首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Insulin activation of basal hepatic glycogen synthase   总被引:3,自引:0,他引:3  
  相似文献   

2.
Glycogen synthase is an excellent in vitro substrate for protein phosphatase-1 (PP1), which is potently inhibited by the phosphorylated forms of DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, M(r) = 32,000) and Inhibitor-1. To test the hypothesis that the activation of glycogen synthase by insulin is due to a decrease in the inhibition of PP1 by the phosphatase inhibitors, we have investigated the effects of insulin on glycogen synthesis in skeletal muscles from wild-type mice and mice lacking Inhibitor-1 and DARPP-32 as a result of targeted disruption of the genes encoding the two proteins. Insulin increased glycogen synthase activity and the synthesis of glycogen to the same extent in wild-type and knockout mice, indicating that neither Inhibitor-1 nor DARPP-32 is required for the full stimulatory effects of insulin on glycogen synthase and glycogen synthesis in skeletal muscle.  相似文献   

3.
We have investigated the mechanism by which high concentrations of glucose inhibit insulin stimulation of glycogen synthase. In NIH-3T3-L1 adipocytes cultured in low glucose (LG; 2.5 mm), the half-maximal activation concentration (A(0.5)) of glucose 6-phosphate was 162 +/- 15 microm. Exposure to either high glucose (HG; 20 mm) or glucosamine (GlcN; 10 mm) increased the A(0.5) to 558 +/- 61 or 612 +/- 34 microm. Insulin treatment with LG reduced the A(0.5) to 96 +/- 10 microm, but cells cultured with HG or GlcN were insulin-resistant (A(0.5) = 287 +/- 27 or 561 +/- 77 microm). Insulin resistance was not explained by increased phosphorylation of synthase. In fact, culture with GlcN decreased phosphorylation to 61% of the levels seen in cells cultured in LG. Hexosamine flux and subsequent enzymatic protein O-glycosylation have been postulated to mediate nutrient sensing and insulin resistance. Glycogen synthase is modified by O-linked N-acetylglucosamine, and the level of glycosylation increased in cells treated with HG or GlcN. Treatment of synthase in vitro with protein phosphatase 1 increased basal synthase activity from cells cultured in LG to 54% of total activity but was less effective with synthase from cells cultured in HG or GlcN, increasing basal activity to only 13 or 16%. After enzymatic removal of O-GlcNAc, however, subsequent digestion with phosphatase increased basal activity to over 73% for LG, HG, and GlcN. We conclude that O-GlcNAc modification of glycogen synthase results in the retention of the enzyme in a glucose 6-phosphate-dependent state and contributes to the reduced activation of the enzyme in insulin resistance.  相似文献   

4.
Summary Post-receptor or post-binding events in the action of insulin have been investigated in cultured skin fibroblasts from an infant with leprechaunism. Both diminished binding of insulin and multiplication-stimulating activity (MSA) to these cells as well as deficits distal to binding were described in a previous publication. Exposure of control fibroblasts to low concentrations (0.001 to 0.01%) of trypsin for one min without glucose in the medium activated the enzyme glycogen synthase; activation was less than that observed with a maximally effective concentration (10–6 M) of insulin alone. In cells from the patient with leprechaunism, the effect of trypsin was much smaller than in the control fibroblasts. Exposing the control cells to soybean trypsin inhibitor before addition of trypsin prevented activation of glycogen synthase and demonstrated the specificity of the proteolytic action of trypsin. The rates of activation and inactivation of glycogen synthase in vitro were similar in extracts of the control subject's and the patient's fibroblasts and indicated that the enzymes regulating the phosphorylation/ dephosphorylation of glycogen synthase were intact in the patient's cells. Total glycogen synthase activity and glycogen content were also indistinguishable in control and leprechaun fibroblasts. These results are compatible with the presence of an abnormality in the structure or availability of the protease substrate from which chemical mediators of insulin action are formed in the patient's cells. Two possible models for a receptor-coupling complex are proposed. Either a mutation in a regulator-substrate unit of the receptor-coupling complexes for insulin and certain insulin-like growth factors or an alteration in the environment of the unit are postulated to explain the findings.Established Investigator of the American Diabetes Association.Abbreviations MSa multiplication-stimulating activity - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - EMEM growth medium, described in text - DPBS Dulbecco's phosphate-buffered saline - IM incubation medium, described in text - EDTA ethylenediaminetetraacetic acid - DTT dithiothreitol - ATP adenosine 5-triphosphate - UDPG uridine-5-diphosphoglucose - Tris tris (hydroxymethyl) aminomethane An abstract of this work was submitted for the Forty-Second Annual Meeting of the American Diabetes Association (Diabetes 31: 124A, 1982).  相似文献   

5.
There is no consensus on the role of insulin secreted from pancreatic β-cells in regulating its own secretion, either in rodent islets or in human islets. We have now investigated whether there is an autocrine signalling role for insulin in human islets by determining insulin receptor expression and assessing the effects of insulin receptor activation using a non-peptidyl insulin mimetic termed L-783,281. Human insulin receptor mRNA was detected by PCR amplification of human islet cDNA, and translation of the message in human islets was confirmed by Western blotting. Perifusion experiments revealed that both glucose-stimulated and basal insulin secretion were significantly inhibited following human islet insulin receptor activation with L-783,281, and that signalling through phosphatidylinositol 3-kinase (PI 3-kinase) was responsible, at least in part, for this inhibitory effect. These studies indicate that human islets express insulin receptors and that they are functionally coupled to a PI 3-kinase-dependent inhibition of insulin secretion.  相似文献   

6.
Summary Autoantibodies to the insulin receptor mimic the effects of insulin on glycogen synthase and phosphorylase. The interaction of antibodies with adipocyte cell surface insulin receptors seems sufficient to promote stable changes in the activities of these intracellular enzymes, suggesting that internalization or processing of insulin is not important in the generation of these biological responses.  相似文献   

7.
To define the role of the insulin receptor in mediating a mitogenic response in cultured human fibroblasts, the effects of specific monoclonal antibodies against the insulin and the type I IGF receptor on insulin-stimulated [3H]thymidine incorporation were investigated. Insulin stimulated [3H]thymidine incorporation in a biphasic fashion. In the first phase, a half-maximal effect was observed at 20 ng/ml, and a seemingly maximal effect was obtained at 100-1000 ng/ml. With 10 micrograms/ml insulin, a secondary increase in [3H]thymidine incorporation was seen which was similar to the maximal effect of IGF-I. These [3H]thymidine incorporation results were corroborated with cell replication studies. MC-51, a highly specific monoclonal antibody for the insulin receptor, inhibited the stimulation of [3H]thymidine incorporation by 25 ng/ml of insulin. AlphaIR-3, a monoclonal antibody specifically directed against the type I IGF receptor, had no significant effect on insulin-stimulated [3H]thymidine incorporation at low (10-1000 ng/ml) concentrations of insulin. However, alpha IR-3 interfered with the incremental increase in [3H]thymidine incorporation observed at 10-100 micrograms/ml insulin. These data demonstrate that insulin, at low concentrations, is capable of stimulating DNA synthesis and replication of human fibroblasts through interaction with its own receptor, while at supraphysiological concentrations, much of insulin's mitogenic effect is mediated through the type I IGF receptor.  相似文献   

8.
Summary

We have previously reported that NADH ferricyanide reductase in human erythrocytes is stimulated by insulin. Hormone-stimulated activities are attenuated in the presence of glycolytic inhibitors like vanadate, indicating the involvement of glycolysis in the mechanism by which insulin stimulates ferricyanide reduction. Activation of erythrocyte metabolism in response to insulin could be a result of hormone binding to its receptor, inducing phosphorylation of band 3 (at a site for reversible association of glycolytic enzymes) and/or other membrane proteins like the Na+/H+ antiport. Activation of the antiporter protein by insulin can stimulate glycolysis by an increase in intracellular pH, an effect which is prevented by amiloride. Evidence for a role for tyrosine phosphorylation in triggering the reductase activation came from studies with protein kinase inhibitors. Genistein, sphingosine and acridine orange have been shown to prevent insulin-stimulated ferricyanide reduction, implicating tyrosine phosphorylation as an important signal for activation of the enzyme by insulin. To evaluate activation of the enzyme by insulin stimulated phosphorylation, a comparative study was done using erythrocytes from healthy and diabetic humans. We measured ferricyanide reductase activities in basal and insulin stimulated states. Basal activities were lower in diabetics than in normal humans. Nevertheless, hormone stimulated activities were similar, despite earlier reports of decreased receptor phosphorylation of exogenous substrates in type 2 diabetics. These observations, together with previous ones, suggest that insulin-receptor kinase interaction may mediate the action of insulin on human erythrocytes by phosphorylation of cellular proteins like band 3 and/or the Na+/H+ antiport.  相似文献   

9.
10.
Insulin inhibits hepatic very low density lipoprotein (VLDL) apo B secretion in rats. Current studies test whether the insulin effect is LDL receptor-mediated by examining the effect of insulin on VLDL apo B secretion in hepatocytes derived from Ldlr-/- and control mice. Primary hepatocytes were incubated overnight with media containing 14C-leucine and either 0.1nM (basal) or 200nM insulin. Afterwards, secreted VLDL B100 and B48 were quantitated. Insulin reduced 14C-labeled B100 and B48 comparably in control and Ldlr-/- hepatocytes with a 62+/-12% vs. 59+/-12% decrease in B100, and a 56+/-11% vs. 61+/-9% decrease in B48. Results indicate: (1) mouse hepatocytes respond to insulin by reducing VLDL apo B output; (2) both VLDL B100 and B48 secretion are suppressed; and (3) insulin inhibition of VLDL apo B secretion is retained in Ldlr-/- hepatocytes.  相似文献   

11.
The effect of insulin on glucose entry has been studied in monolayer cultures of human diploid fibroblastic cells. Influence of insulin on total cell glucose incorporation was evaluated using [14C] glucose. Glucose incorporation was increased up to two-fold in the presence of insulin. Insulin action occurred within 30 minutes and could be observed with insulin concentrations as low as 10(-10) M (10 microU)ml). The action of insulin was enhanced by preincubation in glucose-free medium. After glucose starvation the cells converted glucose primarily to glycogen and nucleotides, and the stimulation by insulin was observed equally in both fractions. Influence of insulin on the kinetics of hexose transport was studied using 2-deoxyglucose and 3-0-methyl glucose. A large diffusion component was corrected using rho-chloromercuribenzoic acid or phloridzin. Km for facilitated diffusion averaged 1.9 mM for 2-deoxyglucose and 5.3 mM for 3-O-methyl glucose, and Vmax ranged from 10-24 nmoles/min/mg cell protein. Insulin resulted in a 150% increase in Vmax with no significant change in Km. The data suggest that human diploid fibroblasts can be a useful system for the study of insulin's glucoregulatory action.  相似文献   

12.
BACKGROUND/AIMS: Endothelin-1 (ET-1) has been implicated in pathologic remodelling and tissue repair processes in the heart. We investigated the effects of ET-1 on growth and collagen synthesis responses in cardiac fibroblasts isolated from human hearts. We also studied the receptor subtype(s) mediating such responses and the factors regulating their expression. METHODS: Fibroblasts were isolated from cardiac transplant recipient hearts and characterised by immunocytochemistry. Serum-starved cells were exposed to ET-1 and incorporation of [3H]proline and thymidine were measured as indexes of collagen and DNA synthesis respectively. Blocking experiments utilised the selective ETA receptor antagonist BQ123 and the ETB antagonist BQ788. RESULTS: ET-1 elicited a potent collagen synthesis response in cardiac fibroblasts, with a maximum 29+/-5% increase that was abolished by BQ123. Cardiac fibroblasts responded to ET-1 with a concentration-dependent decrease in DNA synthesis rate. The effects of ET-1 were similar to those of TGF-beta. Radioligand binding studies revealed the presence of high-affinity ET-1 binding sites on these cells, which were upregulated by treatment with the growth factors PDGF and EGF but downregulated by TGF-beta. CONCLUSIONS: These results therefore implicate ET-1 as a trophic agent in the human heart with the ability to influence the development of cardiac fibrosis.  相似文献   

13.
14.
15.
Rat adipocytes were incubated with [32P]phosphate to label glycogen synthase, which was rapidly immunoprecipitated from cellular extracts and cleaved using either CNBr or trypsin. All of the [32P]phosphate in synthase was recovered in two CNBr fragments, denoted CB-1 and CB-2. Isoproterenol (1 microM) rapidly decreased the synthase activity ratio (-glucose-6-P/+glucose-6-P) and stimulated the phosphorylation of both CB-1 and CB-2 by approximately 30%. Insulin opposed the decrease in activity ratio and blocked the stimulation of phosphorylation by isoproterenol. Incubating cells with insulin alone changed the 32P content of neither CB-1 nor CB-2. Trypsin fragments were separated by reverse phase liquid chromatography and divided into peak fractions, denoted F-I-F-VII in order of increasing hydrophobicity. F-V contained almost half of the [32P]phosphate and was phosphorylated when synthase was immunoprecipitated from unlabeled fat cells and incubated with [gamma-32P]ATP and the cAMP-independent protein kinase, FA/GSK-3. That F-V also had the same retention time as the skeletal muscle synthase fragment containing sites 3(a + b + c) suggests that it contains sites 3. Muscle sites 1a, 5, 1b, and 2 eluted with F-I, F-II, F-VI, and F-VII, respectively. F-V was increased approximately 25% by isoproterenol, but the largest relative increases were observed in F-I (4-fold), F-III (4-fold), and F-VI (2-fold). These results indicate that beta-adrenergic receptor activation results in increased phosphorylation of multiple sites on glycogen synthase. Insulin plus glucose decreased the overall 32P content of synthase by approximately 30%, with the largest decrease (40%) occurring in F-V. Without glucose, insulin decreased the [32P]phosphate in F-V by 17%, an effect which was balanced by increases in F-I, F-II, and F-III so that no net change in the total 32P contents of the fractions was observed. Thus, activation of glycogen synthase by the glucose transport-independent pathway seems to involve a redistribution of phosphate in the synthase subunit.  相似文献   

16.
17.
Insulin-like growth factor II (IGF-II) plays a key role in mitogenesis during development and tumorigenesis and is believed to exert its mitogenic functions mainly through the IGF-I receptor. Recently, we identified the insulin receptor isoform A (IR(A)) as an additional high affinity receptor for IGF-II in both fetal and cancer cells. Here we investigated the mitogenic signaling of IGF-II via the Akt/Glycogen synthase kinase 3 (Gsk3) axis employing R-IR(A) cells that are IGF-I receptor null mouse embryonic fibroblasts expressing the human IR(A). IGF-II induced activation of the proto-oncogenic serine kinase Akt, reaching maximal at 5-10 min. IGF-II also caused the rapid and sustained deactivation of glycogen synthase kinase 3-beta (Gsk3beta), reaching maximal at 1-3 min, shortly preceding, therefore, maximal activation of Akt. Under our conditions, IGF-II and insulin induced 70-80% inhibition of Gsk3betaactivity. In these cells IGF-II also deactivated Gsk3alpha although less effectively than Gsk3beta. In parallel experiments, we found that IGF-II induced transient activation of extracellular-signal-regulated kinases (Erk) reaching maximal at 5-10 min and decreasing thereafter. Time courses and potencies of regulation of both mitogenic pathways (Akt/Gsk3beta and Erk) by IGF-II via IR(A) were similar to those of insulin. Furthermore, IGF-II like insulin effectively stimulated cell cycle progression from the G0/G1 to the S and G2/M phases. Interestingly, AP-1-mediated gene expression, that was reported to be negatively regulated by Gsk3beta was only weakly increased after IGF-II stimulation. Our present data suggest that the coordinated activation or deactivation of Akt, Gsk3beta, and Erk may account for IGF-II mitogenic effects and support an active role for IR(A) in IGF-II action.  相似文献   

18.
Y Kida  A Katz  A D Lee    D M Mott 《The Biochemical journal》1989,259(3):901-904
Activities of glycogen synthase (GS) and GS phosphatase were determined on human muscle biopsies before and after isometric contraction at 2/3 maximal voluntary force. Total GS activity did not change during contraction (4.92 +/- 0.70 at rest versus 5.00 +/- 0.42 mmol/min per kg dry wt.; mean +/- S.E.M.), whereas both the active form of GS and the ratio of active form to total GS decreased by approximately 35% (P less than 0.01). GS phosphatase was inactivated in all subjects by an average of 39%, from 5.95 +/- 1.30 to 3.63 +/- 0.97 mmol/min per kg dry wt. (P less than 0.01). It is suggested that at least part of the contraction-induced inactivation of GS is due to an inactivation of GS phosphatase.  相似文献   

19.
Summary Monolayer cultures of fetal human fibroblasts, preincubated in serum-free culture medium overnight (about 18 hr), were incubated with insulin (0.1 to 100 mU per ml), then washed and incubated in an insulin-free medium. The effect of insulin on glucose utilization, uridine incorporation into RNA and leucine incorporation into protein was maintained after removal of insulin and washing. For both glucose utilization and uridine incorporation into RNA, this effect was demonstrated at physiologic levels of insulin (0.1 mU per ml). When anti-insulin serum was added to the cultures after the cell preincubated with insulin were washed, this effect was greatly attenuated. This lasting effect of insulin was probably not due to nonspecifically bound insulin becoming available to the cells. Binding of125I-monoiodoinsulin was examined in monolayer cultures of fetal human fibroblasts. When unlabeled insulin was present at about 1 mU per ml concentration, 50% displacement of monoiodoinsulin occured. When fibroblasts were incubated with monoiodoinsulin and then removed from the radioactive medium, initial dissociation of the bound hormone occurred rapidly but then reached a plateau. This prolonged insulin effect appears to result from persistent binding of insulin to its receptor. Supported in part by PHS Grants AM-02456, AM-05020 and AM-15312, by the Kroc Foundation and by the Diabetes Center (AM-17047). Supported in part by Research Career Development Award AM-47142 from NIAMDD.  相似文献   

20.
The ability of glycogen synthase kinase-3 (GSK-3) to phosphorylate insulin receptor substrate-1 (IRS-1) is a potential inhibitory mechanism for insulin resistance in type 2 diabetes. However, the serine site(s) phosphorylated by GSK-3 within IRS-1 had not been yet identified. Using an N-terminal deleted IRS-1 mutant and two IRS-1 fragments, PTB-1 1-320 and PTB-2 1-350, we localized GSK-3 phosphorylation site(s) within amino acid sequence 320-350. Mutations of serine 332 or 336, which lie in the GSK-3 consensus motif (SXXXS) within PTB-2 or IRS-1, to alanine abolished their phosphorylation by GSK-3. This suggested that Ser332 is a GSK-3 phosphorylation site and that Ser336 serves as the "priming" site typically required for GSK-3 action. Indeed, dephosphorylation of IRS-1 prevented GSK-3 phosphorylation. Furthermore, the phosphorylated peptide derived from the IRS-1 sequence was readily phosphorylated by GSK-3, in contrast to the nonphosphorylated peptide, which was not phosphorylated by the enzyme. When IRS-1 mutants S332A(IRS-1), S336A(IRS-1), or S332A/336A(IRS-1) were expressed in Chinese hamster ovary cells overexpressing insulin receptors, their insulin-induced tyrosine phosphorylation levels increased compared with that of wild-type (WT) IRS-1. This effect was stronger in the double mutant S332A/336A(IRS-1) and led to enhanced insulin-mediated activation of protein kinase B. Finally, immunoblot analysis with polyclonal antibody directed against IRS-1 phosphorylated at Ser332 confirmed IRS-1 phosphorylation in cultured cells. Moreover, treatment with the GSK-3 inhibitor lithium reduced Ser332 phosphorylation, whereas overexpression of GSK-3 enhanced this phosphorylation. In summary, our studies identify Ser332 as the GSK-3 phosphorylation target in IRS-1, indicating its physiological relevance and demonstrating its novel inhibitory role in insulin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号