   

13.
Stolon internode lengths were measured on plants of the clonal herbRanunculus repens growing in a hay meadow which was subject to disturbance by mole (Talpa europaea) activity. Within the site three habitat types were recognized: closed grassland, the open ground of fresh molehills and the grass-molehill boundary. The lengths of stolon internodes ofR. repens differed significantly in each of the three habitats. The shortest internodes occurred on stolons on the open molchills. The longest occurred in the closed grassland habitat. The type of habitat in which parent ramets were rooted did not significantly influence the length of internodes on their daughter stolons. The length of a stolon internode was determined by its immediate surrounding habitat type. Consecutive internode lengths on a given stolon showed considerable plasticity, shortening significantly as stolons spread onto molehills from surrounding habitats, and increasing significantly as stolons advanced from a molehill into the surrounding closed grassland habitat. These results are consistent with the proposition that under favorable conditions (on the molehills, where resources are expected to be more abundant, and competition absent) internode lengths shorten and the plant forages intensively, whereas under conditions of low resource availability (in the closed grassland, where competition occurs) internode lengths increase, allowingR. repens to forage extensively. Such morphological plasticity may promote more efficient exploitation of resource-rich sites and more rapid vacation of resource-poor sites.  相似文献   

14.
Meyer G  Clare R  Weber E 《Oecologia》2005,144(2):299-307
The mechanisms that allow introduced plants to become invasive are poorly understood. Here, we present a test of the evolution of increased competitive ability hypothesis, which holds that because specialized natural enemies may be absent from the introduced range, exotic plants may evolve to invest less in anti-herbivore defenses and thereby gain a competitive advantage over native plants. We grew Solidago gigantea plants derived from both the native range (North America) and the invasive range (Europe) in a common garden in the native range for 2 years. Half the plants were treated with insecticide to protect them from insect herbivores and the other half were exposed to insects that colonized the garden from nearby fields. Insect herbivore biomass was significantly higher on European plants than US plants in the first year but not the second. European plants were more heavily attacked by pathogens in both years of the study. When exposed to insect herbivores, US plants produced more seed than European plants, but when plants were protected from herbivores, seed production was equivalent between US plants and European plants. The presence of insect herbivores suppressed seed production of European plants much more than that of US plants, even though the level of herbivory experienced by European and US plants was similar in the second year, suggesting that the ability to tolerate herbivory was diminished in European plants. These results partially support the EICA hypothesis: plants from the introduced range were more susceptible to some natural enemies and benefited more from insect removal than plants from the native range. The prediction that European plants would perform better than US plants in the absence of insect herbivores was not supported. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

15.
Summary Transplants of ten Solidago canadensis clones were grown under high and low competition in the field to determine whether clones differed in survival, growth, and reproduction under natural conditions. Transplants had higher probability of survival and flowering and were larger in all measures of size when competition was experimentally reduced. Clones differed in almost all these measures of success, but only when variance among transplants within clones was reduced by excluding transplants that experienced heavy herbivore damage. Differences among clones were more apparent under low competition than under high competition, despite higher coefficients of variation within clones under low competition. Adjusting transplant size for initial size (parent ramet rhizome mass) did not change these results, although clones did differ in parent rhizome mass. All of these results suggest that there is little potential for selection to discriminate among these clones. Despite the strong differences in transplant performance between the competition treatments and among clones, the clones did not differ in competitive ability-almost none of the clone x competition interactions were significant. In addition, the measures of success of each clone were usually positively correlated between the high and low competition treatments, suggesting there were no tradeoffs between performance under high and low competition for these clones.  相似文献   

16.
Hidetaka Umata 《Mycoscience》1995,36(3):369-372
Seed germination test ofGaleola altissima was carried out with five aphyllophorales fungi:Erythromyces crocicreas, Ganoderma australe, Loweporus tephroporus, Microporus affinus andPhellinus sp.. All five species were effective for seed germination of the orchid.Erythromyces crocicreas, which has hitherto been regarded as the only endomycorrhizal fungus of the orchid, was confirmed to be effective for further development of the orchid.  相似文献   

17.
M. Uriarte 《Oecologia》2000,122(4):521-528
Consumers can mediate the composition of plant communities and alter ecosystem processes. Although herbivores usually increase N availability in the short term, they might decrease it in the long term. I investigated the long-term effect of insect herbivores on leaf tissue quality and soil N availability in goldenrod (Solidago altissima) fields using two approaches: (1) I compared plots from which herbivores had been excluded for 17 years with adjacent plots that had experienced normal levels of herbivory, and (2) I examined a chronosequence of nine goldenrod fields representing three successional stages: early, middle, and late. These parallel approaches showed that, in the long term, herbivores decrease the quality of leaf litter and soil N availability in goldenrod fields. These long-term effects appear to compensate for various short-term effects that increase N availability in the soil (e.g., added frass, increased light penetration). Furthermore, herbivores decrease leaf litter quality and N availability by reducing the quality of leaf tissue within the same species. This pattern may result from insect herbivores preferentially grazing on plants with a high N content thereby increasing the amount of recalcitrant litter over the course of succession. Received: 4 May 1999 / Accepted: 24 September 1999  相似文献   

18.
The clonal plant Schoenoplectus americanus shows variable belowground clonal architecture as a result of producing two types of ramets: those with very long rhizomes (long rhizome ramet, LRR) and those with very short ones (short rhizome ramet, SRR). In a previous study we demonstrated that the two types of ramets are functionally specialised. The production of SRRs results in the formation of consolidated clonal patches with densely packed shoots, while the production of LRRs results in a more diffuse network of connected rhizomes with widely spaced shoots. We hypothesised that the two types of ramets would be produced at different times during the growing season because of their functional differences. The production of LRRs throughout the growing season would enable the species to continuously explore new habitats while the production of SRRs early in the growing season would enable the species to occupy and consolidate resources in available open patches. We evaluated this hypothesis through field observations in different communities with S. americanus and indeed found that SRRs were produced early in the growing season while LRRs tended to be produced over an extended period of time. Plants in high-quality environments (i.e. higher light conditions) produced more SRRs, and these were formed early in the growing season. In contrast, plants in low-quality environments produced more LRRs, and these were formed continuously over the growing season. We also observed that the shoot longevity was greater for SRR. In high-quality patches, the production of the lower cost SRRs results in a more rapid occupancy of open spaces; in lower quality patches, the production of LRRs throughout the growing season enables plants to explore the immediate environment for higher quality patches.  相似文献   

19.
20.
Qing  Liu  Yunxiang  Li  Zhangcheng  Zhong 《Plant Ecology》2004,173(1):107-113
The effects of moisture availability on clonal growth and biomass investment in the bamboo Pleioblastus maculata were investigated over a four-year period by transplanting Pleioblastus maculata clones into soils with different levels of moisture availability in the field. The results showed that: (1) The higher the moisture availability, the greater the total biomass of P. maculata clones. Although fewer culms are produced at the higher moisture levels, mean tiller biomass is greater. (2) Under different levels of moisture availability, obvious differences in the total rhizome length (p < 0.01), spacer length (p < 0.05) and the sizes of bamboo culms (height, p < 0.01; diameter, p < 0.01) were observed. Thus, the higher the moisture availability, the shorter the rhizomes and the larger ramets. (3) In microhabitats with low moisture availability, bamboo allocated more biomass to underground organs, which promotes elongation of rhizomes and increases root production, thereby helping to capture underground resources essential to growth. In microhabitats of high moisture availability, the biomass is primarily allocated to the aboveground growth of ramets. (4) We suggest that soil moisture availability effects the foraging strategies of bamboo, that bamboo plants growing with low moisture availability produce longer rhizomes (that is, more, although shorter, spacers) with more biomass allocation than plants in high moisture and have a better ability to forage to increase the probability of locating adequate moisture patches. Also, longer length distance between shoots (that is, longer spacers) in high soil moisture than in low is adapted to avoid intense competition from faster growing aboveground growth in high moisture patches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号