首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Homoeology of rye chromosome arms to wheat   总被引:5,自引:0,他引:5  
Summary Cytological markers such as diagnostic C-bands, telocentrics, and translocations were used to identify the arms of rye chromosomes associated with wheat chromosomes at metaphase I in ph1b mutant wheat × rye hybrids. Arm homoeologies of rye chromosomes to wheat were established from the results of metaphase I pairing combined with available data on the chromosomal location of homoeoloci series in wheat and rye. Only arms 1RS, 1RL, 2RL, 3RS, and 5RS showed normal homoeologous relationships to wheat. The remaining arms of rye appeared to be involved in chromosome rearrangements that occurred during the evolution of the genus Secale. We conclude that a pericentric inversion in chromosome 4R, a reciprocal translocation between 3RL and 6RL, and a multiple translocation involving 4RL, 5RL, 6RS, and 7RS are present in rye relative to wheat.  相似文献   

2.
Summary Wheat-rye homoeologous pairing in both ABRR and (0–7)A(0–7)BRR plants takes place preferentially between homoeologous chromosomes of group 1. This suggests either a much greater affinity between wheat and rye chromosomes for this group or more efficient pairing initiation because of common nucleolar organizer activities. 1A–1R associations were more frequent than 1B–1R associations though in both cases pairing was restricted mostly to the long arms. From the variation in these particular chromosome arms the three following factors might hinder the wheat-rye pairing: regular homologous pairing of rye chromosomes, presence of prominent telomeric C-bands in rye chromosomes or occurrence of wheat-wheat homoeologous pairing.  相似文献   

3.
Induction of recombination between rye chromosome 1RL and wheat chromosomes   总被引:2,自引:0,他引:2  
Summary The ph1b mutant in bread wheat has been used to induce homoeologous pairing and recombination between chromosome arm 1RL of cereal rye and wheat chromosome/s. A figure of 2.87% was estimated for the maximal frequency of recombination between a rye glutelin locus tightly linked to the centromere and the heterochromatic telomere on the long arm of rye chromosome 1R in the progeny of ph1b homozygotes. This equates to a gametic recombination frequency of 1.44%. This is the first substantiated genetic evidence for homoeologous recombination between wheat and rye chromosomes. No recombinants were confirmed in control populations heterozygous for ph1b. The ph1b mutant was also observed to generate recombination between wheat homoeologues.  相似文献   

4.
 Fluorescence in situ hybridization (FISH) with multiple probes has been applied to meiotic chromosome spreads derived from ph1b common wheat x rye hybrid plants. The probes used included pSc74 and pSc 119.2 from rye (the latter also hybridizes on wheat, mainly B genome chromosomes), the Ae. squarrosa pAs1 probe, which hybridizes almost exclusively on D genome chromosomes, and wheat rDNA probes pTa71 and pTa794. Simultaneous and sequential FISH with a two-by-two combination of these probes allowed unequivocal identification of all of the rye (R) and most of the wheat (W) chromosomes, either unpaired or involved in pairing. Thus not only could wheat-wheat and wheat-rye associations be easily discriminated, which was already feasible by the sole use of the rye-specific pSc74 probe, but the individual pairing partners could also be identified. Of the wheat-rye pairing observed, which averaged from about 7% to 11% of the total pairing detected in six hybrid plants of the same cross combination, most involved B genome chromosomes (about 70%), and to a much lesser degree, those of the D (almost 17%) and A (14%) genomes. Rye arms 1RL and 5RL showed the highest pairing frequency (over 30%), followed by 2RL (11%) and 4RL (about 8%), with much lower values for all the other arms. 2RS and 5RS were never observed to pair in the sample analysed. Chromosome arms 1RL, 1RS, 2RL, 3RS, 4RS and 6RS were observed to be exclusively bound to wheat chromosomes of the same homoeologous group. The opposite was true for 4RL (paired with 6BS and 7BS) and 6RL (paired with 7BL). 5RL, on the other hand, paired with 4WL arms or segments of them in more than 80% of the cases and with 5WL in the remaining ones. Additional cases of pairing involving wheat chromosomes belonging to more than one homoeologous group occurred with 3RL, 7RS and 7RL. These results, while adding support to previous evidence about the existence of several translocations in the rye genome relative to that of wheat, show that FISH with multiple probes is an efficient method by which to study fundamental aspects of chromosome behaviour at meiosis, such as interspecific pairing. The type of knowledge attainable from this approach is expected to have a significant impact on both theoretical and applied research concerning wheat and related Triticeae. Received: 21 February 1996 / Accepted: 12 July 1996  相似文献   

5.
Summary Chromosome pairing was studied in hybrids of (Hordeum vulgare ×Triticum aestivum) ×Secale cereale. Chiasma frequency per cell varied from 1.94 to 3.16 between the different hybrids. This variation was attributed to genetic variability in rye parents which affected homoeologous pairing. The pairing of rye chromosomes as revealed by Giemsa C-banding was a combination of nonhomologous association between rye chromosomes and associations with chromosomes of wheat and barley. Contribution No. 634 Ottawa Research Station  相似文献   

6.
Metaphase-I chromosome association in PMCs of five F1 hybrids 6x-triticale x T. turgidum (2n=5x=35 and genomes AABBR), and 13 plants from their backross or self offspring is reported. In wheat 18 chromosome arms and in rye 14 arms were recognized after C-banding and individually studied. Plants of backcross and F2 showed variability for number and type of rye chromosomes, having in common the 28 durum wheat chromosomes (AABB). By testing meiotic association in plants with different rye chromosome constitutions, significant negative correlations were found. A clear negative effect of rye heterochromatin on pairing in wheat chromosomes is observed, the influence being more pronounced for large arms than for the short ones.  相似文献   

7.
Summary The meiotic behaviour of rye chromosomes 1R, 2R, 3R, 6R and 7R/4R of hexaploid triticale Cachirulo is analyzed using the C-banding technique. These chromosomes show different C-banding patterns and present different pairing levels at metaphase I. A decreasing effect of large telomeric heterochromatin bands on pairing is deduced from the following two main facts: i) The chromosome 7R/4R shows the highest pairing associated with the smallest amount of heterochromatin, ii) pairing levels of 2 R short arm and 3 R long arm which carry large telomeric bands are less than their respective long and short arms lacking telomeric heterochromatin. Possible desynaptic effects of heterochromatin are discussed although an asynaptic effect cannot be rejected.  相似文献   

8.
Summary Two F5 strains of tetraploid triticale (2n= 4x=28), obtained from 6x triticaleX2 rye progenies, were crossed with diploid and tetraploid rye, some durum and bread wheats, and various 8x and 6x triticale lines. Meiosis in the different hybrid combinations was studied. The results showed that the haploid complement of these triticales consists of seven chromosomes from rye and seven chromosomes from wheat. High frequencies of PMCs showing trivalents were observed in hybrids involving the reference genotypes of wheat and triticale. These findings proved that several chromosomes from the wheat component have chromosome segments coming from two parental wheat chromosomes. The origin of these heterogeneous chromosomes probably lies in homoeologous pairing occurring at meiosis in the 6x triticaleX2x rye hybrids from which 4x triticale lines were isolated. A comparison among different hybrids combinations indicated that the involvement of D-genome chromosomes in homoeologous pairing is quite limited. In contrast, meiotic patterns in 4x triticale X 2x rye hybrids showed a quite high pairing frequency between some R chromosomes and their A and B homoeologues.  相似文献   

9.
Hao M  Luo J  Yang M  Zhang L  Yan Z  Yuan Z  Zheng Y  Zhang H  Liu D 《Génome》2011,54(12):959-964
The ph-like genes in the Chinese common wheat landrace Kaixian-luohanmai (KL) induce homoeologous pairing in hybrids with alien species. In the present study, meiotic phenotypic differences on homoeologous chromosome pairing at metaphase I between hybrids of wheat genotypes Chinese Spring ph1b (CSph1b) and KL with rye were studied by genomic in situ hybridization (GISH). The frequency of wheat-wheat associations was higher in CSph1b×rye than in KL×rye. However, frequencies of wheat-rye and rye-rye associations were higher in KL×rye than in CSph1b×rye. These differences may be the result of different mechanisms of control between the ph-like gene(s) controlling homoeologous chromosome pairing in KL and CSph1b. Wheat-wheat associations were much more frequent than wheat-rye pairing in both hybriods. This may be caused by lower overall affinity, or homoeology, between wheat and rye chromosomes than between wheat chromosomes.  相似文献   

10.
In tetraploid rye with single-substitution wheat chromosomes - 1A, 2A, 5A, 6A, 7A, 3B, 5B, 7B - chromosome pairing was analysed at metaphase I in PMCs with the C-banding method. The frequency of univalents of chromosome 1A was considerably higher than that of the other four wheat chromosomes of genome A (6A, 5A, 7A and 2A). Among chromosomes of genome B, the lowest mean frequency of univalents was observed for chromosome 5B. In monosomic lines, wheat chromosomes 1A, 2A, 5A, 6A, 7A and 5B paired with rye homoeologues most often in rod bivalents and in chain quadrivalents (also including 3B). The 47% pairing of 5B-5R chromosomes indicate that the rye genomes block the suppressor Ph1 gene activity. In monosomic plants with chromosomes 5A, 2A, 6A, 7A and 5B, a low frequency of rye univalents was observed. It was also found that the wheat chromosomes influenced the pairing of rye genome chromosomes, as well as the frequency of ring and rod bivalents and tri- and quadrivalents. However, the highest number of terminal chiasmata per chromosome occurred in the presence of chromosomes 5A and 2A, and the lowest - in the presence of chromosomes 3B and 7B. In the presence of chromosome 5B, the highest frequency of bivalents was observed. The results of the present study show that the rye genome is closer related to the wheat genome A of than to genome B. The high pairing of wheat-rye chromosomes, which occurs in tetraploid rye with substitution wheat chromosomes, indicates that there is a high probability of incorporating wheat chromosome segments into rye chromosomes.  相似文献   

11.
The metaphase I and anaphase I stages of meiosis of wheat×rye hybrids carrying the ph1b mutation were analyzed by genomic in situ hybridization. This technique allows distinction between three different types of wheat-rye associations in metaphase I configurations as well as detection of wheat-rye recombinant chromosomes in anaphase I cells. The frequency of associations between wheat and rye chromosomes greatly exceeded the level of wheat-rye recombination found in the three hybrids examined. Extremely distal associations, which account for about 50% of the total wheat-rye metaphase I chromosomal pairing, can explain such a discrepancy between metaphase I and anaphase I data. It is further discussed whether these associations reflect very distally located chiasmata or nonchiasmatic pairing. The sizes of the segments exchanged in wheat-rye recombinant chromosomes provide cytological evidence that wheat-rye recombination is restricted to the distal chromosomal regions. Received: 24 August 1995; in revised form: 27 February 1996 / Accepted: 28 March 1996  相似文献   

12.
Homozygous wheat/rye (1BL/1RS or 1AS/ 1RL) translocation lines have significantly contributed to wheat production, and several other wheat/rye translocation lines show a potential promise against biotic and abiotic stresses. Detecting the presence of rye at the chromosome level is feasible by C-banding and isozyme protocols, but the diagnostic strength of genomic in situ hybridization for eventually analyzing smaller DNA introgressions has greater significance. As a first step we have applied the genomic in situ hybridization technique to detect rye chromosomes in a wheat background using germ plasm of agricultural significance. By this method rye contributions to the translocations 1BL/1RS, 1AL/1RS, 5AS/5RL and 6BS/6RL could be identified. Differential labelling has further enabled the detection of rye and Thinopyrum bessarabicum chromosomes in a trigeneric hybrid of Triticum aestivum/Th. bessarabicum//Secale cereale.  相似文献   

13.
Santos JL  Orellana J  Giraldez R 《Genetics》1983,104(4):677-684
Meiotic pairing preferences between identical and homologous but not identical chromosomes were analyzed in spontaneous tetraploid/diploid chimeras of three male grasshoppers (Eyprepocnemis plorans) whose chromosome pair 11 were heterozygous for C-banding pattern and in four induced tetraploid/diploid chimaeral rye plants (Secale cereale) heterozygous for telomeric heterochromatin C-bands in chromosomes 1R and 2R. In the grasshoppers, a preference for identical over homologous pairing was observed, whereas in rye both a preference for homologous rather than identical pairing and random pairing between the four chromosomes of the set was found. From the results in rye, it can be deduced that pairing preferences do not depend exclusively on the similarities between chromosomes involved. It is suggested that genotypic or cryptic structural differences between the homologous chromosomes of each pair analyzed might be responsible for the pairing preferences found. This hypothesis can also explain the results obtained in grasshoppers, although the possibility of premeiotic association cannot be excluded in this material.  相似文献   

14.
Chinese rye cultivar Jingzhouheimai (Secale cereale L.) shows a high level of resistance to powdery mildew. Identification, location, and mapping of the resistance gene would be helpful for developing a highly resistant germplasm or cultivar in wheat. Using sequential C-banding, GISH, and marker analysis, an addition chromosome with powdery mildew resistance was identified in a line derived from a cross between Chinese wheat landrace Huixianhong and rye cultivar Jingzhouheimai. The line, designated H-J DA2RDS1R(1D), had 44 chromosomes including two pairs of rye chromosomes, 1R and 2R, and lacked a pair of wheat chromosomes 1D, that is, it is a double disomic addition disomic substitution line. According to its reaction to different isolates of the powdery mildew pathogen, the resistance gene in H-J DA2RDS1R(1D) differed from the Pm8 and Pm7 genes located earlier on rye chromosomes 1R and 2R, respectively. In order to determine the location of the resistance gene, line H-J DA2RDS1R(1D) was crossed with wheat landrace Huixianhong and the F2 population and corresponding F2:3 families were tested for disease reaction and assessed with molecular markers. The results showed that a resistance gene, designated PmJZHM2RL, is located in rye chromosome arm 2RL.  相似文献   

15.
Summary Using in situ hybridization techniques, we have been able to identify the translocated chromosomes resulting from whole arm interchanges between homoeologous chromosomes of wheat and rye. This was possible because radioactive probes are available which recognize specific sites of highly repeated sequence DNA in either rye or wheat chromosomes. The translocated chromosomes analysed in detail were found in plants from a breeding programme designed to substitute chromosome 2R of rye into commercial wheat cultivars. The distribution of rye highly repeated DNA sequences showed modified chromosomes in which (a) most of the telomeric heterochromatin of the short arm and (b) all of the telomeric heterochromatin of the long arm, had disappeared. Subsequent analyses of these chromosomes assaying for wheat highly repeated DNA sequences showed that in type (a), the entire short arm of 2R had been replaced by the short arm of wheat chromosome 2B and in (b), the long arm of 2R had been replaced by the long arm of 2B. The use of these probes has also allowed us to show that rye heterochromatin has little effect on the pairing of the translocated wheat arm to its wheat homologue during meiosis. We have also characterized the chromosomes resulting from a 1B-1R translocation event.From these results, we suggest that the observed loss of telomeric heterochromatin from rye chromosomes in wheat is commonly due to wheat-rye chromosome translocations.  相似文献   

16.
The effect of telomere heterochromatin on metaphase I association of chromosome pair 1R of rye was analyzed in normal diploid plants of rye (2n=14) and in wheat-rye derivatives with the chromosome constitution (0–7)A(0–7)BRR (2n=20, 21 and 22). The C-banding pattern of 1R was variable between plants. In diploid rye the presence or absence of telomeric heterochromatin in 1R does not influence its meiotic pairing. However, in wheat-rye derivatives the presence of telomeric heterochromatin decreases chiasma frequency in the 1R bivalent. This cannot be attributed to interference of heterochromatin with chiasma terminalization. This effect of heterochromatin is most pronounced in heterozygous condition. In plants heterozygous for telomeric C-bands the reduction of pairing is stronger in the short arm than in the long arm of the 1R bivalent.  相似文献   

17.
In many organisms, homologous pairing and synapsis depend on the meiotic recombination machinery that repairs double-strand DNA breaks (DSBs) produced at the onset of meiosis. The culmination of recombination via crossover gives rise to chiasmata, which locate distally in many plant species such as rye, Secale cereale. Although, synapsis initiates close to the chromosome ends, a direct effect of regions with high crossover frequency on partner identification and synapsis initiation has not been demonstrated. Here, we analyze the dynamics of distal and proximal regions of a rye chromosome introgressed into wheat to define their role on meiotic homology search and synapsis. We have used lines with a pair of two-armed chromosome 1R of rye, or a pair of telocentrics of its long arm (1RL), which were homozygous for the standard 1RL structure, homozygous for an inversion of 1RL that changes chiasma location from distal to proximal, or heterozygous for the inversion. Physical mapping of recombination produced in the ditelocentric heterozygote (1RL/1RL(inv)) showed that 70% of crossovers in the arm were confined to a terminal segment representing 10% of the 1RL length. The dynamics of the arms 1RL and 1RL(inv) during zygotene demonstrates that crossover-rich regions are more active in recognizing the homologous partner and developing synapsis than crossover-poor regions. When the crossover-rich regions are positioned in the vicinity of chromosome ends, their association is facilitated by telomere clustering; when they are positioned centrally in one of the two-armed chromosomes and distally in the homolog, their association is probably derived from chromosome elongation. On the other hand, chromosome movements that disassemble the bouquet may facilitate chromosome pairing correction by dissolution of improper chromosome associations. Taken together, these data support that repair of DSBs via crossover is essential in both the search of the homologous partner and consolidation of homologous synapsis.  相似文献   

18.
 Homoeologous pairing at metaphase I was analyzed in standard-type, ph2b, and ph1b hybrids of Triticum aestivum (common, bread or hexaploid wheat) and T. sharonense in order to establish the homoeologus relationships of T. sharonense chromosomes to hexaploid wheat. Chromosomes of both species, and their arms, were identified by C-banding. Normal homoeologous relationships for the seven chromosomes of the Ssh genome, and their arms, were revealed, which implies that no apparent chromosome rearrangement occurred in the evolution of T. sharonense relative to wheat. All three types of hybrids with low-, intermediate-, and high-pairing level showed preferential pairing between A-D and B-Ssh. A close relationship of the Ssh genome to the B genome of bread wheat was confirmed, but the results provide no evidence that the B genome was derived from T. sharonense. Data on the pairing between individual chromosomes of T. aestivum and T. sharonense provide an estimate of interspecific homoeologous recombination. Received: 14 October 1996 / Accepted: 25 October 1996  相似文献   

19.
Meiosis of triticalextetraploid rye hybrids (genome constitution ABRRR) was analysed by genomic in situ hybridization (GISH) and C-banding. The results obtained reveal a considerable difference between these techniques with regard to their efficiency in detecting any type of pairing, either homologous or homoeologous. Thus the percentage of pollen mother cells containing wheat/rye homoeologous associations determined by C-banding and GISH was 2.5 and 9.2, respectively. Such a discrepancy can be ascribed to a certain proportion of wheat/rye associations not being identified by C-banding. The potential and limitations of the two techniques for meiotic analysis are discussed.  相似文献   

20.
The physical distribution of translocation breakpoints was analyzed in homoeologous recombinants involving chromosomes 1A, 1B, 1D of wheat and 1R of rye, and the long arms of chromosome 7S of Aegilops speltoides and 7A of wheat. Recombination between homoeologues was induced by removal of the Ph1 gene. In all instances, translocation breakpoints were concentrated in the distal ends of the chromosome arms and were absent in the proximal halves of the arms. The relationship between the relative distance from the centromere and the relative homoeologous recombination frequency was best explained by the function f(x)=0.0091e0.0592x. The pattern of recombination in homoeologous chromosomes was essentially the same as in homologues except that there were practically no double exchanges. Among 313 recombinant chromosomes, only one resulted from a double crossing-over. The distribution of translocation breakpoints in translocated arms indicated that positive chiasma interference operated in homoeologous recombination. This implies that the reduction of the length of alien chromosome segments present in translocations with wheat chromosomes may be more difficult than the production of the original recombinants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号