首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently released a set of 17 chromosome substitution (CS-B) lines (2n = 52) that contain Gossypium barbadense L. doubled-haploid line ‘3-79’ germplasm systematically introgressed into the Upland inbred ‘TM-1’ of G. hirsutum (L.). TM-1 yields much more than 3-79, but cotton from the latter has superior fiber properties. To explore the use of these quasi-isogenic lines in studying gene interactions, we created a partial diallel among six CS-B lines and the inbred TM-1, and characterized their descendents for lint percentage, boll weight, seedcotton yield and lint yield across four environments. Phenotypic data on the traits were analyzed according to the ADAA genetic model to detect significant additive, dominance, and additive-by-additive epistasis effects at the chromosome and chromosome-by-chromosome levels of CS-B lines. For example, line 3-79 had the lowest boll weight, seedcotton yield and lint yield, but CS-B22Lo homozygous dominance genetic effects on seedcotton and lint yield were nearly four times those of TM-1, and its hybrids with TM-1 had the highest additive-by-additive epistatic effects on seedcotton and lint yield. CS-B14sh, 17, 22Lo and 25 produced positive homozygous dominance effects on lint yield, whereas doubly heterozygous combinations of CS-B14sh with CS-B17, 22Lo and 25 produced negative dominance effects, suggesting that epistatic effects between genes in these chromosomes strongly affect lint yield. The results underscore the opportunities to systematically identify genomic regions harboring genes that impart agronomically significant effects via epistatic interactions. The chromosome-by-chromosome approach significantly complements other strategies to detect and quantify epistatic interaction effects, and the quasi-isogenic nature of families and lines from CS-B intermatings will facilitate high-resolution localization, development of markers for selection and map-assisted identification of genes involved in strong epistatic effects.  相似文献   

2.
Wu J  Jenkins JN  McCarty JC  Saha S 《Genetica》2010,138(11-12):1171-1179
Determination of chromosomes or chromosome arms with desirable genes in different inbred lines and/or crosses should provide useful genetic information for crop improvement. In this study, we applied a modified additive-dominance model to analyze a data set of 13 cotton chromosome substitution lines and their recurrent parent TM-1, five commercial cultivars, and their 70 F(2) hybrids. The chromosome additive and dominance variance components for eight agronomic and fiber traits were determined. On average, each chromosome or chromosome arm was associated with 6.5 traits in terms of additive and/or dominance effects. The chromosomes or chromosome arms, which contributed significant additive variances for the traits investigated, included 2, 16, 18, 25, 5sh (short arm), 14sh, 15sh, 22sh, and 22Lo (long arm). Chromosome additive effects were also predicted in this study. The results showed that CS-B 25 was favorably associated with several fiber traits, while FM966 was favorably associated with both yield and fiber traits with alleles on multiple chromosomes or chromosome arms. Thus, this study should provide valuable genetic information on pure line development for several improved traits such as yield and fiber quality.  相似文献   

3.
Genetic diversity is the foundation of any crop improvement program, but the most cultivated Upland cotton [Gossypium hirsutum L., 2n?=?52, genomic formula?2(AD)1] has a very narrow gene pool resulting from its evolutionary origin and domestication history. Cultivars of this cotton species (G. hirsutum L.) are prized for their combination of exceptional yield, other agronomic traits, and good fiber properties, whereas the other cultivated 52-chromosome species, G. barbadense L. [2n?=?52, genomic formula?2(AD)2], is widely regarded as having the opposite attributes. It has exceptionally good fiber qualities, but generally lower yield and less desirable agronomic traits. Breeders have long aspired to combine the best attributes of G. hirsutum and G. barbadense, but have had limited success. F1 hybrids are readily created and largely fertile, so the limited success may be due to cryptic biological and technical challenges associated with the conventional methods of interspecific introgression. We have developed a complementary alternative approach for introgression based on chromosome substitution line, followed by increasingly sophisticated genetic analyses of chromosome-derived families to describe the inheritance and breeding values of the chromosome substitution lines. Here, we analyze fiber quality traits of progeny families from a partial diallel crossing scheme among selected chromosome substitution lines (CS-B lines). The results provide a more detailed and precise QTL dissection of fiber traits, and an opportunity to examine allelic interaction effects between two substituted chromosomes versus one substituted chromosome. This approach creates new germplasm based on pair wise combinations of quasi-isogenic chromosome substitutions. The relative genetic simplicity of two-chromosome interactions departs significantly from complex or RIL-based populations, in which huge numbers of loci are segregating in all 26 chromosome pairs. Data were analyzed according to the ADAA genetic model, which revealed significant additive, dominance, and additive-by-additive epistasis effects on all of the fiber quality traits associated with the substituted chromosome or chromosome arm of CS-B lines. Fiber of line 3-79, the donor parent for the substituted chromosomes, had the highest Upper Half Mean length (UHM), uniformity ratio, strength, elongation, and lowest micronaire among all parents and hybrids. CS-B16 and CS-B25 had significant additive effects for all fiber traits. Assuming a uniform genetic background of the CS-B lines, the comparative analysis of the double-heterozygous hybrid combinations (CS-B?×?CS-B) versus their respective single heterozygous combinations (CS-B?×?TM-1) demonstrated that interspecific epistatic effects between the genes in the chromosomes played a major role in most of the fiber quality traits. Results showed that fiber of several hybrids including CS-B16?×?CS-B22Lo, CS-B16?×?CS-B25 and CS-B16?×?TM-1 had significantly greater dominance effects for elongation and hybrid CS-B16?×?CS-B17 had higher fiber strength than their parental lines. Multiple antagonistic genetic effects were also present for fiber quality traits associated with most of the substituted chromosomes and chromosome arms. Results from this study highlight the vital importance of epistasis in fiber quality traits and detected novel effects of some cryptic beneficial alleles affecting fiber quality on the 3-79 chromosomes, whose effects were not detected in the 3-79 parental lines.  相似文献   

4.
The untapped potential of the beneficial alleles from Gossypium barbadense L. has not been well utilized in G. hirsutum L. (often referred to as Upland cotton) breeding programs. This is primarily due to genomic incompatibility and technical challenges associated with conventional methods of interspecific introgression. In this study, we used a hypoaneuploid-based chromosome substitution line as a means for systematically introgressing G. barbadense doubled-haploid line ‘3-79’ germplasm into a common Upland genetic background, inbred ‘Texas marker-1’ (‘TM-1’). We reported on the chromosomal effects, lint percentage, boll weight, seedcotton yield and lint yield in chromosome substitution CS-B (G. barbadense L.) lines. Using an additive-dominance genetic model, we studied the interaction of alleles located on two alien substituted chromosomes versus one alien substituted chromosome using a partial diallel mating design of selected CS-B lines (CS-B05sh, CS-B06, CS-B09, CS-B10, CS-B12, CS-B17 and CS-B18). Among these parents, CS-B09 and CS-B10 were reported for the first time. The donor parent 3-79, had the lowest additive effect for all of the agronomic traits. All of the CS-B lines had significant additive effects with boll weight and lint percentage. CS-B10 had the highest additive effects for lint percentage, and seedcotton and lint yield among all of the lines showing a transgressive genetic mode of inheritance for these traits. CS-B09 had greater additive genetic effects on lint yield, while CS-B06, CS-B10 and CS-B17 had superior additive genetic effects on both lint and seedcotton yield compared to TM-1 parent. The 3-79 line had the highest dominance effects for boll weight (0.513 g) and CS-B10 had the lowest dominance effect for boll weight (?0.702). Some major antagonistic genetic effects for the agronomic traits were present with most of the substituted chromosomes and chromosome arms, a finding suggested their recalcitrance to conventional breeding efforts. The results revealed that the substituted chromosomes and arms of 3-79 carried some cryptic beneficial alleles with potential to improve agronomic traits including yield, whose effects were masked at the whole genome level in 3-79.  相似文献   

5.
When using chromosome substitution (CS) lines in a crop breeding improvement program, one needs to separate the effects of the substituted chromosome from the remaining chromosomes. This cannot be done with the traditional additive-dominance (AD) model where CS lines, recurrent parent, and their hybrids are used. In this study, we develop a new genetic model and software, called a modified AD model with genotype × environment interactions, which can predict additive and dominance genetic effects attributed to a substituted alien chromosome in a CS line as well as the overall genetic effects of the non-substituted chromosomes. In addition, this model will predict the additive and dominance effects of the same chromosome of interest (i.e. chromosome 25 of cotton in this study) in an inbred line, as well as the effects of the remaining chromosomes in the inbred line. The model requires a CS line, its recurrent parent and their F1 and/or F2 hybrids between the substitution lines and several inbred lines. Monte Carlo simulation results showed that genetic variance components were estimated with no or slight bias when we considered this modified AD model as random. The correlation coefficient between predicted effects and true effects due to the chromosomes of interest varied from zero to greater than 0.90 and it was positively relative to the difference between the CS line and the recurrent line. To illustrate the use of this new genetic model, an upland cotton, Gossypium hirsusum L, CS line (CS-B25), TM-1 (the recurrent parent), five elite cultivars, and the F2 hybrids from test-crossing these two lines with the five elite cultivars were grown in two environments in Mississippi. Agronomic and fiber data were collected and analyzed. The results showed that the CS line, CS-B25, which has chromosome 25 from line 3 to 79, Gossypium barbadense substituted into TM-1, had positive genetic associations with several fiber traits. We also determined that Chromosome 25 from FiberMax 966 had significantly positive associations with fiber length and strength; whereas, chromosome 25 from TM-1 and SureGrow 747 had detectable negative genetic effects on fiber strength. The new model will be useful to determine effects of the chromosomes of interest in various inbred lines in any diploid or amphidiploid crop for which CS lines are available.  相似文献   

6.
7.
8.
The cDNA encoding CAP (adenylyl cyclase-associated protein) was isolated from a cotton (Gossypium hirsutum) fiber cDNA library. The cDNA (GhCAP) contained an open reading frame that encoded 471 amino acid residues. RNA blot analysis showed that the cotton CAP gene was expressed mainly in young fibers.  相似文献   

9.
一个陆地棉bZIP蛋白cDNA的克隆及表达分析   总被引:2,自引:0,他引:2  
利用PCR筛选方法从陆地棉纤维cDNA文库中筛选到一个全长cDNA序列,命名为GhbZIP。其编码产物长度为645个氨基酸残基,序列中含有两个未知功能的保守区域DUF630和DUF632,而DUF632区中有一个类似碱性亮氨酸拉链基元;此外氨基酸序列中还存在一个富脯氨酸区和一个富苯丙氨酸区,因此该蛋白具有植物碱性亮氨酸拉链蛋白的结构特征。亲水性分析表明,GhbZIP为一个典型的膜蛋白。GhbZIP基因主要是在开花3d之后在胚珠和纤维细胞中表达,这表明该基因可能与棉纤维伸长过程中的基因表达调控有关。  相似文献   

10.
4个棉花ADF基因的分子鉴定及其差异表达   总被引:4,自引:0,他引:4  
肌动蛋白解聚合因子(actin-depolymerizing factor, ADF)是一种在真核生物中广泛存在的低分子量的肌动蛋白结合蛋白,它在调控细胞内肌动蛋白纤丝的解聚合和再聚合中起着关键作用。我们在棉纤维cDNA文库中分离克隆了4个ADF基因(cDNAs),分别命名为GhADF2,GhADF3,GhADF4,GhADF5。GhADF2 cDNA 长度为705 bp,编码139个氨基酸;GhADF3 cDNA长度为819 bp,编码139个氨基酸;GhADF4 cDNA长度为804 bp,编码143个氨基酸;GhADF5 cDNA长度为644 bp,编码141个氨基酸。分析表明,GhADF2与GhADF3的氨基酸序列同源性为99%。而且,GhADF2/3与矮牵牛PeADF2之间的氨基酸序列同源性也高达89%。GhADF4与拟南芥AtADF6的亲缘关系较近,二者的氨基酸序列同源性为78%。GhADF5与拟南芥AtADF5的亲缘关系较近,氨基酸序列的同源性为83%。上述结果表明植物ADF基因在进化中具有高度保守性。RT-PCR分析表明,GhADF2在纤维中优势表达,而GhADF5基因则在子叶中表达量最高。另一方面,GhADF3和GhADF4似乎不具有组织特异性或偏爱性表达。同一组织中不同GhADF基因表达量有较大的差异,表明它们可能涉及棉花不同组织生长发育过程的调节。而且,在进化过程中,各ADF同分异构体之间可能发展形成某种功能上的差异性。  相似文献   

11.
Beta-1,4-glucosidase (BG, EC3.2.1.21), one of three cellulases, is a widespread family of enzymes involved in the metabolism of cell wall polysaccharides in both prokaryocytes and eukaryotes. Here, we report the isolation of a full-length cDNA encoding beta-1,4-glucosidase protein (designated as GhBG) and its putative function in the process of fiber development and in yeast. Through random sequencing of the cotton fiber cDNA library from 7235 germplasm line, with elite fiber quality in Gossypium hirsutum L. and utilizing the 5' rapid amplification of cDNA ends (RACE) technique, a 2133 bp cDNA clone encoding a cotton fiber specifically expressed protein (accession number: DQ103699) was isolated. GhBG was composed of a 1884 bp open reading frame (ORF) encoding 627 amino acid residues. This putative protein had an isoelectric point of 8.17, a calculated molecular weight of 68.78 KD and a signal peptide with 23 amino acid residues at the N-terminal. RT-PCR analysis indicated GhBG was specifically expressed in fiber cells and was highly abundant in 5-17 day post anthesis (DPA). It was not, however, expressed in root, hypocotyls or leaves. Southern blotting analysis showed there were two copies of GhBG in the upland cotton genome; most likely contained in sub-genome A and sub-genome D. GhBG was then integrated into a yeast expression vector, pREP-5N and electro-transformed into fission yeast Schizosaccharomyces pombe Q-01. The results demonstrated that GhBG led to a significant increase in cell length and width and a remarkable decrease of the length/width ratio. Compared to vector control transformants, cells were significantly larger and rounder and their growth velocity was also reduced.  相似文献   

12.
13.
14.
Interspecific chromosome substitution is among the most powerful means of introgression and steps toward quantitative trait locus (QTL) identification. By reducing the genetic "noise" from other chromosomes, it greatly empowers the detection of genetic effects by specific chromosomes on quantitative traits. Here, we report on such results for 14 cotton lines (CS-B) with specific chromosomes or chromosome arms from G. barbadense L. substituted into G. hirsutum and chromosome-specific F2 families. Boll size, lint percentage, micronaire, 2.5% span length, elongation, strength, and yield were measured by replicated field experiments in five diverse environments and analyzed under an additive-dominance (AD) genetic model with genotype and environment interaction. Additive effects were significant for all traits and dominance effects were significant for all traits except 2.5% span length. CS-B25 had additive effects increasing fiber strength and fiber length and decreasing micronaire. CS-B16 and CS-B18 had additive effects related to reduced yields. The results point toward specific chromosomes of G. barbadense 3-79 as the probable locations of the genes that significantly affect quantitative traits of importance. Our results provided a scope to analyze individual chromosomes of the genome in homozygous and heterozygous conditions and thus detected novel effects of alleles controlling important QTL.  相似文献   

15.
Xu WL  Wang XL  Wang H  Li XB 《Gene》2007,389(1):27-35
The translation elongation factor 1A, eEF1A, plays an important role in protein synthesis, catalyzing the binding of aminoacyl-tRNA to the A-site of the ribosome by a GTP-dependent mechanism. To investigate the role of eEF1A for protein synthesis in cotton fiber development, nine different cDNA clones encoding eukaryotic translation elongation factor 1A were isolated from cotton (Gossypium hirsutum) fiber cDNA libraries. The isolated genes (cDNAs) were designated cotton elongation factor 1A gene GhEF1A1, GhEF1A2, GhEF1A3, GhEF1A4, GhEF1A5, GhEF1A6, GhEF1A7, GhEF1A8, GhEF1A9, respectively. They share high sequence homology at nucleotide level (71-99% identity) in the coding region and at amino acid level (96-99% identity) among each other. Phylogenetic analysis demonstrated that the nine GhEF1A genes can be divided into 5-6 subfamilies, indicating the divergence occurred in structures of the genes as well as the deduced proteins during evolution. Real-time quantitative RT-PCR analysis revealed that GhEF1A genes are differentially expressed in different tissues/organs. Of the nine GhEF1A genes, five are expressed at relatively high levels in young fibers. Further analysis indicated that expressions of the GhEF1As in fiber are highly developmental-regulated, suggesting that protein biosynthesis is very active at the early fiber elongation.  相似文献   

16.
Fiber is a basic raw material in the textile industry. The changes in spinning technology have in common the requirement of unique and often greater cotton fiber quality, especially strength, for processing. We used a Gossypium anomalum introgression line, 7235, characterized by good fiber quality properties, to identify molecular markers linked to fiber-strength QTLs. By the use of F(2) and F(3) populations derived from a cross between 7235 and TM-1, a genetic standard of Upland cotton, nine molecular markers, three SSRs and six RAPDs, were identified to be linked to two QTLs for fiber strength. One was a major QTL, QTL(FS1), detected both in Nanjing and Hainan, China, and the Texas College Station, USA. It was found to be associated with eight markers and explained more than 30% of the phenotypic variation. QTL(FS1) was mapped to chromosome 10. The major QTL in 7235 was identified to be transferred from an Acala 3080 cotton. The marker-assisted selection revealed that DNA markers linked to this QTL could be used in increasing the fiber strength of commercial cultivars.  相似文献   

17.
18.
19.
以陆地棉标准系TM-1未经诱导的下胚轴、下胚轴经诱导40 d的愈伤组织和胚性愈伤组织为材料,利用cDNA-AFLP差异显示技术对陆地棉体细胞胚胎发生过程中的cDNA差异表达进行了初步分析.经反转录获得3个不同时期的cDNA,利用180对引物组合进行AFLP分析,结果表明,在总共显示的约3 000条谱带中,其中38条为胚性愈伤组织中所特有的差异谱带.对这些差异片段进行克隆、序列测定和同源性分析,其中12个差异片段同已知陆地棉、雷蒙德氏棉和亚洲棉不同发育时期器官的EST序列高度同源,其相似性达到90%以上.结果说明,棉属在形态建成早期(胚胎发育阶段),其特定器官的相关基因已经表达.  相似文献   

20.
Wang K  Guan B  Guo W  Zhou B  Hu Y  Zhu Y  Zhang T 《Genetics》2008,178(2):1117-1122
Twenty bacterial artificial chromosome (BAC) clones that could produce bright signals and no or very low fluorescence in situ hybridization (FISH) background were identified from Gossypium arboreum cv. JLZM, and G. hirsutum accession (acc.) TM-1 and 0-613-2R. Combining with 45S and 5S rDNA, a 22-probe cocktail that could identify all 13 G. arboreum chromosomes simultaneously was developed. According to their homology with tetraploid cotton, the G. arboreum chromosomes were designated as A1-A13, and a standard karyotype analysis of G. arboreum was presented. These results demonstrated an application for multiple BAC-FISH in cotton cytogenetic studies and a technique to overcome the problem of simultaneous chromosome recognition in mitotic cotton cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号