首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Improvements to vaccinia virus expression vectors continue to be made. In particular, there are new methods for the construction of recombinant viruses, ways of increasing the level of gene expression, and vectors that allow the inducible expression of selected genes.  相似文献   

2.
Vaccinia virus induces cellular mRNA degradation.   总被引:21,自引:15,他引:6       下载免费PDF全文
The infection of mouse L cells with vaccinia virus induced a rapid inhibition of cellular polypeptide synthesis and a diversion of protein synthesis to the exclusive production of viral polypeptides. This shutoff of cell-specific protein synthesis was achieved by a novel mechanism by which the virus induced the rapid degradation of cellular mRNAs. Concurrent with the degradation of cellular mRNA, the virus proceeds in the orderly temporal expression of its own genetic information. The effect of vaccinia virus infection upon two abundant L-cell mRNAs was assessed by using the highly conserved cDNA sequences that encode chicken beta-actin and rat alpha-tubulin. Hybridization analyses demonstrated that throughout infection there is a rapid and progressive degradation of both of these mRNAs. In fact, after 3 h of infection they are reduced to less than 50% of their concentration in uninfected L cells, and between 8 to 10 h they are almost entirely degraded. This observation explains in part the mechanism by which vaccinia virus inhibits host cell protein synthesis.  相似文献   

3.
4.
Vaccinia virus is the smallpox vaccine. It is the most intensively studied poxvirus, and its study has provided important insights about virus replication in general and the interactions of viruses with the host cell and immune system. Here, the entry, morphogenesis and dissemination of vaccinia virus are considered. These processes are complicated by the existence of two infectious vaccinia virus particles, called intracellular mature virus (IMV) and extracellular enveloped virus (EEV). The IMV particle is surrounded by one membrane, and the EEV particle comprises an IMV particle enclosed within a second lipid membrane containing several viral antigens. Consequently, these virions have different biological properties and play different roles in the virus life cycle.  相似文献   

5.
Continued advances in genetic engineering have made possible the high-level expression of correctly processed cellular, viral and bacterial polypeptides. This article focuses on viral expression vectors and, more specifically, the vaccinia virus expression system. Vaccinia virus has been used to express a variety of proteins with useful immunogenic, catalytic or pharmaceutical properties. We discuss briefly the biology of vaccinia and its significance in the use of vaccinia as an expression vector, the variety of vaccinia systems currently in use and, finally, we summarize some recent developments which bode well for future applications of vaccinia virus technology.  相似文献   

6.
Vaccinia virus encodes a polypeptide with DNA ligase activity.   总被引:4,自引:0,他引:4       下载免费PDF全文
Vaccinia virus gene SalF 15R potentially encodes a polypeptide of 63 kD which shares 30% amino acid identity with S. pombe and S. cerevisiae DNA ligases. DNA ligase proteins can be identified by incubation with alpha-(32P)ATP, resulting in the formation of a covalent DNA ligase-AMP adduct, an intermediate in the enzyme reaction. A novel radio-labelled polypeptide of approximately 61 kD appears in extracts from vaccinia virus infected cells after incubation with alpha-(32P)ATP. This protein is present throughout infection and is a DNA ligase as the radioactivity is discharged in the presence of either DNA substrate or pyrophosphate. DNA ligase assays show an increase in enzyme activity in cell extracts after vaccinia virus infection. A rabbit antiserum, raised against a bacterial fusion protein of beta-galactosidase and a portion of SalF 15R, immune-precipitates polypeptides of 61 and 54 kD from extracts of vaccinia virus-infected cells. This antiserum also immune-precipitates the novel DNA ligase-AMP adduct, thus proving that the observed DNA ligase is encoded by SalF 15R.  相似文献   

7.
Electron microscopy of Vaccinia virus DNA   总被引:2,自引:0,他引:2  
  相似文献   

8.
9.
10.
Vaccinia virus gene D8 encodes a virion transmembrane protein.   总被引:15,自引:13,他引:2  
E G Niles  J Seto 《Journal of virology》1988,62(10):3772-3778
  相似文献   

11.
12.
The vaccinia virus strain Western Reserve (WR) A34R gene encodes a C-type lectin-like glycoprotein, gp22-24, that is present in the outer membrane of extracellular enveloped virus (EEV) with type II membrane topology (S.A. Duncan and G.L. Smith, J. Virol. 66:1610-1621, 1992). Here we that a WR A34R deletion mutant (WR delta A34R) released 19- to 24-fold more EEV from infected cells than did WR virus, but the specific infectivity of the released virions was reduced 5- to 6-fold. Rupture of the WR delta A34R EEV outer envelope by freeze-thawing increased virus infectivity by five- to sixfold, because of the release of infectious intracellular mature virus. All other known EEV-specific proteins are incorporated into WR delta A34R EEV, and thus the loss of gp22-24 is solely responsible for the reduction of EEV specific infectivity. The WR delta A34R virus is highly attenuated in vivo compared with WR or a revertant virus in which the A34R gene was reinserted into WR delta A34R. This attenuation is consistent with the known important role of EEV in virus dissemination and virulence. Vaccinia virus strain International Health Department-J (IHD-J) produces large amounts of EEV and forms comets because of an amino acid substitution within the A34R protein (R. Blasco, R. Sisler, and B. Moss, J. Virol. 67:3319-3325, 1993), but despite this, IHD-J EEV has a specific infectivity equivalent to that of WR EEV. Substitution of the IHD-J A34R gene into the WR strain induced comet formation and greater release of EEV, while coexpression of both genes did not; hence, the WR phenotype is dominant. All orthopoxviruses tested express the A34R protein, but most viruses, including variola virus, have the WR rather than the IHD-J A34R genotype. The A34R protein affects plaque formation, EEV release, EEV infectivity, and virus virulence.  相似文献   

13.
The uptake of vaccinia virus in polarized epithelial cells was studied to determine whether the site of entry was confined to either the apical or the basolateral membrane. Virus infection was monitored with a recombinant vaccinia virus carrying the luciferase reporter gene. Using cell lines MDCK and MDCK-D11, a clonal line with high transepithelial electrical resistance, we determined that vaccinia virus preferentially enters through the basolateral membrane. The possibility that there is a polarized cell surface distribution of vaccinia virus receptors which may be involved in systemic poxvirus infections is discussed.  相似文献   

14.
Though vaccinia virus DNA and RNA replication take place predominantly in the cytoplasm of an infected cell, virus formation requires the presence of a functional nucleus in a yet undefined manner. When the nuclei from cells infected for 3 h are isolated and purified, they are found to synthesize five times more RNA in vitro than do corresponding nuclei from noninfected cells. Fifty percent of the RNA synthesized in vitro by nuclei from infected cells is vaccinia specific, and this vaccinia RNA synthesis is resistant to alpha-amanitin concentrations up to 100 micrograms/ml. Furthermore, when the RNA polymerase activities of these nuclei are separated on DEAE-Sephadex columns, 56% of the total nuclear enzyme activity is found to be the vaccinia-specific RNA polymerase known to be alpha-amanitin resistant. The nucleus associated vaccinia RNA polymerase represents 18% of the total cellular vaccinia RNA polymerase. This synthesis of vaccinia RNA in the nucleus may explain the nuclear requirement for vaccinia virus maturation.  相似文献   

15.
Vaccinia virus gene A18R encodes an essential DNA helicase.   总被引:3,自引:2,他引:1       下载免费PDF全文
  相似文献   

16.
17.
Vaccinia virus RNA helicase (NPH-II) catalyzes nucleoside triphosphate-dependent unwinding of duplex RNAs containing a single-stranded 3' RNA tail. In this study, we examine the structural features of the nucleic acid substrate that are important for helicase activity. Strand displacement was affected by the length of the 3' tail. Whereas NPH-II efficiently unwound double-stranded RNA substrates with 19- or 11-nucleotide (nt) 3' tails, shortening the 3' tail to 4 nt reduced unwinding by an order of magnitude. Processivity of the helicase was inferred from its ability to unwind a tailed RNA substrate containing a 96-bp duplex region. NPH-II exhibited profound asymmetry in displacing hybrid duplexes composed of DNA and RNA strands. A 34-bp RNA-DNA hybrid with a 19-nt 3' RNA tail was unwound catalytically, whereas a 34-bp DNA-RNA hybrid containing a 19-nt 3' DNA tail was 2 orders of magnitude less effective as a helicase substrate. NPH-II was incapable of displacing a 34-bp double-stranded DNA substrate of identical sequence. 3'-Tailed DNA molecules with 24- or 19-bp duplex regions were also inert as helicase substrates. On the basis of current models for RNA-DNA hybrid structures, we suggest the following explanation for these findings. (i) Unwinding of duplex nucleic acids by NPH-II is optimal when the polynucleotide strand of the duplex along which the enzyme translocates has adopted an A-form secondary structure, and (ii) a B-form secondary structure impedes protein translocation through DNA duplexes.  相似文献   

18.
We constructed a plasmid coexpression vector that directs the insertion of a foreign gene of interest together with the Escherichia coli beta-galactosidase (beta gal) gene into the thymidine kinase (TK) locus of the vaccinia virus genome. Tissue culture cells that had been infected with vaccinia virus were transfected with a plasmid vector containing a foreign gene. TK- recombinants could be selected by a plaque assay on TK- cells in the presence of 5-bromodeoxyuridine and distinguished from spontaneous TK- mutants by the addition of a beta-gal indicator to the agarose overlay. Plaques that expressed beta-gal stained dark blue within several hours at 37 degrees C. Alternatively, TK- selection could be eliminated, and recombinant plaques could be readily identified solely by their blue color. The reverse procedure, in which the starting virus expresses beta-gal (i.e., forms blue plaques) and the desired recombinant has deleted the entire beta-gal gene (i.e., forms white plaques), is another alternative. Each protocol was tested by constructing vaccinia virus recombinants that express hepatitis B virus surface antigen.  相似文献   

19.
Vaccinia virus produces late mRNAs by discontinuous synthesis   总被引:29,自引:0,他引:29  
We describe the unusual structure of a vaccinia virus late mRNA. In these molecules, the protein-coding sequences of a major late structural polypeptide are preceded by long leader RNAs, which in some cases are thousands of nucleotides long. These sequences map to different regions of the viral genome and in one instance are separated from the late gene by more than 100 kb of DNA. Moreover, the leader sequences map either upstream or downstream of the late gene, are transcribed from either DNA strand, and are fused to the late gene coding sequence via a poly(A) stretch. This demonstrates that vaccinia virus produces late mRNAs by tagging the protein-coding sequences onto the 3' end of other RNAs.  相似文献   

20.
cDNA clones of the genes encoding either the hemagglutinin (HA) or fusion (F) proteins of the Edmonston strain of measles virus (MV) were expressed in vaccinia virus recombinants. Immunofluorescence analysis detected both proteins on the plasma membranes of unfixed cells as well as internally in fixed cells. Immunoprecipitation of metabolically radiolabeled infected-cell extracts by using specific sera demonstrated a 76-kDa HA polypeptide and gene products of 60, 44, and 23 kDa which correspond to a MV F precursor and cleavage products F0, F1, and F2, respectively. Neither recombinant induced cell fusion of Vero cells when inoculated individually, but efficient cell fusion was readily observed upon coinfection of cells with both recombinants. Inoculation of dogs with the vaccinia virus-MV F recombinant (VV-MVF) did not give rise to detectable MV-neutralizing antibody. Inoculation of dogs with the vaccinia virus-MV HA recombinant (VV-MVHA) or coinoculation with both recombinants (VV-MVF and VV-MVHA) induced significant MV-neutralizing titers that were increased following a booster inoculation. Inoculation of dogs with the vaccinia virus recombinants or with MV failed to induce canine distemper virus (CDV)-neutralizing antibodies. Upon challenge with a lethal dose of virulent CDV, signs of infection were observed in dogs inoculated with (VV-MVF). No symptoms of disease were observed in dogs that had been vaccinated with VV-MVHA or with VV-MVHA and VV-MVF and then challenged with CDV. All dogs vaccinated with the recombinant viruses as well as those inoculated with MV or a vaccine strain of CDV survived CDV challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号