首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Annual fish development differs from that of other teleosts because a phase of blastomere dispersion-reaggregation spatially and temporally separates epiboly from embryogenesis. The fate of dispersed blastomeres was assessed in diblastodermic eggs of the annual fishes Cynolebias whitei and C. nigripinnis. In typical teleosts, blastomere determination and the events of primary embryonic induction occur prior to or during epiboly, so diblastodermic eggs produce partially or completely duplicated embryos. In the diblastodermic eggs of Cynolebias, the two blastoderms are completely separate from the one cell stage to the high blastula. Blastoderm fusion begins during midepiboly. By the end of epiboly, blastoderm fusion has been completed, and the deep, embryo-forming blastomeres of both blastoderms have completely dispersed and intermingled to form a single cell population. A typical annual fish dispersed blastomere phase ensues. Blastomeres reaggregate into a single mass, in which one embryo develops. When hatched, the young fish have no obvious structural or functional abnormalities. We suggest that the dispersed blastomeres of annual fish eggs are equivalent and that induction or determination takes place within the reaggregate. Alternatively, dispersed cells are partially determined but highly regulative, so that, when two populations fuse, the cells sort out according to tissue type and form a single embryo. In either instance, the formation of a single, normal embryo seems to corroborate the hypothesis that the dispersed cell phase of annual fishes is an adaptation that prevents environmentally induced developmental defects. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Cell movements in Fundulus blastoderms during gastrulation were studied utilizing time-lapse cinemicrography and electron microscopy. Time-lapse films reveal that cells of the enveloping layer undulate and sometimes separate briefly but remain together in a cohesive layer. During epiboly, the marginal enveloping layer cells move over the periblast as it expands over the yolk sphere. Movement occurs as a result of ruffled membrane activity of the free borders of the marginal cells. Deep blastomeres become increasingly active during blastula and gastrula stages. Lobopodia project from the blastomeres in blastulae and adhere to other cells in gastrulae, giving the cells traction for movement. Contact specializations are formed by the lateral adjacent plasma membranes of enveloping layer cells. An apical junction is characterized by an intercellular gap of 60–75 A. Below this contact, the plasma membranes are separated by 120 A or more. In mid-gastrulae, cytoplasmic fibrils occur adjacent to some apical junctions, and small desmosomes appear below the apical junction. Septate desmosomes also appear at this time. A junction with an intercellular gap of 60 A occurs between marginal enveloping layer cells and periblast. Contacts between deep blastomeres become numerous in gastrulae and consist of contacts at the crests of surface undulations, short areas of contact in which the plasma membranes are 60 or 120 A apart, and long regions characterized by a 200-A intercellular gap. Lobopodia contact other blastomeres only in gastrulae. These junctions contain a 200-A intercellular space. Some deep blastomeres are in contact with the tips of periblast microvilli. The mechanism of epiboly in Fundulus is discussed and reevaluated in terms of these observations. The enveloping layer is adherent to the margin of the periblast and moves over it as a coherent cellular sheet. Periblast epiboly involves a controlled flow of cytoplasm from the thicker periblast into the thinner yolk cytoplasmic layer with which it is continuous. Deep cells move by adhering to each other, to the inner surface of the enveloping layer, and to the periblast.  相似文献   

5.
Living eggs of the annual fish Nothobranchius korthausae were studied during epiboly either by direct observation or with time-lapse cinematography. Before epiboly the deep cells are tightly packed on top of each other between the enveloping cell layer and the periblast and they are stationary. From stage 17a (half-epiboly) to stage 21, deep cells build up a monolayer of moving and colliding cells. In the course of epiboly all the deep cells acquire the ability to show contact inhibition of overlapping. This was demonstrated directly by recording the outcomes of many cellular collisions. Neither cellular overlapping nor nuclear overlapping was observed. The dispersion of the deep cells during epiboly over the yolk is due both to contact inhibition and to the fact that the deep cells are attached to the undersurface of the spreading enveloping cell layer.  相似文献   

6.
Cell movements during epiboly and gastrulation in zebrafish   总被引:12,自引:0,他引:12  
Beginning during the late blastula stage in zebrafish, cells located beneath a surface epithelial layer of the blastoderm undergo rearrangements that accompany major changes in shape of the embryo. We describe three distinctive kinds of cell rearrangements. (1) Radial cell intercalations during epiboly mix cells located deeply in the blastoderm among more superficial ones. These rearrangements thoroughly stir the positions of deep cells, as the blastoderm thins and spreads across the yolk cell. (2) Involution at or near the blastoderm margin occurs during gastrulation. This movement folds the blastoderm into two cellular layers, the epiblast and hypoblast, within a ring (the germ ring) around its entire circumference. Involuting cells move anteriorwards in the hypoblast relative to cells that remain in the epiblast; the movement shears the positions of cells that were neighbors before gastrulation. Involuting cells eventually form endoderm and mesoderm, in an anterior-posterior sequence according to the time of involution. The epiblast is equivalent to embryonic ectoderm. (3) Mediolateral cell intercalations in both the epiblast and hypoblast mediate convergence and extension movements towards the dorsal side of the gastrula. By this rearrangement, cells that were initially neighboring one another become dispersed along the anterior-posterior axis of the embryo. Epiboly, involution and convergent extension in zebrafish involve the same kinds of cellular rearrangements as in amphibians, and they occur during comparable stages of embryogenesis.  相似文献   

7.
8.
Antioxidant cellular mechanisms are essential for cell redox homeostasis during animal development and in adult life. Previous in situ hybridization analyses of antioxidant enzymes in zebrafish have indicated that they are ubiquitously expressed. However, spatial information about the protein distribution of these enzymes is not available. Zebrafish embryos are particularly suitable for this type of analysis due to their small size, transparency and fast development. The main objective of the present work was to analyze the spatial and temporal gene expression pattern of the two reported zebrafish glutathione peroxidase 4 (GPx4) genes during the first day of zebrafish embryo development. We found that the gpx4b gene shows maternal and zygotic gene expression in the embryo proper compared to gpx4a that showed zygotic gene expression in the periderm covering the yolk cell only. Following, we performed a GPx4 protein immunolocalization analysis during the first 24-h of development. The detection of this protein suggests that the antibody recognizes GPx4b in the embryo proper during the first 24 h of development and GPx4a at the periderm covering the yolk cell after 14-somite stage. Throughout early cleavages, GPx4 was located in blastomeres and was less abundant at the cleavage furrow. Later, from the 128-cell to 512-cell stages, GPx4 remained in the cytoplasm but gradually increased in the nuclei, beginning in marginal blastomeres and extending the nuclear localization to all blastomeres. During epiboly progression, GPx4b was found in blastoderm cells and was excluded from the yolk cell. After 24 h of development, GPx4b was present in the myotomes particularly in the slow muscle fibers, and was excluded from the myosepta. These results highlight the dynamics of the GPx4 localization pattern and suggest its potential participation in fundamental developmental processes.  相似文献   

9.
 Injections of lucifer yellow and fluorescein dyes into loach (Misgurnus fossilis) and zebrafish (Danio rerio) embryos were used to analyse the intercellular communication via gap junctions (GJs) and their role in morphogenetic processes during the period from early blastula to late gastrula. It is shown that the efficiency of dye transfer between the superficial blastomeres increases by the late blastula stage. Blastomeres of the basal layer, on the other hand, become gradually uncoupled from the yolk cell (YC). This process is spatially uneven and finishes by the late gastrula stage. Prior to it, at the early epiboly stage, a local increase in dye transfer is observed in the circular zone of the blastoderm margin. During gastrulation, GJ communication between blastomeres and the YC in this zone and also in the newly-formed germ ring region (the prospective mesoderm domain) persists for a longer period of time (up to the stage of 60–70% epiboly) than in the remaining part of the basal layer (the prospective ectoderm domain). Taking into account the data on changes in the adhesive properties of blastomeres during normal development and observations on embryos with retarded epiboly, we hypothesize that changes in GJ communication between superficial blastomeres, on one hand, and between basal blastomeres and the YC, on the other, are the consequences of the same, more general morphogenetic process of compaction occurring within the blastoderm, which supports epiboly and is probably responsible for the distinction between mesodermal and ectodermal fates of cells differently located within the forming epithelioid sheet. Received: 18 October 1996 / Accepted: 4 April 1997  相似文献   

10.
Perturbation of adhesion mediated by cadherins was achieved by over-expressing truncated forms of E- and EP-cadherins (in which the extracellular domain was deleted) in different blastomeres of stage 6 Xenopus laevis embryos. Injections of mRNA encoding truncated E- and EP-cadherins into A1A2 blastomeres resulted in inhibition of cell adhesion and, at later stages, in morphogenetic defects in the anterior neural tissues to which they mainly contribute. In addition, truncated EP-cadherin mRNA produced a duplication of the dorso-posterior axis in a significant number of cases. The expression of truncated E- and EP-cadherins in blastomeres involved in gastrulation and neural induction (B1B2 and C1), led to the duplication of the dorso-posterior axis as well as to defects in anterior structures. Morphogenetic defects obtained with truncated EP-cadherin were more severe than those induced with truncated E-cadherin. Cells derived from blastomeres injected with truncated EP-cadherin mRNA, dispersed more readily at the blastula and gastrula stages than the cells derived from the blastomeres expressing truncated E-cadherin. Presumptive mesodermal cells expressing truncated cadherins did not engage in coherent directional migration. The alteration of cadherin-mediated cell adhesion led directly to the perturbation of the convergent-extension movements during gastrulation as shown in the animal cap assays and indirectly to perturbation of neural induction. Although the cytoplasmic domains of type I cadherins share a high degree of sequence identity, the over-expression of their cytoplasmic domains induces a distinct pattern of perturbations, strongly suggesting that in vivo, each cadherin may transduce a specific adhesive signal. These graded perturbations may in part result from the relative ability of each cadherin cytoplasmic domain to titer the P-catenin.  相似文献   

11.
Perturbation of adhesion mediated by cadherins was achieved by over-expressing truncated forms of E- and EP-cadherins (in which the extracellular domain was deleted) in different blastomeres of stage 6 Xenopus laevis embryos. Injections of mRNA encoding truncated E- and EP-cadherins into A1A2 blastomeres resulted in inhibition of cell adhesion and, at later stages, in morphogenetic defects in the anterior neural tissues to which they mainly contribute. In addition, truncated EP-cadherin mRNA produced a duplication of the dorso-posterior axis in a significant number of cases. The expression of truncated E- and EP-cadherins in blastomeres involved in gastrulation and neural induction (B1B2 and C1), led to the duplication of the dorso-posterior axis as well as to defects in anterior structures. Morphogenetic defects obtained with truncated EP-cadherin were more severe than those induced with truncated E-cadherin. Cells derived from blastomeres injected with truncated EP-cadherin mRNA, dispersed more readily at the blastula and gastrula stages than the cells derived from the blastomeres expressing truncated E-cadherin. Presumptive mesodermal cells expressing truncated cadherins did not engage in coherent directional migration. The alteration of cadherin-mediated cell adhesion led directly to the perturbation of the convergent-extension movements during gastrulation as shown in the animal cap assays and indirectly to perturbation of neural induction. Although the cytoplasmic domains of type I cadherins share a high degree of sequence identity, the over-expression of their cytoplasmic domains induces a distinct pattern of perturbations, strongly suggesting that in vivo, each cadherin may transduce a specific adhesive signal. These graded perturbations may in part result from the relative ability of each cadherin cytoplasmic domain to titer the P-catenin.  相似文献   

12.
To substantiate the assumption that the egg cell and blastomeres in planarian embryos influence surrounding yolk cells to form a syncytium, embryos at 1- to 8-cell stages were examined by electron microscopy. Within special areas of the endoplasmic reticulum both in the egg cell and in the blastomeres, a large number of vacuoles of various sizes formed and then disappeared at least four times over the period from egg-laying through the 8-cell stage as if their contents were being secreted. These activities diminished markedly at the 8-cell stage. Yolk cells surrounding the egg cell and blastomeres were aggregated in close contact with one another in a small clump shortly after egg-laying, and then, late in the 4-cell stage, became fused, forming a syncytium. The correlation between release of vacuoles by the egg cell and blastomeres and the formation of a syncytium by the yolk cells indicate that the cell fusion could be induced by a factor contained in the vacuoles.  相似文献   

13.
We describe a set of observations on developing zebrafish embryos and discuss the main conclusions they allow:(1) the embryonic dorso-ventral polarity axis is morphologically distinguishable prior to the onset of gastrulation; and (2) the involution of deep layer cells starts on the prospective dorsal side of the embryo. An asymmetry can be distinguished in the organization of the blastomeres in the zebrafish blastula at the 30% epiboly stage, in that one sector of the blastoderm is thicker than the other. Dye-labelling experiments with DiI and DiO and histological analysis allow us to conclude that the embryonic shield will form on the thinner side of the blastoderm. Therefore, this side corresponds to the prospective dorsal side of the embryo. Simultaneous injections of dyes on the thinner side of the blastoderm and on the opposite side show that involution of deep layer cells during gastrulation starts at the site at which the embryonic shield will form and extends from here to the prospective ventral regions of the germ ring.  相似文献   

14.
When Xenopus embryos are cultured in calcium- and magnesium-free medium (CMFM), the blastomeres lose adhesion but continue dividing to form a loose heap of cells. If divalent cations are restored at the early gastrula stage the cells re-adhere and eventually form muscle (a mesodermal cell type) as well as epidermis. If, however, the cells are dispersed during culture in CMFM, muscle does not form following reaggregation although epidermis does. This suggests that culturing blastomeres in a heap allows the transmission of mesoderm-induction signals from cell to cell while dispersion effectively dilutes the signal. In this paper, we have attempted to substitute for cell proximity by culturing dispersed blastomeres in XTC mesoderm-inducing factor (MIF). We find that dispersed cells do not respond to XTC-MIF by forming mesodermal cell types after reaggregation, but the factor does inhibit epidermal differentiation. One interpretation of this observation is that an early stage in mesoderm induction is the suppression of epidermal differentiation and that formation of mesoderm may require contact-mediated signals that are produced in response to XTC-MIF. We have gone on to study the suppression of epidermal differentiation in more detail. We find that this is a dose-dependent phenomenon that can occur in single cells in the absence of cell division. Animal pole blastomeres become more difficult to divert from epidermal differentiation at later stages of development and by stage 12 they are 'determined' to this fate. Fibroblast growth factor (FGF) also suppresses epidermal differentiation in isolated animal pole blastomeres and transforming growth factor-beta 1 acts synergistically with FGF in doing so.  相似文献   

15.
用RACE-PCR方法从原肠期SMART文库中扩增到银鲫pou2基因的全长cDNA,其全长为2421bp,开放阅读框为1416bp,编码471个氨基酸,与斑马鱼pou2基因的氨基酸序列一致性高达91.0%。我们用RT-PCR和整体原位杂交的方法研究了银鲫pou2基因在胚胎发育过程中的时空表达图式。RT-PCR结果显示,银鲫pou2基因有母源转录本,其合子基因在高囊胚期强烈表达,在50%下包期和90%下包期也有高量的转录本,但在100%下包期表达量急剧降低,至体节期时已经完全检测不到其转录本。胚胎整体原位杂交结果显示其母源转录本在所有的胚盘细胞中。在高囊胚期和50%下包期,高度表达的合子转录本仍在所有的胚盘细胞中,但至90%下包期时,pou2的表达向胚胎背部的正中线汇聚,集中在神经板的两侧区域和脑部的两条横向条带。在100%下包期时,pou2的表达集中在神经板的中间区域以及预期形成的中后脑区域。至体节期时,转录本消失,这与RT-PCR结果高度一致。银鲫pou2基因的表达图式提示该基因在胚胎发育的早期具有重要作用,它可能参与调控神经板的形成和中后脑细胞的发育命运。  相似文献   

16.
Collective cell migration is a fundamental process during embryogenesis and its initial occurrence, called epiboly, is an excellent in vivo model to study the physical processes involved in collective cell movements that are key to understanding organ formation, cancer invasion, and wound healing. In zebrafish, epiboly starts with a cluster of cells at one pole of the spherical embryo. These cells are actively spreading in a continuous movement toward its other pole until they fully cover the yolk. Inspired by the physics of wetting, we determine the contact angle between the cells and the yolk during epiboly. By choosing a wetting approach, the relevant scale for this investigation is the tissue level, which is in contrast to other recent work. Similar to the case of a liquid drop on a surface, one observes three interfaces that carry mechanical tension. Assuming that interfacial force balance holds during the quasi-static spreading process, we employ the physics of wetting to predict the temporal change of the contact angle. Although the experimental values vary dramatically, the model allows us to rescale all measured contact-angle dynamics onto a single master curve explaining the collective cell movement. Thus, we describe the fundamental and complex developmental mechanism at the onset of embryogenesis by only three main parameters: the offset tension strength, α, that gives the strength of interfacial tension compared to other force-generating mechanisms; the tension ratio, δ, between the different interfaces; and the rate of tension variation, λ, which determines the timescale of the whole process.  相似文献   

17.
Vasa protein expression and localization in the zebrafish   总被引:1,自引:0,他引:1  
Primordial germ cell (PGC) development in the zebrafish is poorly understood. The expression of vasa RNA, the only molecular marker so far found to be expressed in fish PGCs, suggests its function in the establishment of the germline. The protein product of vasa is present throughout the life cycle in the germline of Drosophila, Caenorhabditis and Xenopus. The expression pattern of the Vasa protein in zebrafish, is still unresolved. We generated an anti-Vasa polyclonal antibody and show that it is maternally expressed initially throughout the embryo. Interestingly, from the two-cell- to the 1000-cell stage the protein is highly concentrated in two 'dots' near the center of the blastomeres and as such remains longest detectable in the animal pole blastomeres. The first distinct cell-specific expression occurs at 60% epiboly on one side of the blastoderm margin. The Vasa protein in the PGCs is organized in a subcellular granular-like conformation which is dynamic throughout development.  相似文献   

18.
19.
The Speckled Trout blastoderm at the late high blastula stage is characterized by two different cell populations. The “light” blastomeres comprise one cell type while the “dark” and “medium” blastomeres appear to differ from one another only in degree and thus may be considered as the second type. “Dark” and “medium” blastomeres are irregular in shape, are located centrally and deep in the blastoderm, have an abundance of smooth endoplasmic reticulum with associated 520 Å glycogen particles and a single mitochondrial profile. The “light” blastomeres have randomly arranged glycogen particles in minimal quantities in contrast to the “medium” and “dark” blastomeres and in addition exhibit three mitochondrial profiles, which could however represent artifacts. It is postulated that in the Speckled Trout cellular differentiation has commenced by the third day of incubation at 10°C and that this is manifested visually by the appearance of two different cell populations; the more differentiated “dark” and “medium” blastomeres possibly destined to give rise to the hypoblast and the less differentiated “light” blastomeres.  相似文献   

20.
Inner cell mass (ICM) and trophectoderm cell lineages in preimplantation mouse embryos were studied by means of iontophoretic injection of horseradish peroxidase (HRP) as a marker. HRP was injected into single blastomeres at the 2- and 8-cell stages and into single outer blastomeres at the 16-cell and late morula (about 22- to 32-cell) stages. After injection, embryos were either examined immediately for localization of HRP (controls) or they were allowed to develop until the blastocyst stage (1 to 3.5 days of culture) and examined for the distribution of labeled cells. In control embryos, HRP was confined to one or two outer blastomeres. In embryos allowed to develop into blastocysts, HRP-labeled progeny were distributed into patches of cells, showing that there is limited intermingling of cells during preimplantation development. A substantial fraction of injected blastomeres contributed descendants to both ICM and trophectoderm (95, 58, 44, and 35% for injected 2-cell, 8-cell, 16-cell, and late morula stages, respectively). Although more than half of the outer cells injected at 16-cell and late morula stages contributed descendants only to trophectoderm (53 and 63%, respectively), some outer cells contributed also to the ICM lineage even at the late morula stage. Although the mechanism for allocation of outer cells to the inner cell lineage is unknown, our observation of adjacent labeled mural trophectoderm and presumptive endoderm cells implicated polarized cell division. This observation also suggests that mural trophectoderm and presumptive endoderm are derived from common immediate progenitors. These cells appear to separate into inner and outer layers during the fifth cleavage division. Our results demonstrate the usefulness of HRP as a cell lineage marker in mouse embryos and show that the allocation of cells to ICM or trophectoderm begins after the 2-cell stage and continues into late cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号