首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To explore the mechanism of MAP kinase activation in adipocytes, we examined the possible involvement of several candidate signaling proteins. MAP kinase activity was markedly increased 2-4 min after treatment with insulin and declined to basal levels after 20 min. The insulin-dependent tyrosine phosphorylation of IRS-1 in the internal membrane and its association with phosphatidylinositol 3 (PI3) kinase preceded MAP kinase activation. There was little or no tyrosine phosphorylation of Shc or association of Grb2 with Shc or IRS-1. Specific PI3 kinase inhibitors blocked the insulin-mediated activation of MAP kinase. They also decreased the activation of MAP kinase by PMA and EGF but to a much lesser extent. Insulin induced phosphorylation of AKT on serine/threonine residues, and its effect could be blocked by PI3 kinase inhibitors. These results suggest that the insulin-dependent activation of MAP kinase in adipocytes is mediated by the IRS-1/PI3 kinase pathway but not by the Shc/Grb2/SOS pathway.  相似文献   

3.
In previous work we have demonstrated that the microtubule-associated protein 2 (MAP 2) molecule consists of two structural parts. One part of the molecule, referred to as the assembly-promoting domain, binds to the microtubule surface and is responsible for promoting microtubule assembly; the other represents a filamentous projection observed on the microtubule surface that may be involved in the interaction of microtubules with other cellular structures. MAP 2 is known to be specifically phosphorylated as the result of a protein kinase activity that is present in microtubule preparations. We have now found that the activity copurifies with the projection portion of MAP 2 itself. Kinase activity coeluted with MAP 2 when microtubule protein was subjected to either gel- filtration chromatography on bio-gel A-15m or ion-exchange chromatography on DEAE- Sephadex. The activity was released from microtubules by mild digestion with chymotrypsin in parallel with the removal by the protease of the MAP 2 projections from the microtubule surface. The association of the activity with the projection was demonstrated directly by gel filtration chromatography of the projections on bio-gel A-15m. Three protein species (M(r) = 39,000, 55,000, and 70,000) cofractionated with MAP 2, and two of these (M(r) = 39,000 and 55,000) may represent the subunits of an associated cyclic AMP- dependent protein kinase. The projection-associated activity was stimulated 10-fold by cyclic AMP and was inhibited more than 95 percent by the cyclic AMP-dependent protein kinase inhibitor from rabbit skeletal muscle. It appeared to represent the only significant activity associated with microtubules, almost no activity being found with tubulin, other MAPs, or the assembly-promoting domain of MAP 2, and was estimated to account for 7-22 percent of the total brain cytosolic protein kinase activity. The location of the kinase on the projection is consistent with a role in regulating the function of the projection, though other roles for the enzyme are also possible.  相似文献   

4.
Two peaks of mitogen-activated protein (MAP) kinase activator activity are resolved upon ion exchange chromatography of cytosolic extracts from epidermal growth factor-stimulated A431 cells. Two forms of the activator (1 and 2) have been purified from these peaks, using chromatography on Q-Sepharose, heparin-agarose, hydroxylapatite, ATP-agarose, Sephacryl S-300, Mono S, and Mono Q. The two preparations each contained one major protein band with an apparent molecular mass of 46 or 45 kDa, respectively, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Evidence identifying the MAP kinase activators as the 46- and 45-kDa proteins is presented. Using inactive mutants of MAP kinase as potential substrates, it was found that each preparation of MAP kinase activator catalyzes phosphorylation of the regulatory residues, threonine 188 and tyrosine 190, of Xenopus MAP kinase. These results support the concept that the MAP kinase activators are protein kinases. These MAP kinase kinases demonstrate an apparent high degree of specificity toward the native conformation of MAP kinase, although slow autophosphorylation on serine, threonine, and tyrosine residues and phosphorylation of myelin basic protein on serine and threonine residues is detected as well.  相似文献   

5.
The kinetics of nuclear maturation, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes were examined. A further objective was to determine the duration of the meiotic stages during the maturation process. Porcine and bovine cumulus-oocyte complexes (COCs) were incubated in TCM 199 supplemented with 20% (v/v) heat inactivated fetal calf serum (FCS), 0.05microg/ml gentamycin, 0.02mg/ml insulin, 2.5microg/ml FSH and 5microg/ml LH. COCs were removed from the culture media in hourly intervals starting immediately after recovery from the follicle until 24 (bovine) or 48h (porcine) of culture. Oocytes were either fixed to evaluate the maturation status or the activity of MPF, assessed by its histone H1 kinase activity, and MAP kinase were determined by a radioactive assay simultaneously. In oocytes of both species, the MPF activity oscillated during the culture period with two maxima corresponding with the two metaphases: between 27-32 and after 46h (porcine) and between 6-9 and after 22h (bovine). There was a temporary decline in activity after 33-38 (porcine) and after 19h (bovine), which corresponded with anaphase I and telophase I. MAP kinase activity increased during the whole culture period and reached maximum levels after 47 (porcine) and after 22h (bovine). In porcine oocytes, the MAP kinase was activated before GVBD and MPF activation. In bovine oocytes, MPF and MAP kinase were activated at approximately the same time as the GVBD (8-9h of incubation). In average porcine, oocytes remain 23.4h in the germinal vesicle (GV) stage (13h in GV I, 5.7h in GV II, 3.2h in GV III and 1.5h in GV IV), 0.9h in diakinese, 9.6h in the metaphase I, 2.8h in anaphase I and 1.9h in telophase I of the first meiotic division. In bovine oocytes, the temporal distribution of the meiotic stages were 8.5h for the GV stage, 1.2h for diakinese, 8.3h for metaphase I, 1.6h for anaphase I and 1.9h for telophase I. These results indicate that the duration of the meiotic stages differs between the species and that MAP kinase is activated before MPF and GVBD in porcine oocytes.  相似文献   

6.
Our objective is to test the hypothesis that inhibition of mitogen-activated protein (MAP) kinase kinase (MEK) with PD98059 in human luteinized granulosa cells will block epidermal growth (EGF)-stimulated MAP kinase activity and induce apoptosis. Luteinized granulosa cells from human in vitro fertilization aspirates were cultured and treated with the following: (1) vehicle; (2) PD98059; (3) EGF; (4) PD98059 + EGF. Treatment with PD98059 suppressed MAP kinase activity, inhibited MAP kinase phosphorylation by Western blot analysis, blocked nuclear translocation of phosphorylated MAP kinase by confocal microscopy, and increased percentages of subdiploid apoptotic nuclei by flow cytometry. Our data are the first evidence that a relationship may exist between the MAP kinase pathway and control of apoptosis in human luteinized granulosa cells. These results support the hypothesis that suppression of the MAP kinase pathway may lead to apoptosis in these cells.  相似文献   

7.
Our previous studies have shown that 5-hydroxytryptamine (5-HT) induces cellular hyperplasia/hypertrophy through protein tyrosine phosphorylation, rapid formation of superoxide (O(2)(-)), and extracellular signal-regulated kinase (ERK)1/ERK2 mitogen-activated protein (MAP) kinase activation. Intracellularly released O(2)(-) is rapidly dismuted by superoxide dismutase (SOD) to H(2)O(2), another possible cellular growth mediator. In the present study, we assessed whether H(2)O(2) participates in 5-HT-induced mitogenic signaling. Inactivation of cellular Cu/Zn SOD by copper-chelating agents inhibited 5-HT-induced DNA synthesis of bovine pulmonary artery smooth muscle cells (BPASMCs). Infection of BPASMCs with an adenovirus containing catalase inhibited both ERK1/ERK2 MAP kinase activation and DNA synthesis induced by 5-HT. Although we could not find evidence of p38 MAP kinase activation by 5-HT, SB-203580 and SB-202190, reported inhibitors of p38 MAP kinase, inhibited the 5-HT-induced growth of BPASMCs. However, these inhibitors also inhibited 5-HT-induced O(2)(-) release. Thus quenching of O(2)(-) may be their mechanism for inhibition of cellular growth unrelated to p38 MAP kinase inhibition. These data indicate that generation of O(2)(-) in BPASMCs in response to 5-HT is followed by an increase in intracellular H(2)O(2) that mediates 5-HT-induced mitogenesis through activation of ERK1/ERK2 but not of p38 MAP kinase.  相似文献   

8.
Bogliolo L  Ledda S  Leoni G  Naitana S  Moor RM 《Cloning》2000,2(4):185-196
The maturation promoting factor (MPF) and mitogen-activated protein kinase (MAPK) are the key regulators of both meiotic and mitotic cell cycles. Knowledge of the dynamics of these two kinases during the transition from meiosis to mitosis would be of great importance for cloning by nuclear transfer. In this study, experiments were designed to assay the changes of MPF and MAP kinase activity of in vitro matured ovine oocytes after chemical activation and culture in 0 mM or 2 mM 6-dimethylaminopurine (6-DMAP) for 12 h. Moreover, to determine the biological significance of the fluctuations of MPF, activated oocytes were fused with GV-staged partners. The biochemical results showed that the high MPF activity of MII oocytes fell to basal level precipitously within the first hour after activation, started to increase at 6-8 h, rising to 80 +/- 4% of MII after 12 h. MAPK activity decreased to a low level 4 h after activation, increased between 6-12 h, but remained below 30 +/- 3.6% of MII values. The incubation with 6-DMAP had no effect on the kinetics of MPF and MAP kinase activity. Fusion of MII oocytes to GV partners induced rapid breakdown of the GV, whereas no breakdown occurred when GV were fused with eggs in the first hours post activation. Interestingly, the high biochemical levels of MPF activity at 8-12 h after activation were not able to induce GVBD in fusion partners.  相似文献   

9.
Treatment of PC12 cells with either nerve growth factor (NGF), a differentiating factor, or epidermal growth factor (EGF), a mitogen, resulted in 7-15-fold activation of a protein kinase activity in cell extracts that phosphorylated microtubule-associated protein (MAP) 2 on serine and threonine residues in vitro. Both the NGF-activated kinase and the EGF-activated kinase could be partially purified by sequential chromatography on DEAE-cellulose, phenyl-Sepharose and hydroxylapatite, and were identical with each other in their chromatographic behavior, apparent molecular mass (approximately 40 kDa) on gel filtration, substrate specificity, and phosphopeptide-mapping pattern of MAP2 phosphorylated by each kinase. Moreover, both kinases were found to be indistinguishable from a mitogen-activated MAP kinase previously described in growth-factor-stimulated or phorbol-ester-stimulated fibroblastic cells, based on the same criteria. Kinase assays in gels after SDS/polyacrylamide gel electrophoresis revealed further that the NGF- or EGF-activated MAP kinase in PC12 cells, as well as the EGF-activated MAP kinase in fibroblastic 3Y1 cells resided in two closely spaced polypeptides with an apparent molecular mass of approximately 40 kDa. In addition, these MAP kinases were inactivated by either acid phosphatase treatment or protein phosphatase 2A treatment. These results indicate that MAP kinase may be activated through phosphorylation by a differentiating factor as well as by a mitogen. MAP kinase activation by EGF was protein kinase C independent; it reached an almost maximal level 1 min after EGF treatment and subsided rapidly within 30-60 min. On the other hand, NGF-induced activation of MAP kinase was partly protein kinase C dependent and continued for at least 2-3 h.  相似文献   

10.
Activation of ribosomal S6 kinase (RSK) during porcine oocyte maturation   总被引:1,自引:0,他引:1  
The normal kinetics of ribosomal S6 kinase (RSK) during the meiotic maturation of porcine oocytes were examined. The phosphorylation states of RSK and extracellular signal-regulated kinase (ERK), major mitogen-activated protein (MAP) kinases in maturating porcine oocytes, were detected by Western blotting analysis. The S6 protein kinase activity was assayed using a specific substrate peptide which contained the major phosphorylation sites of S6 kinase. Full phosphorylation of RSK was correlated with ERK phosphorylation and was observed before germinal vesicle breakdown. S6 kinase activity was low in both freshly isolated and 20 h cultured oocytes. S6 kinase activity was significantly elevated in matured oocytes to a level about 6 times higher than that in freshly isolated oocytes. Furthermore, full phosphorylation of RSK was inhibited when oocytes were treated with U0126, a specific MAP kinase kinase inhibitor, in dose-dependent manner, indicating that RSK is one of the substrates of MAP kinase. These results suggest that the activation of RSK is involved in the regulation of meiotic maturation of porcine oocytes.  相似文献   

11.
Cells differentiate in response to various extracellular stimuli. This cellular response requires intracellular signaling pathways. The mitogen-activated protein (MAP) kinase cascade is a core signal transduction pathway that determines the fate of many kinds of cell. MAP kinase kinase kinase activates MAP kinase kinase, which in turn activates MAP kinase. Apoptosis signal-regulating kinase (ASK1) was identified as a MAP kinase kinase kinase involved in the stress-induced apoptosis-signaling cascade that activates the SEK1-JNK and MKK3/MKK6-p38 MAP kinase cascades. Expression of the constitutively active form of ASK1 (ASK1-DeltaN) in keratinocytes induced significant morphological changes and differentiation markers, transglutaminase-1, loricrin, and involucrin. A transient increase in p21(Cip1/WAF1) reduced DNA synthesis, and cell cycle analysis verified the differentiation. p38 MAP kinase inhibitors, SB202190 and SB203580, abolished the induction of differentiation markers, transglutaminase-1, loricrin, and involucrin. In turn, the induction of differentiation with ceramide in keratinocytes caused an increase in ASK1 expression and activity. Furthermore, normal human skin expresses ASK1 protein in the upper epidermis, implicating ASK1 in in vivo keratinocyte differentiation. We propose that the ASK1-p38 MAP kinase cascade is a new intracellular regulator of keratinocyte differentiation.  相似文献   

12.
The objective of this study was to elucidate the role of a [Ca2+]i rise and protein kinase C (PKC) activation on decreases of p34(cdc2) kinase and mitogen-activated protein (MAP) kinase activity during parthenogenetic activation of porcine oocytes. In oocytes treated with 50 microM Ca2+ ionophore, degradations of both p34(cdc2) kinase and MAP kinase activity were observed and half of these oocytes formed pronuclei. However, a supplement of PKC inhibitor, calphostin C, after 50 microM Ca2+ ionophore treatment, was sufficient to inhibit the inactivation of MAP kinase and pronuclear formation in the oocytes. These results showed that PKC played an important role in Ca2+-induced oocyte activation. On the other hand, 10 microM Ca2+ ionophore treatment could not affect the MAP kinase activity but induced a transient decrease of p34(cdc2) kinase activity, which resulted in recovery of p34(cdc2) kinase activity and progression to meiotic metaphase III stage. To investigate the effects of PKC activator on oocytes treated with 10 microM Ca2+ ionophore, matured oocytes were cultured with phorbol 12-myriatate 13-acetate (PMA), after 10 microM Ca2+ ionophore treatment. The additional treatment suppressed the recovery of p34(cdc2) kinase activity and rapidly induced a decrease of MAP kinase activity, and these low activities were maintained until 12-h cultivation. As a result, a significantly higher percentage of these oocytes (67%) had pronuclei at 12-h cultivation. Moreover, PMA treatment without Ca2+ ionophore treatment effectively led to a decrease of MAP kinase activity in a dose-dependent manner but not p34(cdc2) kinase activity in matured porcine oocytes. In conclusion, the parthenogenetic activation of porcine oocytes was mediated by the inactivation of p34(cdc2) kinase via a calcium-dependent pathway and thereafter by the inactivation of MAP kinase via a PKC-dependent pathway.  相似文献   

13.
We investigated the mechanism of phospholipase A(2) (PLA(2)) activation in response to the P2 receptor agonist ATP in rat thyroid FRTL-5 cells. The PLA(2) activity was determined by measuring the release of [(3)H]-arachidonic acid (AA) from prelabeled cells. ATP evoked a dose- and time-dependent AA release. This release was totally inhibited by pertussis toxin (PTX) treatment, indicating the involvement of a G(i)/G(o) protein. The AA release was also diminished by chelating extracellular Ca(2+) with EGTA or by inhibiting influx of Ca(2+) using Ni(2+). Although the activation of protein kinase C (PKC) by 12-phorbol 13-myristate acetate (PMA) alone did not induce any AA release, the ATP-evoked AA release was significantly reduced when PKC was inhibited by GF109203X or by a long incubation with PMA to downregulate PKC. Both the ATP-evoked AA release and the mitogen-activated protein kinase (MAP kinase) phosphorylation were decreased by the MAP kinase kinase (MEK) inhibitor PD98059. Furthermore, the ATP-evoked MAP kinase phosphorylation was also inhibited by GF109203X and by downregulation of PKC, suggesting a PKC-mediated activation of MAP kinase. Inhibiting Src-like kinases by PP1 attenuated both the MAP kinase phosphorylation and the AA release. These results suggest that these kinases are involved in the regulation of MAP kinase and PLA(2) activation. Elevation of intracellular cAMP by TSH or by dBucAMP did not induce a phosphorylation of MAP kinase. Furthermore, neither the ATP-evoked AA release nor the MAP kinase phosphorylation were attenuated by TSH or dBucAMP. Taken together, our results suggest that ATP regulates the activation of PLA(2) by a G(i)/G(o) protein-dependent mechanism. Moreover, Ca(2+), PKC, MAP kinase, and Src-like kinases are also involved in this regulatory process.  相似文献   

14.
The aim of this study was to investigate whether matrix metalloproteinases (MMP-13, 9) of Kupffer cells induced by gadolinium chloride (GdCl(3)) treatment can reverse dimethylnitrosamine (DMN)-induced liver fibrosis (in vivo) and the effect of GdCl(3) on MAP kinase activity (in vitro). Male Wistar rats 6 weeks of age received DMN (10 mg/kg) three successive days a week for 4 weeks. Then two groups of rats (n = 6 each) were treated twice weekly with either GdCl(3) (7 mg/kg) or saline solution intravenously for the next 4 weeks. Animals were sacrificed to estimate the degree of liver fibrosis. Isolated Kuppfer cells were treated with GdCl(3) and the expressions of MMPs, MAP kinase activity (ERK, SAPK/JNK, P38) as well as apoptosis were also examined. Rats that received DMN for 4 weeks followed by GdCl(3) injection for 4 weeks showed an reduced liver hydroxyproline content compared to rats treated with DEN followed by saline (277 +/- 22 VS 348 +/- 34 microg/g, n = 6 each, P < 0.01). There were significantly increased MMP-13 mRNA levels in GdCl(3)-treated rats. However, no significant change was observed in procollagen type I mRNA levels. Isolated Kuppfer cells treated with GdCl(3) showed increased MAP kinase activity, especially P38 pathway as well as MMP-13, 9 mRNA and type I collagen-degrading activity leading to apoptosis. SB203580, inhibitor of P38 pathway diminished these activation and prevented apoptosis. These results suggest that Kuppfer cells can reverse liver fibrosis via the expression of MMPs mainly through P38 pathway.  相似文献   

15.
A series of 1-(6-methylpyridin-2-yl)-5-(quinoxalin-6-yl)-1,2,3-triazoles has been synthesized and evaluated for their ALK5 inhibitory activity. The 1-(6-methylpyridin-2-yl)-1,2,3-triazoles were assembled by Cu(I)-catalyzed azide–alkyne 1,3-dipolar cycloaddition. Following this, quinoxaline was introduced through Pd-catalyzed direct arylation. The synthesized 1-(6-methylpyridin-2-yl)-5-(quinoxalin-6-yl)-1,2,3-triazoles revealed significant selectivity differences with respect to p38α MAP kinase. In particular, 12k showed 80.8% ALK5 inhibitory activity at a concentration of 10 μM and IC50 value of 4.69 μM, but did not show p38α MAP kinase inhibitory activity (?1.94% inhibition at a concentration of 10 μM).  相似文献   

16.
The mitogen-activated protein (MAP) kinases, a family of 40-45-kDa kinases whose activation requires both tyrosine and threonine/serine phosphorylations, are suggested to play key roles in various phosphorylation cascades. A previous study of Krebs and co-workers (Ahn, N. G., Seger, R., Bratlien, R. L., Diltz, C. D., Tonks, N. K., and Krebs, E. G. (1991) J. Biol. Chem. 266, 4220-4227) detected an activity in epidermal growth factor (EGF)-stimulated 3T3 cells that can stimulate inactive MAP kinases. We observed this activity in rat 3Y1 cells treated with various mitogenic factors and in PC12 cells treated with nerve growth factor (NGF). Its kinetics of activation and deactivation following EGF or NGF stimulation roughly paralleled that of MAP kinase. The MAP kinase activator required the presence of ATP and a divalent cation such as Mn2+ and Mg2+ and was inactivated by phosphatase 2A treatment in vitro. This activator has been isolated from EGF-stimulated 3Y1 cells by sequential chromatography and identified as a 45-kDa monomeric protein. It was able to activate mammalian and Xenopus MAP kinases in vitro and was very similar to Xenopus M phase MAP kinase activating factor, which was purified previously from mature oocytes (Matsuda, S., Kosako, H., Takenaka, K., Moriyama, K., Sakai, H., Akiyama, T., Gotoh, Y., and Nishida, E. (1992) EMBO J. 11, 973-982), in terms of its functional, immunological, and physicochemical properties. Thus, the same or a similar upstream activating factor may function in mitogen-induced and M phase-promoting factor-induced MAP kinase activation pathways.  相似文献   

17.
In osteogenic and other cells the mitogen-activated protein (MAP) kinases have a key role in regulating proliferation and differentiated functions. The osteogenic growth peptide (OGP) is a 14 mer mitogen of osteogenic and fibroblastic cells that regulates bone turnover, fracture healing, and hematopoiesis, including the engraftment of bone marrow transplants. It is present in the serum and extracellular fluid either free or complexed to OGP-binding proteins (OGPBPs). The free immunoreactive OGP consists of the full length peptide and its C-terminal pentapeptide OGP(10-14). In the present study, designed to probe the signaling pathways triggered by OGP, we demonstrate in osteogenic MC3T3 E1 cells that mitogenic doses of OGP(10-14), but not OGP, enhance MAP kinase activity in a time-dependent manner. The OGP(10-14)-induced stimulation of both MAP kinase activity and DNA synthesis were abrogated by pertusis toxin, a G(i) protein inhibitor. These data offer direct evidence for the occurrence in osteogenic cells of a peptide-activated, mitogenic Gi protein-MAP kinase-signaling cascade. Forskolin and dBu(2)-cAMP abrogated the OGP(10-14)-stimulated proliferation, but induced only 50% inhibition of the OGP(10-14)-mediated MAP kinase activation, suggesting additional MAP kinase-dependent, OGP(10-14)-regulated, cellular functions. Finally, it is demonstrated that OGP(10-14) is the active form of OGP, apparently generated proteolytically in the extracellular milieu upon dissociation of OGP-OGPBP complexes.  相似文献   

18.
Mitogen-activated protein kinase (MAP kinase) is a serine/threonine kinase whose enzymatic activity is thought to play a crucial role in mitogenic signal transduction and also in the progesterone-induced meiotic maturation of Xenopus oocytes. We have purified MAP kinase from Xenopus oocytes and have shown that the protein is present in metaphase ll oocytes under two different forms: an inactive 41-kD protein able to autoactivate and to autophosphorylate in vitro, and an active 42-kD kinase resolved into two tyrosine phosphorylated isoforms on 2D gels. During meiotic maturation, MAP kinase becomes tyrosine phosphorylated and activated following the activation of the M-phase promoting factor (MPF), a complex between the p34cdc2 kinase and cyclin B. In vivo, MAP kinase activity displays a different stability in metaphase l and in metaphase II: protein synthesis is required to maintain MAP kinase activity in metaphase I but not in metaphase II oocytes. Injection of either MPF or cyclin B into prophase oocytes promotes tyrosine phosphorylation of MAP kinase, indicating that its activation is a downstream event of MPF activation. In contrast, injection of okadaic acid, which induces in vivo MPF activation, promotes only a very weak tyrosine phosphorylation of MAP kinase, suggesting that effectors other than MPF are required for the MAP kinase activation. Moreover, in the absence of protein synthesis, cyclin B and MPF are unable to promote in vivo activation of MAP kinase, indicating that this activation requires the synthesis of new protein(s). © 1993 Wiley-Liss, Inc.  相似文献   

19.
15-Deoxy-Delta(12-14)-prostaglandin J(2) (dPGJ2) and thiazolidinediones are known as ligands for the peroxisome proliferator activator receptor gamma (PPAR gamma) a member of the nuclear receptor superfamily. Herein, we show that dPGJ2 activates, in cultured primary astrocytes, Erk, Jnk, p38 MAP kinase, and ASK1, a MAP kinase kinase kinase, which can be involved in the activation of Jnk and p38 MAP kinase. The activation kinetic is similar for the three MAP kinase. The activation of the MAP kinases is detectable around 0.5 h. The activation increases with dPGJ2 in a dose dependent manner (0-15 microm). A scavenger of reactive oxygenated species (ROS), N-acetylcysteine (NAC) at 20 mm, completely suppresses the activation of MAP kinases and ASK1, suggesting a role for oxidative stress in the activation mechanism. Other prostaglandin cyclopentenones than dPGJ2, A(2), and to a lesser degree, A(1) also stimulate the MAP kinases, although they do not bind to PPAR gamma. Ciglitazone (20 microm), a thiazolidinedione that mimics several effects of dPGJ2 in different cell types, also activates the three MAP kinase families and ASK1 in cultured astrocytes. However the activation is more rapid (it is detectable at 0.25 h) and more sustained (it is still strong after 4 h). NAC prevents the activation of the three MAP kinase families by ciglitazone. Another thiazolidinedione that binds to PPAR gamma, rosiglitazone, does not activate MAP kinases, indicating that the effect of ciglitazone on MAP kinases is independent of PPAR gamma. Ciglitazone and less strongly dPGJ2 activate Erk in undifferentiated cells of the adipocyte cell line 1B8. Ciglitazone also activates Jnk and p38 MAP kinase in these preadipocytes. Our findings suggest that a part of the biological effects of dPGJ2 and ciglitazone involve the activation of the three MAP kinase families probably through PPAR gamma-independent mechanisms involving ROS.  相似文献   

20.
Handa RK 《Peptides》2000,21(5):729-736
Angiotensin-(1-7) decreased mitogen-activated protein (MAP) kinase (Erks) activation in cultured Mardin-Darby bovine kidney (MDBK) epithelial cells. Also, saturable, high-affinity (125)I-angiotensin-(1-7) binding was detected in MDBK cell membranes. Together, the data suggested the possible presence of an angiotensin-(1-7) receptor. However, ligand structure-binding studies revealed that angiotensin-(3-7) and AT(4) receptor ligands competed with high-affinity for (125)I-angiotensin-(1-7) binding. Furthermore, angiotensin-(3-7) and AT(4) receptor ligands decreased MAP kinase activation in MDBK cells. These results demonstrate that NH(2)-terminal-deleted metabolites of angiotensin-(1-7) can bind with high affinity to the AT(4) receptor and regulate the MAP kinase/Erk signaling pathway in renal epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号