首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have demonstrated that fatty acid amide hydrolase, the enzyme responsible for the metabolism of anandamide, is inhibited by the acidic non-steroidal anti-inflammatory drug (NSAID) ibuprofen with a potency that increases as the assay pH is reduced. Here we show that (R) -, (S) - and (R, S) -flurbiprofen, indomethacin and niflumic acid show similar pH-dependent shifts in potency to that seen with ibuprofen. Thus, (S) -flurbiprofen inhibited 2 μM [3 H]anandamide metabolism with IC 50 values of 13 and 50 μM at assay pH values of 6 and 8, respectively. In contrast, the neutral compound celecoxib was a weak fatty acid amide hydrolase inhibitor and showed no pH dependency (IC 50 values ~300 μM at both assay pH). The cyclooxygenase-2-selective inhibitors nimesulide and SC-58125 did not inhibit fatty acid amide hydrolase activity at either pH. The data are consistent with the conclusion that the non-ionised forms of the acidic NSAIDs are responsible for the inhibition of fatty acid amide hydrolase.  相似文献   

2.
Racemic 2-aryl-2-methoxypropionic acids were enantioresolved by the use of (S)-(-)-phenylalaninol 4. For instance, racemic 2-methoxy-2-phenylpropionic acid (+/-)-7 was condensed with phenylalaninol (S)-(-)-4 yielding a diastereomeric mixture of amides, which was easily separated by HPLC on silica gel affording the first-eluted amide (-)-13a and the second-eluted amide (+)-13b: alpha = 3.19, Rs = 3.49. The absolute configuration of amide (-)-13a was determined to be (R;S) by X-ray crystallography by reference to the S configuration of the phenylalaninol moiety. Amide (R;S)-(-)-13a was converted to oxazoline (R;S)-(-)-14a, from which enantiopure 2-methoxy-2-phenylpropionic acid (R)-(-)-7 was recovered. Other 2-aryl-2-methoxypropionic acids, (R)-(-)-8, (R)-(-)-9, (R)-(+)-10, (R)-(-)-11, and (R)-(-)-12, were similarly prepared in enantiopure forms with the use of phenylalaninol (S)-(-)-4, and their absolute configurations were clearly determined by X-ray crystallography or by chemical correlation.  相似文献   

3.
Previous studies have demonstrated that fatty acid amide hydrolase, the enzyme responsible for the metabolism of anandamide, is inhibited by the acidic non-steroidal anti-inflammatory drug (NSAID) ibuprofen with a potency that increases as the assay pH is reduced. Here we show that (R)-, (S)- and (R,S)-flurbiprofen, indomethacin and niflumic acid show similar pH-dependent shifts in potency to that seen with ibuprofen. Thus, (S)-flurbiprofen inhibited 2 microM [3H]anandamide metabolism with IC50 values of 13 and 50 microM at assay pH values of 6 and 8, respectively. In contrast, the neutral compound celecoxib was a weak fatty acid amide hydrolase inhibitor and showed no pH dependency (IC50 values approximately 300 microM at both assay pH). The cyclooxygenase-2-selective inhibitors nimesulide and SC-58125 did not inhibit fatty acid amide hydrolase activity at either pH. The data are consistent with the conclusion that the non-ionised forms of the acidic NSAIDs are responsible for the inhibition of fatty acid amide hydrolase.  相似文献   

4.
Cholic and deoxycholic acid amides 10-17 have been synthesised from (1R,2R)-1-phenyl-2-amino-1,3-propanediol 2, (1S,2S)-1-phenyl-2-amino-1,3-propanediol 4, (1R,2R)-1-para-nitrophenyl-2-amino-1,3-propanediol 3, (1S,2S)-1-para-nitrophenyl-2-amino-1,3-propanediol 5. Amide 12 derived from N-succinimidyl ester 9 of deoxycholic acid and (1R,2R)-1-phenyl-2-amino-1,3-propanediol 2, found to be active against Cryptococcus neoformans and the amide 17 obtained from N-succinimidyl ester 9 of deoxycholic acid and (1S,2S)-1-para-nitrophenyl-2-amino-1,3-propanediol 5, is found to be potent against various gram-positive bacteria.  相似文献   

5.
An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%.  相似文献   

6.
MalphaNP acid (+/-)-1, 2-methoxy-2-(1-naphthyl)propionic acid, was enantioresolved by the use of phenylalaninol (S)-(-)-4; a diastereomeric mixture of amides formed from acid (+/-)-1 and amine (S)-(-)-4 was easily separated by fractional recrystallization and/or HPLC on silica gel, yielding amides (R;S)-(-)-5a and (S;S)-(+)-5b. Their absolute configurations were determined by X-ray crystallography by reference to the S configuration of the phenylalaninol moiety. Amide (R;S)-(-)-5a was converted to oxazoline (R;S)-(+)-8a, from which enantiopure MalphaNP acid (R)-(-)-1 was recovered. In a similar way, enantiopure MalphaNP acid (S)-(+)-1 was obtained from amide (S;S)-(+)-5b. These reactions provide a new route for the large-scale preparation of enantiopure MalphaNP acid, a powerful chiral reagent for the enantioresolution of alcohols and simultaneous determination of their absolute configurations by (1)H NMR anisotropy.  相似文献   

7.
In a metabolic study of [1-(14)C]geranylgeranial involving rat thymocytes, the radioactivity was mainly incorporated into two metabolites, Z1 and Z2, the latter moving slower than the former on a silica-gel thin-layer plate. The time course of Z1 and Z2 formation superficially suggested a precursor-product relationship between Z1 and Z2. The two metabolites were chemically converted to their methyl esters on treatment with trimethylsilyl diazomethane. Z1 was cochromatographed with E,E,E-geranylgeranoic acid (GGA). Z2 was prepared in a large quantity from geranylgeranial using thymocytes, and purified by TLC followed by ESI (negative ion mode) or EI mass-spectrometry. The observation of a negative ion at m/z 305 on ESI and a molecular ion at m/z 306 (C(20)H(34)O(2)) with fragments similar to GGA on EI implied that Z2 was dihydroGGA, which has been detected in the urine and serum of patients with Refsum disease. The EI mass spectrum of (R)-2,3-dihydroGGA was identical to that of Z2. The diastereomeric amide synthesized from metabolite Z2 with (R)-1-(1-naphtyl)ethylamine was cochromatographed with (R acid, R) amide, not with (S acid, R) amide, which were similarly synthesized from (R)- and (S)-2,3-dihydroGGAs, respectively. In another metabolic study on [1-(14)C]geranylgeraniol (GGOH), the radioactivity was similarly incorporated into a metabolite corresponding to (R)-2,3-dihydroGGA. (R)-2,3-DihydroGGA induced DNA ladder formation with a maximum at 15 mciroM in thymocytes. However, 2,3-dihydrofarnesoic acid did not induce it at all.  相似文献   

8.
Twelve analogues were synthesized, their structure derived from modifications of [(S)Pmp1, D-Trp2, Pen6, Arg8]oxytocin, PA, in which (S)Pmp = beta,beta-(3-thiapentamethylene-beta-mercaptopropionic acid). PA is a potent antagonist of the uterotonic effect of oxytocin in the rat (uterotonic test in vitro, pA2 = 8.86) and in the baboon. Truncated analogues of PA from the C-terminus were systematically prepared ending in either the free acid or the amide, i.e. PA1-9 acid, PA1-8 acid, PA1-7 acid, PA1-6 acid, PA1-8 amide, PA1-7 amide and PA1-6 amide. PA1-8 amide was roughly as potent as PA in the rat uterotonic assay in vitro, and the shorter amides were only somewhat weaker antagonists. All four acid analogues were weaker antagonists than PA but still maintained rather high antagonistic potency. These findings suggest that, if these truncated acids form as metabolites in vivo, they may contribute to the overall biological effect of PA and their contribution should be taken into account. Furthermore, using these analogues, the radioimmunoassay measurements of PA may be standardized, as they may cross react with PA antibodies and interfere with the determination. In addition, five analogues were made by substituting Arg8 of PA with Lys, Orn8, Dab8, Dap8 and Cit8. All of these analogues maintained high potency as OTAs in the uterotonic assay, although their activity was only about 1.5-3 times lower than PA. The most potent analogue in the uterotonic assay, [Dap8]PA, pA2 = 8.53, had weak pressor activity (pA2 = 6.90) and no antidiuretic effect. The pressor activity was lower for all tested acids, and for PA1-6 acid it was even below the detection limit. Additionally, PA1-9 acid, PA1-7 acid and PA1-6 acid showed no antidiuretic activity. Hence, the PA1-6 acid is a potent OTA with pA2 = 8.27 and no measurable effect in the pressor or antidiuretic tests and thus it is a pure oxytocin antagonist. This fact makes it an attractive candidate for further studies on inhibition of OT biological effects and on preterm labour.  相似文献   

9.
Optically active (S)-2-ethylphenylpropanoic acid derivatives, dual agonists for human peroxisome proliferator-activated receptor (PPAR) alpha and delta, were efficiently prepared by using Evan's chiral oxazolidinone technique and reductive amide N-alkylation as key steps.  相似文献   

10.
The angiotensin I-converting enzyme (peptidyl-dipeptide hydrolase, EC 3.4.15.1) inhibitor, ramiprilat (2-[N-[(S)-1-ethoxycarbonyl-3-phenylpropyl]-L-Ala]-(1S,3S,5S)-2- azabicyclo[3.3.0]octane-3-carboxylic acid), is shown to exist in tow conformational isomers, cis and trans, which interconvert around the amide bond. The two conformers were separated by reversed-phase high-performance liquid chromatography. The conformers were identified by nuclear Overhauser effect measurements. From line shape analysis the isomerization rate constants were determined to be kcis----trans = 15 s-1 and ktrans----cis = 5 s-1 at 368 K in [2H]phosphate buffer (p2H 7.5). By enzyme kinetic studies using 3-(2-furylacryloyl)-L-Phe-Gly-Gly as substrate, the trans conformer was found to be the most potent enzyme inhibitor, whereas the cis conformer had a very low inhibitory effect. A new inhibition mechanism is presented for this type of slow, tight-binding inhibitors that contain an amide bond. This mechanism involves an equilibrium between the two conformers and the enzyme-bound inhibitor complex.  相似文献   

11.
The effects of N-terminal amino acid stereochemistry on prolyl amide geometry and peptide turn conformation were investigated by coupling both L- and D-amino acids to (2S, 5R)-5-tert-butylproline and L-proline to generate, respectively, N-(acetyl)dipeptide N'-methylamides 1 and 2. Prolyl amide cis- and trans-isomers were, respectively, favored for peptides 1 and 2 as observed by proton NMR spectroscopy in water, DMSO and chloroform. The influence of solvent composition on amide proton chemical shift indicated an intramolecular hydrogen bond between the N'-methylamide proton and the acetamide carbonyl for the major conformer of dipeptides (S)-1, that became less favorable in (R)-1 and 2. The coupling constant (3J(NH,alpha)) values for the cis-isomer of (R)-1 indicated a phi2 dihedral angle value characteristic of a type VIb beta-turn conformation in solution. X-ray crystallographic analysis of N-acetyl-D-leucyl-5-tert-butylproline N'-methylamide (R)-lb showed the prolyl residue in a type VIb beta-turn geometry possessing an amide cis-isomer and psi3-dihedral angle having a value of 157 degrees, which precluded an intramolecular hydrogen bond. Intermolecular hydrogen bonding between the leucyl residues of two turn structures within the unit cell positioned the N-terminal residue in a geometry where their phi2 and psi2 dihedral angle values were not characteristic of an ideal type VIb turn. The circular dichroism spectra of tert-butylprolyl peptides (S)- and (R)-1b were found not to be influenced by changes in solvent composition from water to acetonitrile. The type B spectrum exhibited by (S)-1b has been previously assigned to a type VIa beta-turn conformation [Halab L, Lubell WD. J. Org. Chem. 1999; 64: 3312-3321]. The type C spectrum exhibited by the (R)-lb has previously been associated with type II' beta-turn and alpha-helical conformations in solution and appears now to be also characteristic for a type VIb geometry.  相似文献   

12.
Epidermin: sequencing of a heterodetic tetracyclic 21-peptide amide antibiotic   总被引:20,自引:0,他引:20  
Epidermin is a large peptide antibiotic, which is synthesized in the ribosome via a precursor protein, followed by enzymatic modifications. It was isolated from the culture filtrate of Staphylococcus epidermidis Tü 3298 by adsorption on Amberlite XAD-8. The basic heneicosapeptide amide was chromatographed on Sephadex LH-20 and purified to homogeneity via multiplicative counter-current distributions in one acidic and one neutral system. Tryptic digestion gave the soluble N-terminal fragment epidermin-(1-13)-peptide (P1) and the insoluble C-terminal fragment 2-oxobutyryl-epidermin-(15-21)-peptide amide (P2), each possessing two sulfide ring systems. The heterodetic rings consisted of meso-lanthionine and (2S,3S, 6R)-3-methyllanthionine (P1), meso-lanthionine and C-terminally the new amino acid S-(2-aminovinyl)-D-cysteine (P2). The complex sequence was elucidated via a combination of desulfurization with Raney nickel, enzymatic and acidolytic degradations, gas-phase sequencing, fast-atom bombardment and field-desorption mass spectrometry and NMR spectroscopy.  相似文献   

13.
Immobilization of penicillin G acylase on glyoxyl agarose and its further hydrophilization by physicochemical modification with ionic polymers has made it possible to perform the direct condensation between (+/-)-2-hydroxy-2-phenylethylamine [(+/-)-1] and different acyl donors in the presence of high concentrations of organic cosolvent (up to 90%) in the reaction medium. Using 50 mM phenyl acetic acid and these drastic reaction conditions, too harsh for any other PGA preparation, we have achieved an almost quantitative transformation (more than 99%) of 10 mM (+/-)-1 into the corresponding amide. Remarkably, the enantioselectivity of the enzyme immobilized on the amine was strongly dependent on the acyl donor employed. Thus, using phenylacetic acid (2), the enantioselectivity was almost negligible (1.3 favoring the S isomer), whereas using S-mandelic acid [(S)-4], the E factor reached a value of 21 (also favoring the S isomer). By using R-mandelic acid [(R)-4], we observed a different enantioselectivity (E was 3.6 favoring the R). At 4 degrees C, the E value reached a value higher than 100 when (S)-4 was used as the acyl donor. The reaction performed under these conditions allowed us to produce (2S,2'S)-N-2'-hydroxy-2'-phenyl)-2-hydroxyphenylacetamide [(2S,2'S)-7] with a diasteromeric excess higher than 98%.  相似文献   

14.
We synthesized five maleic acid amide derivatives (maleic, citraconic, cis-aconitic, 2-(2′-carboxyethyl) maleic, 1-methyl-2-(2′-carboxyethyl) maleic acid amide), and compared their degradability for the future development of pH-sensitive biomaterials with tailored kinetics of the release of drugs, the change of charge density, and the degradation of scaffolds. The degradation kinetics was highly dependent upon the substituents on the cis-double bond. Among the maleic acid amide derivatives, 2-(2′-carboxyethyl) maleic acid amide with one carboxyethyl and one hydrogen substituent showed appropriate degradability at weakly acidic pH, and the additional carboxyl group can be used as a pH-sensitive linker.  相似文献   

15.
16.
B H Oh  J L Markley 《Biochemistry》1990,29(16):4012-4017
All the nitrogen signals from the amino acid side chains and 80 of the total of 98 backbone nitrogen signals of the oxidized form of the 2Fe.2S* ferredoxin from Anabaena sp. strain PCC 7120 were assigned by means of a series of heteronuclear two-dimensional experiments [Oh, B.-H. Mooberry, E. S., & Markley, J. L. (1990) Biochemistry (second paper of three in this issue )]. Two additional nitrogen signals were observed in the one-dimensional 15N NMR spectrum and classified as backbone amide resonances from residues whose proton resonances experience paramagnetic broadening. The one-dimensional 15N NMR spectrum shows nine resonances that are hyperfine shifted and broadened. From this inventory of diamagnetic nitrogen signals and the available X-ray coordinates of a related ferredoxin [Tsukihara, T., Fukuyama, K., Nakamura, M., Katsube, Y., Tanaka, N., Kakudo, M., Wada, K., Hase, T., & Matsubara, H. (1981) J. Biochem. 90, 1763-1773], the resolved hyperfine-shifted 15N peaks were attributed to backbone amide nitrogens of the nine amino acids that share electrons with the 2Fe.2S* center or to backbone amide nitrogens of two other amino acids that are close to the 2Fe.2S* center. The seven 15N signals that are missing and unaccounted for probably are buried under the envelope of amide signals. 1H NMR signals from all the amide protons directly bonded to the seven missing and nine hyperfine-shifted nitrogens were too broad to be resolved in conventional 2D NMR spectra.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The O-specific polysaccharide was isolated by mild acid degradation of the lipopolysaccharide of the marine bacterium Shewanella fidelis type strain KMM 3582T and studied by sugar analysis along with 1H and 13C NMR spectroscopy including one-dimensional NOE in difference mode and two-dimensional experiments. The polysaccharide was found to consist of linear tetrasaccharide repeating units containing Nepsilon-[(S)-1-carboxyethyl]-Nalpha-(D-galacturonoyl)-L-lysine and having the following structure: [See text.] The amide of D-galacturonic acid with Nepsilon-[(S)-1-carboxyethyl]-L-lysine ('alaninolysine', 2S,8S-AlaLys) was found for the first time in nature as a component of the O-specific polysaccharide of Providencia rustigianii O14 (Carbohydr. Res. 2003, 338, 1009-1016).  相似文献   

18.
Electrophilic N-acyloxy-N-alkoxyamides are mutagenic in Salmonella typhimurium TA100 without the need for S9 metabolic activation and they react with DNA at guanine-N7 at physiological pH. Since these are direct-acting mutagens, structural factors influence binding and reactivity with DNA. Mutagenicity in TA100 can be predicted by a QSAR incorporating hydrophobicity (logP), stability to substitution reactions at nitrogen (pK(a) of the leaving acid) and steric effects of para-aryl substituents (E(s)). A number of mutagens exhibit activities that deviate markedly from the predicted values and they fall into two classes: di-tert-butylated N-benzoyloxy-N-benzyloxybenzamides, which - because of their size - are most probably excluded from the major groove or are unable to achieve a transition state for reaction with DNA, and N-benzoyloxy-N-butoxyalkylamides with branching alpha-to the amide carbonyl, which are resistant to S(N)2 reactions at the amide nitrogen.  相似文献   

19.
Several amide and ester derivatives of a glutamine analogue, N3-(4-methoxyfumaroyl)-(S)-2,3-diaminopropanoic acid (FMDP) (1-8), were synthesized and evaluated for the inhibitory activity in regard to glucosamine-6-phosphate synthase from Candida albicans. The syntheses were accomplished by the reaction of N2-tert-butoxycarbonyl-N3-(4-methoxyfumaroyl)-(S)-2,3-diaminopropanoic acid (BocFMDP) with the corresponding amines to give the FMDP amides (1-4) or with alkyl halides to give corresponding esters of FMDP (5-8). Among the synthesized compounds, the acetoxymethyl ester of FMDP was the most active inhibitor of the enzyme. Its IC50 value compared to that of FMDP (4 microM) was equal to 11.5 microM. The methyl and allyl esters and the N-hexyl-N-methyl-amide of FMDP exhibited a moderate enzyme inhibitory activity.  相似文献   

20.
Edeines are pentapeptide amide antibiotics composed of four nonprotein amino acids, glycine, and polyamine. They exhibit antimicrobial and immunosuppressive activities and are universal inhibitors of translation. Moreover, it was proven that the free ionizable carboxy group in the (2R, 6S, 7R)-2,6-diamino-7-hydroxyazelaic acid moiety is not essential for biological activity of these compounds. In this paper we describe the synthesis of four novel edeine A and D analogues in which the above-mentioned acid residue was replaced with the (3R, 4S)- or (3S, 4S)-4,5-diamino-3-hydroxypentanoic acid moiety. In one compound we also introduced into molecule the 3-N,N-dimethyl derivative of (S)-2,3-diaminopropanoic acid to prevent the transpeptidation process, which results in the loss of biological activity of alpha-isomers of edeines. All peptides were synthesized applying the active ester and azide methods and on the basis of the coupling of suitable N-terminal tripeptides with proper C-terminal dipeptide amides. The activities of the newly obtained edeine analogues against selected strains of bacteria and fungi are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号