首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have investigated the sub-second kinetics of changes in cytosolic free calcium, [Ca2+]i, in fura-2-loaded human platelets by stopped-flow fluorimetry. Thrombin, vasopressin, platelet-activating factor, and the thromboxane A2 analogue U46619 all evoked a rise in [Ca2+]i which was delayed in onset by 200-400 ms in the presence of 1 mM external Ca2+. The responses to these agonists in media containing 1 mM EGTA or 1 mM Ni2+, to prevent Ca2+ influx, were delayed by an additional 60-100 ms. These results indicate that agonist-evoked Ca2+ influx precedes the release of Ca2+ from internal stores. The delays in onset of both responses are sufficient for one or more biochemical steps to lie between ligand-receptor binding and Ca2+ flux generation. ADP responses in media containing EGTA or Ni2+ were similar to those evoked by other agonists, but the response in the presence of external Ca2+ was markedly shorter, occurring without measurable delay at optimal ligand concentration. Analysis of this response showed some delay in ADP-evoked influx at lower concentrations, but this delay was markedly less than that observed with thrombin at doses giving the same elevation in [Ca2+]i. These results suggest that ADP evokes influx using a different transduction system, more closely coupled to the Ca2+ entry system than that used by other agonists. Differences between thrombin- and ADP-evoked influx were further demonstrated by the inhibitory actions of cAMP, which reduced and substantially increased the delay in onset of thrombin-evoked influx but did not measurably delay the influx evoked by an optimal concentration of ADP.  相似文献   

2.
Intracellular calcium fluxes in human platelets   总被引:2,自引:0,他引:2  
Fluorescence changes and secretory responses have been measured on addition of various excitatory agonists to platelets loaded with the cytosolic Ca2+ probe, Quin 2 or with chlortetracycline as a probe for membrane-associated Ca2+. When extracellular [Ca2+] is decreased to less than 0.1 microM by addition of EGTA a linear correlation is observed between the extent of increase in cytosolic [Ca2+] and the extent of mobilisation of membrane-associated Ca2+ on stimulation by maximal doses of five excitatory agonists. A similar linear correlation between the increase in cytosolic [Ca2+] and the extent of ATP secretion is observed over the thrombin dose/response curve. Similar EC50 values are observed for ATP secretion, the increase in cytosolic [Ca2+] and the decrease in chlortetracycline fluorescence induced by thrombin. However, the decrease in chlortetracycline fluorescence shows a sigmoidal relationship with the increase in cytosolic [Ca2+] and a hyperbolic relationship with ATP secretion over this dose/response curve. Addition of prostaglandin D2 prior to thrombin causes parallel inhibition of the increase in cytosolic [Ca2+] and the decrease in chlortetracycline fluorescence induced by this agonist. However, addition of prostaglandin D2 after thrombin reverses the increase in cytosolic [Ca2+] induced by this agonist but fails to cause a similar reversal of the decrease in chlortetracycline fluorescence. The data provide further evidence supporting the proposal that chlortatracycline can be used as a probe to monitor mobilisation of membrane-associated Ca2+ but suggest that, in platelets stimulated in the effective absence of extracellular Ca2+, both Ca2+ mobilisation and Ca2+ removal can under some conditions involve sites which are not monitored by this probe.  相似文献   

3.
Ding J  Yu Z  Rong DM  Zhong CS 《生理学报》1998,50(2):183-187
用电镜形态计量法检测血小板α颗粒(αG)和致密颗粒(dG)的数密度,用钙荧光指示剂Fura2检测血小板胞质游离Ca^2+浓度(「Ca^2+」i),观察到在钙离子导体A23187作用下,血小板「Ca^2+」i明显升高。凝血酶与ADP也都分别引起「Ca^2+」i升高,且有浓度依赖性,选用三种激动剂的不同量以反映血小板不同程度激活时,测定「Ca^2+」与颗粒数密度,分析两者间的相关性,发现αG和dG的数  相似文献   

4.
According to recent observations ADP stimulates platelets via activation of Na+/H+ exchange which increases cytosolic pH (pHi). This event initiates formation of thromboxane A2 (via phospholipase A2) and, thereafter, inositol 1,4,5-trisphosphate (via phospholipase C) which is known to mobilize Ca2+ from intracellular storage sites. We investigated changes in pHi and cytosolic free Ca2+, [Ca2+]i, activating platelets with ADP and the thromboxane mimetic U 46619. We found that ADP (5 microM) increased pHi from 7.15 +/- 0.08 to 7.35 +/- 0.04 (n = 8) in 2'-7'-bis-(carboxyethyl)-5,6-carboxyfluorescein-loaded platelets, whereas thromboxane A2 formation was inhibited by indomethacin. ADP also induced a dose-dependent Ca2+ mobilization in fura2-loaded platelets which again was not affected by indomethacin. [Ca2+]i increased by 54 +/- 10 nM (n = 8) at 1 microM and by 170 +/- 40 nM (n = 7) at 10 microM ADP above the resting value of 76 +/- 12 nM (n = 47). Inhibition of Na+/H+ exchange by ethylisopropylamiloride (EIPA) reduced ADP-induced Ca2+ mobilization by more than 65% in indomethacin-treated platelets. This inhibition could be completely overcome by artificially raising pHi using either NH4Cl or the Na+/H+ ionophore monensin. We found that U 46619 increased pHi by 0.18 +/- 0.05 at 0.1 microM and by 0.29 +/- 0.07 (n = 7) at 1.0 microM above the resting value via an EIPA-sensitive mechanism. In conflict with the proposed role of the Na+/H+ exchange we found that U 46619 raised [Ca2+]i via a mechanism that for more than 50% depended on intact Na+/H+ exchange. Again, artificially elevating pHi restored U 46619-induced Ca2+ mobilization despite the presence of EIPA. Thus, our data show that Na+/H+ exchange is a common step in platelet activation by prostaglandin endoperoxides/thromboxane A2 and ADP and enhances Ca2+ mobilization independently of phospholipase A2 activity.  相似文献   

5.
We have previously demonstrated synergistic potentiation of secretion by phorbol 12-myristate 13-acetate (PMA) and platelet agonists such as thrombin and the thromboxane mimetic, U46619, with short (less than 2 min) pre-incubations of PMA, despite inhibition of agonist-induced [Ca2+]i mobilization and arachidonate/thromboxane release. In this study, the effect of PMA on 5-hydroxytryptamine secretion in relation to arachidonate/thromboxane B2 release induced by collagen as well as the 'weak agonists', ADP, adrenaline and platelet-activating factor (PAF), was investigated using human platelet-rich plasma. Short incubations (10-30 s) with PMA (400 nM) before agonist addition caused an inhibition (60-100%) of 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation in response to maximally effective doses of ADP (10 microM), adrenaline (10 microM) and PAF (0.5 microM) but potentiated collagen-induced 5-hydroxy[14C]tryptamine secretion and [3H]arachidonate/thromboxane release. However, a longer pre-incubation with PMA (5 min) caused a significant reduction (20-50%) in the extent of collagen-induced 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation as seen earlier with thrombin, although collagen-induced [3]arachidonate release was still unaffected. Pretreatment of platelets with the cyclo-oxygenase inhibitor, indomethacin (10 microM), abolished 5-hydroxy[14C]tryptamine secretion in response to the weak agonists and reduced collagen (2.5-10 micrograms/ml) -induced secretion by 50-90%, depending on the collagen concentration. Addition of PMA (400 nM) 10 s before these agonists in indomethacin-treated platelets resulted in synergistic interactions between agonist and PMA leading to enhanced 5-hydroxy[14C]tryptamine secretion, although this was notably less than the synergism observed previously between thrombin and PMA or U46619 and PMA. The results suggest that the effect of short incubations with PMA on 5-hydroxytryptamine secretion induced by 'thromboxane-dependent' agonists, such as those examined in this study, is determined by the effect on agonist-induced thromboxane synthesis. However, when endogenous thromboxane synthesis is blocked, weak agonists as well as collagen can synergize with PMA at potentiating 5-hydroxytryptamine secretion, albeit to a weaker extent than thrombin or U46619. The results also suggest that PMA has differential effects on arachidonate release induced by collagen and thrombin.  相似文献   

6.
Previous studies have demonstrated an inhibition of agonist-induced inositol phospholipid breakdown and intracellular Ca2+ ([Ca2+]i) mobilization by phorbol esters in platelets. In this study, we have examined the effect of phorbol 12-myristate 13-acetate (PMA) on agonist-induced granule secretion and correlated it with agonist-induced [Ca2+]i mobilization, arachidonate and thromboxane (Tx) release in human platelets. With increasing times of incubation with PMA (10 s-5 min), the rise in [Ca2+]i induced by thrombin and the TxA2 mimetic, U46619, was increasingly inhibited (90-100% with 5 min incubation) and, correlating with this, thrombin-induced [3H]arachidonate, TxB2 and beta-thromboglobulin (beta TG) release were also inhibited. In addition, the conversion of exogenously added arachidonate to TxB2 was inhibited (50-80%) by a 10 s-5 min pretreatment with PMA. However, secretion of 5-hydroxy[14C]tryptamine (5HT) induced by thrombin or U46619 was not inhibited by 10 s-2 min incubations with PMA and, on the contrary, with low agonist concentrations, was potentiated by PMA in the absence of a significant rise in [Ca2+]i or endogenous Tx formation, to levels significantly greater than or equal to the sum of that obtained when agonist and PMA were added separately. With longer times of incubation with PMA (5 min), these synergistic effects became less pronounced as inhibitory effects of PMA on agonist-induced [14C]5HT secretion became apparent. The results indicate that, while PMA may cause an inhibition of agonist-induced [Ca2+]i mobilization resulting in an inhibition of agonist-induced arachidonate, TxB2 and beta TG release, its effects on agonist-induced 5HT secretion may be complicated by [Ca2+]i-independent synergistic effects of agonist and PMA.  相似文献   

7.
The effects of U46619, a thromboxane mimic, on cytosolic Ca2+ concentration and platelet aggregation were determined in human platelets. Cytosolic Ca2+ concentration was determined by Quin-2 fluorescence and platelet aggregation quantitated with an aggregometer. Addition of U46619 (1 x 10(-7) M) to the platelet suspension produced a rapid increase in cytosolic Ca2+ and platelet aggregation. Pretreatment of platelets with EGTA (3 x 10(-3) M), verapamil (5 x 10(-4) M), a calcium entry blocker, or 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride (1 x 10(-3) M), an inhibitor of intracellular Ca2+ release, either blunted or markedly delayed the rate, but not the magnitude, of increase in cytosolic Ca2+ and prevented platelet aggregation by U46619. Pretreatment of platelets with prostaglandin I2 (PGI2) (5 x 10(-8) M), PGD2 (5 x 10(-8) M), PGE1 (5 x 10(-8) M), PGF2 alpha (1 x 10(-5) M), dibutyryl cAMP (5 x 10(-3) M), or forskolin (1 x 10(-6) M) prevented both the increase in cytosolic Ca2+ and the associated platelet aggregation induced by U46619. These data suggest that U46619 may induce platelet aggregation through an increase in cytosolic Ca2+, and that both Ca2+ entry and its release from intracellular storage sites probably contribute to the increase in cytosolic Ca2+. Furthermore, the rate of the increase in cytosolic Ca2+ concentration, as well as the magnitude of the increase, appear to be critical for platelet aggregation induced by U46619. Our data are consistent with the hypothesis that PGs inhibit U46619-induced platelet aggregation by preventing the increase in cytosolic Ca2+, and that these effects may be mediated via an increase in cAMP, since they were induced by PGs and cAMP.  相似文献   

8.
Adrenaline or UK 14304 (a specific alpha 2-adrenoceptor agonist) and phorbol ester (phorbol 12,13-dibutyrate; PdBu) or bioactive diacylglycerols (sn-1,2-dioctanoylglycerol; DiC8) synergistically induced platelet aggregation and ATP secretion. The effect on aggregation was more pronounced than the effect on secretion, and it was observed in aspirinized, platelet-rich plasma or suspensions of washed aspirinized platelets containing ADP scavengers. No prior shape change was found. In the presence of adrenaline, DiC8 induced reversible aggregation and PdBu evoked irreversible aggregation that correlated with the different kinetics of DiC8- and PdBu-induced protein kinase C activation. Adrenaline and UK 14304 did not induce or enhance phosphorylation induced by DiC8 or PdBu of myosin light chain (20 kDa), the substrate of protein kinase C (47 kDa), or a 38 kDa protein. Immunoprecipitation studies using a Gcommon alpha antiserum or a Gi alpha antiserum showed that Gi alpha is not phosphorylated after exposure of platelets to PdBu or PdBu plus adrenaline. Adrenaline, PdBu or adrenaline plus PdBu did not cause stimulation of phospholipase C as reflected in production of [32P]phosphatidic acid. Adrenaline caused a small increase of Ca2+ in the platelet cytosol of platelets loaded with Indo-1; this effect was also observed in the absence of extracellular Ca2+. However, under conditions of maximal aggregation induced by adrenaline plus PdBu, no increase of cytosolic Ca2+ was observed. Platelet aggregation induced by PdBu plus adrenaline was not inhibited by a high intracellular concentration of the calcium chelator Quin-2. These experiments indicate that alpha 2-adrenoceptor agonists, known to interact with Gi, and protein kinase C activators synergistically induced platelet aggregation through a novel mechanism. The synergism occurs distally to Gi protein activation and protein kinase C-dependent protein phosphorylation and does not involve phospholipase C activation or Ca2+ mobilization.  相似文献   

9.
One of the earliest events following stimulation of human platelets with thrombin is a rise in the cytosolic pH, pHi, mediated by Na+/H+ exchange, and an increase in the cytosolic free Ca2+ concentration, [Ca2+]i. In the present study we investigated whether an increase in pHi alone, induced by the Na+/H+ ionophore monensin, is sufficient for platelet activation. Although monensin (20 microM) raised pHi from 7.10 +/- 0.05 (n = 21) to 7.72 +/- 0.17 (n = 13), neither Ca2+ influx nor mobilization were detectable upon this treatment in fura2-loaded platelets. In contrast, thrombin (0.05 U/ml) raised pHi to 7.31 +/- 0.10 (n = 10) and increased [Ca2+]i by more than 250 nM both in the presence and absence of extracellular Ca2+. Thrombin also caused the formation of phosphatidic acid and phosphorylation of the 20 kDa and 47 kDa proteins in platelets labeled with 32P. Monensin, however, induced none of these responses. It is concluded that an increase in pHi alone is not a sufficient trigger for platelet activation but enhances intracellular signal transduction in platelets stimulated by natural agonists.  相似文献   

10.
The effect of 1-oleoyl-2-acetylglycerol (OAG) on the thrombin-induced rise in intracellular Ca2+ levels ([Ca2+]i) and 5-hydroxy[14C]tryptamine ([14C]5HT) secretion was studied. In washed human platelets prelabelled with [14C]5HT and quin 2, OAG (10-50 micrograms/ml) induced no significant aggregation, [14C]5HT secretion or rise in [Ca2+]i in the presence or absence of fibrinogen. However, addition of OAG (10-50 micrograms/ml) 10 s to 5 min before or 10-60 s after addition of threshold concentrations of thrombin (less than 0.03 U/ml) resulted in a significant potentiation of aggregation and [14C]5HT secretion without any effect on the thrombin-induced rise in [Ca2+]i. Both EGTA, which abolished the latter and creatine phosphate/creatine phosphokinase, the ADP scavenger, totally inhibited the aggregation but only partially reduced [14C]5HT secretion in response to thrombin plus OAG. At higher concentrations of thrombin, neither the rise in [Ca2+]i nor the extent of [14C]5HT secretion was significantly altered by OAG addition. The results demonstrate that, unlike phorbol esters, OAG has no inhibitory effect on thrombin-induced [Ca2+]i mobilisation but can synergize with low concentrations of thrombin in potentiating [14C]5HT secretion even at basal [Ca2+]i.  相似文献   

11.
At maximally effective concentrations, vasopressin (10(-7) M) increased myo-inositol trisphosphate (IP3) in isolated rat hepatocytes by 100% at 3 s and 150% at 6 s, while adrenaline (epinephrine) (10(-5) M) produced a 17% increase at 3 s and a 30% increase at 6 s. These increases were maintained for at least 10 min. Both agents increased cytosolic free Ca2+ [( Ca2+]i) maximally by 5 s. Increases in IP3 were also observed with angiotensin II and ATP, but not with glucagon or platelet-activating factor. The dose-responses of vasopressin and adrenaline on phosphorylase and [Ca2+]i showed a close correspondence, whereas IP3 accumulation was 20-30-fold less sensitive. However, significant (20%) increases in IP3 could be observed with 10(-9) M-vasopressin and 10(-7) M-adrenaline, which induce near-maximal phosphorylase activation. Vasopressin-induced accumulation of IP3 was potentiated by 10mM-Li+, after a lag of approx. 1 min. However the rise in [Ca2+]i and phosphorylase activation were not potentiated at any time examined. Similar data were obtained with adrenaline as agonist. Lowering the extracellular Ca2+ to 30 microM or 250 microM did not affect the initial rise in [Ca2+]i with vasopressin but resulted in a rapid decline in [Ca2+]i. Brief chelation of extracellular Ca2+ for times up to 4 min also did not impair the rate or magnitude of the increase in [Ca2+]i or phosphorylase a induced by vasopressin. The following conclusions are drawn from these studies. IP3 is increased in rat hepatocytes by vasopressin, adrenaline, angiotensin II and ATP. The temporal relationships of its accumulation to the increases in [Ca2+]i and phosphorylase a are consistent with it playing a second message role. Influx of extracellular Ca2+ is not required for the initial rise in [Ca2+]i induced by these agonists, but is required for the maintenance of the elevated [Ca2+]i.  相似文献   

12.
Cytoplasmic free Ca2+ concentration, [Ca2+]i, was estimated in single rabbit blood platelets by digital imaging microscopy with the use of the specific Ca(2+)-indicator dye Fura-2. Uneven distribution and low level of [Ca2+]i was found in the resting platelet even in the presence of extracellular 1 mM Ca2+. Thrombin at 1 unit/ml immediately caused a transient increase in [Ca2+]i, which was followed by a secondary and sustained increase in [Ca2+]i. The distribution of increased levels of [Ca2+]i was also shown to be uneven within the cell. The presence of 1 mM EGTA in the medium only slightly decreased the initial rise in [Ca2+]i, but completely inhibited the latter phase, a sustained rise in [Ca2+]i. This result shows that the initial rise of [Ca2+]i might not be caused by Ca2+ influx, but might be induced by mobilization of Ca2+ from intracellular Ca2+ storage sites. This speculation is further supported by the fact that the elevated [Ca2+]i induced by thrombin immediately decreased to the base line value when 3 mM EGTA was applied. Thus, thrombin induced elevation of [Ca2+]i is suggested to consist of two different processes, namely the mobilization of Ca2+ from the intracellular storage sites and the successive Ca2+ influx through the receptor activated Ca2+ channels. Stimulation with ADP also caused a rapid elevation of platelet [Ca2+]i, but this effect of ADP was different form that of thrombin. Thus, the ADP induced rise in [Ca2+]i was accompanied by oscillation and was inhibited by extracellular EGTA. Our present experiment is the first report that clearly and directly reveals the differences between the effects of thrombin and ADP on [Ca2+]i of platelets.  相似文献   

13.
The relationship between Ca2+ influx (delta [Ca2+]i) and the formation of inositol 1,4,5-trisphosphate (IP3) was investigated in human platelets stimulated by various agonists. Both delta [Ca2+]i and IP3 were increased in proportion to the amount of the agonists (thrombin, ADP, PAF, STA2), the receptors of which were demonstrated in platelets, and were correlated with each other. However, the ratio of delta [Ca2+]i to IP3 was significantly varied among agonists. Furthermore, in thrombin stimulated platelets, IP3 was small at low temperature (20 degrees C) compared with that at high temperature (37 degrees C) in spite of the similar delta [Ca2+]i. Thus, Ca2+ influx in human platelets seems to be regulated directly through the receptor operated mechanism and IP3 may not be involved in it.  相似文献   

14.
A comparison was made between the time courses and interdependence of platelet aggregation, serotonin release, and cytosolic free Ca2+ concentration in the same sample of platelets loaded with [14C]-serotonin and Ca2+-sensitive photoprotein aequorin. In 100 micrograms/ml aspirin-treated platelets, neither 0.01 U/ml thrombin nor 50nM TPA, an active phorbol ester, induced significant aggregation, serotonin release, or a rise in the intracellular calcium concentration. However, when these two agents were added together, marked aggregation and release were observed without a change in the cytosolic free Ca2+ concentration. No correlation was observed between the extent of the synergistic effects and time of preincubation with TPA. Potentiatory effects of protein kinase C on receptor-mediated agonists need to be considered in platelet activation.  相似文献   

15.
Although an increase in cytosolic pH (pHi) caused by Na+/H+ exchange enhances Ca2+ mobilization in platelets stimulated by low concentrations of thrombin [Siffert & Akkerman (1987) Nature (London) 325, 456-458], studies using fluorescent indicators for pHi (BCECF) and [Ca2+]i (fura2) suggest that Ca2+ is mobilized while the cytosolic pH decreases. Several lines of evidence indicate that the initial fall in BCECF fluorescence is not due to cytosolic acidification but is caused by a platelet shape change. (1) Pulse stimulation of platelets by successive addition of hirudin (4 unit/ml) and thrombin (0.2 unit/ml) induced a shape change of 43 +/- 8% and a fall in BCECF fluorescence, which both remained unchanged when Na+/H+ exchange was inhibited by ethylisopropylamiloride (EIPA, 100 microM). (2) Increasing the thrombin concentration to 0.4 unit/ml doubled the shape change and the fall in BCECF fluorescence, but again EIPA had no effect on these responses. (3) Treating platelets with 2 microM-ADP induced shape change and a decline in BCECF fluorescence that was unaffected by EIPA. (4) A second addition of thrombin to platelets that had already undergone shape change induced an immediate increase in BCECF fluorescence without a prior decrease. (5) Activation of protein kinase C by 1,2-dioctanoyl-sn-glycerol (DiC8) neither induced shape change nor a decline in BCECF fluorescence; in contrast BCECF fluorescence rapidly increased indicating an immediate cytosolic alkalinization. Concurrent analysis of [Ca2+]i under conditions in which shape change did not interfere with BCECF fluorescence showed that cytosolic alkalinization and Ca2+ mobilization started almost simultaneously. These observations suggest that cytosolic alkalinization is not preceded by a fall in pHi and can support Ca2+ mobilization induced by weak agonists.  相似文献   

16.
Using aequorin-loaded rat platelets stimulated with collagen, we found two phases of Ca2+ mobilization, one coinciding with a shape change and the other with aggregation, which have not yet been detected in quin2-loaded platelets. U46619, a stable analogue of prostaglandin H2, induced only a shape change and a concomitant rapid rise in the cytoplasmic ionized calcium concentration ([Cai2+]). However, upon addition of U46619 to platelets previously stimulated with collagen in the presence of indomethacin, a rapid increase in [Cai2+] and a shape change occurred, and, after about 1 min, second increase in [Cai2+] and aggregation occurred. The actions of U46619 were inhibited by an antagonist for the thromboxane A2 (TXA2) receptor. These results suggest that the collagen-induced shape change is initiated by TXA2-induced Ca2+ mobilization, and aggregation is induced by the secondary Ca2+ mobilization induced by TXA2 and the occupation of the receptor by collagen.  相似文献   

17.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

18.
Stimulation of platelets with the ionophore A23187, thrombin, ADP or PAF-acether resulted in a rapid increase of cytosolic free Ca2+, as measured with Quin-2, and in aggregation, 5HT secretion and - in the case of the first two agonists - thromboxane generation. PGI2 and dibutyryl cyclic AMP inhibited all these responses, except in the case of A23187, in response to which the increase in Ca2+ was unaffected, although the other responses were inhibited. The inhibition of aggregation and secretion in response to the combination of thrombin and A23187 was indistinguishable from that in response to thrombin alone. It thus appears that cAMP inhibits these responses independently of its effect in lowering cytosolic free Ca2+.  相似文献   

19.
[Ca2+]i increase is necessary in physiological platelet activity, particularly aggregation and release. The increase of [Ca2+]i observed during platelet activation depends in part on Ca2+ influx from the extracellular medium. The participation of voltage-operated Ca2+ channels as a pathway for Ca2+ entry is controversial. In the present study we have attempted to reinvestigate this problem by measuring aggregation and [Ca2+]i changes in platelets activated by ADP or thrombin and incubated with organic or inorganic blockers of calcium channels. The main findings of the present paper can be summarized as follows: (i) Ni2+, Co2+ and Mn2+, well known inorganic blockers of Ca2+ channels, inhibited platelet aggregation induced by ADP or thrombin in a dose-dependent manner, Ni2+ being the most effective agent. (ii) Thrombin induced a rise in free [Ca2+]i in platelets incubated both in 1 mmol/l Ca(2+)-containing medium and in nominally Ca(2+)-free medium; the rise of free [Ca2+]i was in the first case up to 370 +/- 31 nmol/l and in the second case up to 242 +/- 26 nmol/l, indicating that this observed difference was due to Ca2+ entry from the extracellular medium. Co2+ and Ni2+ abolished that difference by inhibiting Ca2+ influx. (iii) Nisoldipine, nitrendipine and nimodipine (10-50 nmol/l) inhibited in a dose-dependent manner platelet aggregation induced by either ADP or thrombin in platelets incubated in normal-Ca2+ normal-K+ medium, also, aggregation was inhibited to a similar extent in platelets incubated in normal-Ca2+ high-K+ medium. (iv) Nisoldipine--the most effective dihydropyridine to inhibit platelet aggregation--also inhibited Ca2+ influx in platelets incubated in normal-Ca2+ medium, either in normal-K+ or high-K+ media. Our data support the existence of voltage-operated, dihydropyridine-sensitive calcium channels (L-type) and a physiological role for them in platelet function.  相似文献   

20.
Fluorescence ratio imaging indicates that immobilized, aspirin-treated platelets, loaded with Fura-2, respond to inositol 1,4,5-trisphosphate- (InsP3)-generating agonists such as thrombin by high-frequency, irregular rises in cytosolic [Ca2+]i with spikes that vary in peak level and peak-to-peak interval. This differs from the regular [Ca2+]i oscillations observed in other, larger cells. We found that the thiol-reactive compounds thimerosal (10 microm) and U73122 (10 microm) evoked similar irregular Ca2+ responses in platelets, but in this case in the absence of InsP3 generation. Thrombin-induced spiking was acutely abolished by inhibiting phospholipase C or elevating intracellular cAMP levels, while spiking with sulfhydryl reagents was only partially blocked by cAMP elevation. Confocal laser scanning microscopy using fluo-3-loaded platelets indicated that, with all agonists or conditions, the irregular spikes were almost instantaneously raised in various regions within a single platelet. When using saponin-permeabilized platelets, we found that InsP3-induced Ca2+ release from stores was stimulated by modest Ca2+ concentrations, pointing to a mechanism of InsP3-dependent Ca2+-induced Ca2+ release (CICR). This process was completely inhibitable by heparin. The Ca2+ release by InsP3, but not the CICR sensor, was negatively regulated by cAMP elevation. Thimerosal treatment did not release Ca2+ from intracellular stores, but markedly potentiated the stimulatory effect of InsP3. In contrast, U73122 caused a heparin/cAMP-insensitive Ca2+ leak from stores that differed from those used by InsP3. Taken together, these results demonstrate that InsP3 receptor channels play a crucial role in the irregular, spiking Ca2+ signal of intact platelets, even when induced by agents such as thimerosal or U73122 which do not stimulate InsP3 formation. The irregular Ca2+ release events appear to be subjected to extensive regulation by: (a) InsP3 level, (b) the potentiating effect of elevated Ca2+ on InsP3 action via CICR, (c) InsP3 channel sensitization by sulfhydryl (thimerosal) modification, (d) InsP3 channel-independent Ca2+ leak with U73122, and (e) down-regulation via cAMP elevation. The observation that individual Ca2+ peaks were generated in various parts of a platelet at similar intervals and amplitudes points to effective cooperation of the various stores in the Ca2+-release process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号