首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammals, the suprachiasmatic nuclei are involved in the generation of biological rhythms and are synchronized by light input coming from the retina. The targets of retinal afferents and the involvement of neurons containing gastrin-releasing and vasoactive intestinal peptides in photic reception were investigated in the suprachiasmatic nuclei of the Syrian hamster by using light- and electron-microscopic immunocytochemistry. Cholera toxin was used to trace retinal fibers and Fos immunoreactivity to visualize cellular response to light stimulation. Ultrastructural observations were made in the intermediate third of the nuclei, the area of highest overlap for the immunoreactivities investigated. Gastrin-releasing peptide and vasoactive intestinal peptide cell bodies were localized in the ventral part of the nuclei; their dense immunoreactive fiber network often displayed synaptic contacts. Both neuropeptides were colocalized in elongated cells observed near the optic chiasm. Following a light pulse in the middle of the subjective night, Fos protein was expressed in most gastrin-releasing peptide perikarya and in some vasoactive intestinal peptide cells. Retinal terminals mostly occurred in the midline zone between the suprachiasmatic nuclei. Symmetrical or asymmetrical retinal synapses were observed on gastrin-releasing peptide-immunoreactive dendrites and somata, but never on vasoactive intestinal peptide neurons. These results are discussed in relation to the photic entrainment of the circadian clock.  相似文献   

2.
Summary We examined the immunocytochemical distribution of tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis, in the di-and mesencephalon of developing bullfrog tadpoles. Special attention was given to catecholaminergic innervation of the median eminence and pituitary. In premetamorphic tadpoles, tyrosine hydroxylase-immunoreactive neurons were visualized in the suprachiasmatic and infundibular hypothalamus, the ventral thalamus, and midbrain tegmentum by Taylor-Kollros stage V. The number of labeled neurons in all these areas increased as metamorphosis progressed. By mid-prometamorphosis, labeled neurons appeared in the preoptic recess organ as well as in the posterior thalamic nucleus. The majority of cells in the preoptic recess organ, as well as occasional neurons in the suprachiasmatic nucleus, exhibited labeled processes which projected through the ependymal lining of the preoptic recess to contact cerebrospinal fluid. The modified CSF-contacting neurons of the nucleus of the periventricular organ were devoid of specific staining. By late prometamorphosis, labeled fibers from the suprachiasmatic nucleus were observed projecting caudally to enter the hypothalamo-hypophysial-tract en route to innervating the median eminence and pituitary. Labeled fibers arising from the dorsal infundibular nucleus projected ventrolaterally to contribute to catecholaminergic innervation of the median eminence and pituitary. Immunoperoxidase staining of tyrosine hydroxylase-immunoreactive fibers and terminal arborizations in the median eminence were restricted to non-ependymal layers, while labeled fibers in the pituitary were observed in the pars intermedia and pars nervosa. Staining of tyrosine hydroxylase-immunoreactive fibers in the median eminence and pituitary was sparse or absent in premetamorphic tadpoles, but became increasingly more intense as metamorphosis progressed.  相似文献   

3.
In mammals, many circadian rhythms are driven by a clock located inside the suprachiasmatic nucleus of the hypothalamus. They are synchronized to environmental light-dark cycles by information coming directly from the retina via glutamatergic afferents. In rodents, retinal fibres make direct synaptic contacts with neurons synthesizing vasoactive intestinal peptide and gastrin-releasing peptide. These two neuropeptides, administered alone or combined with the peptide histidine isoleucine, phase-shift the clock in the same way that light does. Using ICC and light and electron microscopy, our study demonstrates that subunits 2 and 3 of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-type glutamatergic receptors are colocalized in neurons expressing one or other of these three neuropeptides. Double-labelled neurons were located in the ventral and lateral ventral parts and near the symmetrical plane of the intermediate and caudal thirds of the nucleus. In light microscopy, brown and granular blue stainings of chromogens revealing both antigens were easily identifiable and spatially separated in perikarya. In electron microscopy, almost all the cells observed in these zones expressed the receptor subunits. A few labelled dendritic profiles, some of them post-synaptic, were observed; axon terminals were always unlabelled. Colocalization with vasoactive intestinal peptide and gastrin-releasing peptide was confirmed by the immunogold technique in perikarya and some dendrites. The present study suggests that peptidergic neurons expressing the AMPA receptors are involved in photic entrainment of the clock by the retina without excluding some glutamatergic information coming from other hypothalamic nuclei.  相似文献   

4.
Nonclassical neuronal communications   总被引:2,自引:0,他引:2  
Examples from classical neuronal communications are discussed in the light of biochemical and anatomical data. These are the nonsynaptic axo-axonic interactions of the enkephalinergic neurons on nerve terminals of peptidergic primary sensory afferents and dopaminergic nigrostriatal fibers. Examples of dendrites as presynaptic sites are discussed in three very different situations, namely, the dopaminergic dendrites of the substantia nigra neurons, the gamma-aminobutyric acid--ergic dendrites involved in reciprocal dendro-dendritic synapses in the olfactory bulb, and the peripheral branches of the substance P-containing primary sensory neurons.  相似文献   

5.
Summary The catecholaminergic innervation of thyrotropin-releasing hormone (TRH) neurons was examined by use of a combined method of 5-hydroxydopamine (5-OHDA) uptake or autoradiography after intraventricular injection of 3H-noradrenaline (3H-NA) and immunocytochemistry for TRH in the same tissue sections at the electron-microscopic level.TRH-like immunoreactive nerve cell bodies were distributed abundantly in the parvocellular part of the paraventricular nucleus (PVN), in the suprachiasmatic preoptic nucleus and in the dorsomedial nucleus of the rat hypothalamus. In the PVN, a large number of immunonegative axon terminals were found to make synaptic contact with TRH-like immunoreactive cell bodies and fibers. In the combined autoradiography or 5-OHDA labeling with immunocytochemistry, axon terminals labeled with 3H-NA or 5-OHDA were found to form synaptic contacts with the TRH immunoreactive nerve cell bodies and fibers. These findings suggest that catecholamine-containing neurons, probably noradrenergic, may innervate TRH neurons to regulate TRH secretion via synapses with other unknown neurons in the rat PVN.This study was supported by grants from the Ministry of Education, Science and Culture, Japan  相似文献   

6.
The catecholaminergic innervation of the hypothalamic paraventricular nucleus (PVN) of the rat was studied by preembedding immunocytochemical methods utilizing specific antibodies which were generated against catecholamine synthesizing enzymes. Phenylethanolamine-N-methyltransferase (PNMT)-immunoreactive terminals contained 80-120 nm dense core granules and 30-50 nm clear synaptic vesicles. The labeled boutons terminated on cell bodies and dendrites of both parvo- and magnocellular neurons of PVN via asymmetric synapses. The parvocellular subnuclei received a more intense adrenergic innervation than did the magnocellular regions of the nucleus. Dopamine-beta-hydroxylase (DBH)-immunopositive axons were most numerous in the periventricular zone and the medial parvocellular subnucleus of PVN. Labeled terminal boutons contained 70-100 nm dense granules and clusters of spherical, electron lucent vesicles. Dendrites, perikarya and spinous structures of paraventricular neurons were observed to be the postsynaptic targets of DBH axon terminals. These asymmetric synapses frequently exhibited subsynaptic dense bodies. Paraventricular neurons did not demonstrate either PNMT or DBH immunoreactivity. The fibers present within the nucleus which contained these enzymes are considered to represent extrinsic afferent connections to neurons of the PVN. Tyrosine hydroxylase (TH)-immunoreactivity was found both in neurons and neuronal processes within the PVN. In TH-cells, the immunolabel was associated with rough endoplasmic reticulum, free ribosomes and 70-120 nm dense granules. Occasionally, nematosome-like bodies and cilia were observed in the TH-perikarya. Unlabeled axons established en passant and bouton terminaux type synapses with these TH-immunopositive cells. TH-immunoreactive axons terminated on cell bodies as well as somatic and dendritic spines of paraventricular parvocellular neurons. TH-containing axons were observed to deeply invaginate into both dendrites and perikarya of magnocellular neurons. These observations provide ultrastructural evidence for the participation of central catecholaminergic neuronal systems in the regulation of the different neuronal and neuroendocrine functions which have been related to hypothalamic paraventricular neurons.  相似文献   

7.
In the amphibians Rana perezi and Xenopus laevis, the involvement of cholinergic and catecholaminergic neurons in the relay of basal ganglia inputs to the tectum was investigated. Tract-tracing experiments, in which anterograde tracers were applied to the basal ganglia and retrograde tracers to the optic tectum, were combined with immunohistochemistry for choline acetyltransferase and tyrosine hydroxylase. The results of these experiments suggest that dopaminergic neurons of the suprachiasmatic nucleus and pretectal region, noradrenergic cells of the locus coeruleus and the cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei mediate at least part of the basal ganglia input to the tectum in anurans.  相似文献   

8.
With its abundance of neurons and immunocytes, the gut is a potentially important site for the study of the interaction between the nervous and immune systems. Using immunohistochemical techniques, we tested the hypothesis that gut-associated lymphoid tissue in the porcine small intestine might receive catecholaminergic, cholinergic and peptidergic innervation. Antibodies against protein gene product (PGP) 9.5 were employed to detect neuronal membranes; antibodies against tyrosine hydroxylase (TH), type 2 vesicular monoamine transporter (VMAT-2) and choline acetyltransferase (ChAT) were used to detect catecholaminergic and cholinergic neurons; and antibodies to neuromedin U-8 (NMU-8), substance P (SP) and vasoactive intestinal peptide (VIP) were also used. PGP9.5-immunoreactive nerve fibers were observed between jejunal Peyer's patch (PP) follicles and in submucosal ganglia localized at the base of continuous ileal PP. Many ChAT-positive and a few TH-/VMAT-2-immunoreactive neurons or axons adjacent to jejunal and ileal PP were observed. Neurons and fibers from ganglia situated between or at the base of PP follicles manifested robust immunoreactivities to VIP and NMU-8; relatively less SP immunoreactivity was observed at these locations. All neuromedin-U 8-positive neurons observed exhibited immunoreactivity to ChAT as did some VIP-positive neurons. The specific chemical coding of enteric neurons in close apposition to jejunal and ileal PP and the differential localization of neuropeptides within the jejunal and ileal PP are indicative of neuroimmunomodulation at these sites.  相似文献   

9.
We describe a simple and reliable method for differential immunolabeling of pre- and post-synaptic signal peptides at the ultrastructural level. Hypothalamic tissues of rats, including the suprachiasmatic nucleus, were cut on a Vibratome. Visualization of the immunolabeling of somatostatin (SRIH) and vasoactive intestinal polypeptide (VIP) was performed with avidin-biotin-peroxidase-diaminobenzidine (DAB). The end product of the DAB to VIP was further silver-intensified in a physical processing using silver nitrate, and the silver grains were finally substituted for gold. DAB-labeled SRIH fibers synapse on gold-labeled VIP perikarya and dendrites in the suprachiasmatic nucleus.  相似文献   

10.
The lateral septum and the preoptic area of birds comprise neurons immunoreactive (ir) for vasoactive intestinal polypeptide (VIP) and gonadotropin-releasing hormone (GnRH). By use of immunohistochemical single- and double-labeling techniques, we have investigated the distribution and the connections of these two types of peptidergic neurons in the lateral septal-preoptic area of the pigeon at both the light- and electron-microscopic levels. An accumulation of VIP-like-ir neurons, some of which are cerebrospinal fluid-contacting neurons, is found in the area adjacent to the ventromedial walls of the lateral ventricles in the lateral septum corresponding to the medial part of the lateral septal organ. VIP-like-ir terminals are scattered throughout the lateral septal-preoptic area, which also contains GnRH-like-ir cell bodies. The number of GnRH-like-ir cell bodies in the lateral septum is smaller than that of the VIP-like-ir neurons. GnRH-like-ir cells have a simple bipolar or multipolar shape and a beaded axon that emerges from the soma or one of the proximal dendrites. Confocal laser scanning microscopy has shown VIP-like-ir terminals in close apposition to GnRH-like-ir cell bodies in the lateral septal-preoptic area. Furthermore, the electron-microscopic double-immunolabeling has revealed synaptic contacts between VIP-like-ir axon terminals and GnRH-like-ir cell bodies or dendrites. These contacts, however, do not show synaptic specializations. The present results suggest that functional interactions take place between VIP and GnRH neurons in the lateral septal-preoptic area of the pigeon and that these interactions are involved in mediating photoperiodic responses. Received: 14 November 1997 / Accepted: 19 December 1997  相似文献   

11.
Summary The innervation of the anococcygeus muscle of the rat was investigated with regard to the histochemical features of nerve fibers within the muscle and to the location of the postganglionic autonomic neurons which are the source of these fibers. Acetylcholinesterase-positive fibers and catecholaminergic fibers are abundant in the anococcygeus as well as the related retractor penis muscle. Neuronal somata, either between muscle bundles of the anococcygeus or in the connective tissue sheath, are also acetylcholinesterase-positive. Nerve fibers and a minority of the ganglion cells in the anococcygeus and retractor penis muscles are immunoreactive for vasoactive intestinal polypeptide. Injection of the retrogradely transported dye Fluorogold into the anococcygeus muscle filled neurons in the abdominopelvic sympathetic chain, pelvic plexus and a small number of neurons in the inferior mesenteric ganglion. In the pelvic plexus, some neurons were located in the major pelvic ganglion but most were found along the main penile nerve and its branches to the anococcygeus muscle. Immunocytochemistry of these identified neurons indicates that about one half of them are positive for vasoactive intestinal polypeptice. These results raise the possibility that both acetylcholine and vasoactive intestinal polypeptide are important neurotransmitters in autonomic nerves to the anococcygeus muscle.  相似文献   

12.
Suprachiasmatic nucleus in the rats during early postnatal development is transitorily innervated by tyrosine hydroxylase-immunoreactive fibers that are neither catecholamine- nor serotoninergic. The goal of this immunocytochemical investigation was to find out if tyrosine hydroxylase-immunoreactive neurons of anterior hypothalamus could be the source of this innervation. According to the obtained immunocytochemical data, multiple multipolar tyrosine hydroxylase-immunoreactive neurons are localized around the suprachiasmatic nucleus in the rats at days 2 and 10 of postnatal development. Most of them were observed ventrally and laterally to the nucleus. The axons of the neurons are oriented towards the suprachiasmatic nucleus. Further investigation demonstrated considerably decreased number of tyrosine hydroxylase-immunoreactive neurons surrounding the suprachiasmatic nucleus in the adult animals as compared to early postnatal period, which correlates to the number of tyrosine hydroxylase-immunoreactive fibers in this nucleus. Hence, tyrosine hydroxylase-immunoreactive neurons in the ventral region of anterior hypothalamus can be considered as a potential source of transitory innervation of suprachiasmatic nucleus by tyrosine hydroxylase-immunoreactive fibers during early postnatal development.  相似文献   

13.
Summary Catecholamines are known to exert a central influence on the hypothalamo-hypophyseal-adrenal neuroendocrine system. The selective dopaminergic innervation of the hypothalamic paraventricular nucleus (PVN) and putative relationships between dopaminergic fibers and corticotropin releasing hormone (CRH)-synthesizing neurons were studied in the male rat by means of immunocytochemistry following the elimination of noradrenergic and adrenergic inputs to the hypothalamus. A 3.0-mm-wide coronal cut was placed unilaterally in the brain at the rostral level of the mesencephalon. All neuronal structures from the cortex to the ventral surface of the brainstem, including the ascending catecholaminergic fiber bundles were transected. This surgical intervention resulted in the accumulation of dopamine--hydroxylase (DBH)-immunoreactivity in axons proximal to the cut, and an almost complete disappearance of DBH activity in those located distal to the lesion. Two weeks following the operation, DBH immunoreactivity was significantly diminished in the PVN located on the side of lesion, while tyrosine hydroxylase (TH)-immunoreactivity was present in a substantial number of fibers in the same nucleus. Both DBH- and TH-immunoreactive axons were preserved in the contralateral PVN. Simultaneous immunocytochemical localization of either DBH- or TH-IR fibers and corticotropin releasing hormone-synthesizing neurons in the hypothalami from brainstem-lesioned, colchicine treated animals revealed that the distribution of catecholaminergic fibers and CRH neurons is homologous within the PVN of the intact side. Only a few scattered DBH-immunoreactive axons were detected among CRH-producing neurons in the PVN on the side of the lesion. In contrast, many tyrosine hydroxylase containing neurons and neuronal processes were observed on the lesioned side and the TH-IR fibers established juxtapositions with CRH-synthesizing neurons.These morphological data demonstrate that following the surgical ablation of noradrenergic and adrenergic afferents to the PVN, a substantial number of tyrosine hydroxylase-IR fibers remained in the nucleus and they were associated with corticotropin releasing hormone synthesizing neurons. Therefore, it is hypothesized that the paraventricular nucleus receives a selective dopaminergic innervation and these dopaminergic axons might influence the function of the pituitary and adrenal glands via the hypothalamic CRH system.Supported by grants from the National Science Foundation (NSF INT 8703030), the Hungarian Academy of Sciences (OTKA 104), the National Institutes of Health (NS 19266) and the National Foundation of Technical Development (OKKFT Tt 286/1986)  相似文献   

14.
Suprachiasmatic nucleus in the rats during early postnatal development is transitorily innervated by tyrosine hydroxylase-immunoreactive fibers that are neither catecholamine- nor serotoninergic. The goal of this immunocytochemical investigation was to find out if tyrosine hydroxylase-immunoreactive neurons of anterior hypothalamus could be the source of this innervation. According to the obtained immunocytochemical data, multiple multipolar tyrosine hydroxylase-immunoreactive neurons are localized around the suprachiasmatic nucleus in the rats at days 2 and 10 of postnatal development. Most of them were observed ventrally and laterally to the nucleus. The axons of the neurons are oriented towards the suprachiasmatic nucleus. Further investigation demonstrated considerably decreased number of tyrosine hydroxylase-immunoreactive neurons surrounding the suprachiasmatic nucleus in the adult animals as compared to early postnatal period, which correlates to the number of tyrosine hydroxylase-immunoreactive fibers in this nucleus. Hence, tyrosine hydroxylase-immunoreactive neurons in the ventral region of anterior hypothalamus can be considered as a potential source of transitory innervation of suprachiasmatic nucleus by tyrosine hydroxylase-immunoreactive fibers during early postnatal development.  相似文献   

15.
Following a demonstration of Golgi-impregnated neurons and their terminal axon arborization in the optic tectum, the neurons of the nucleus parvocellularis and magnocellularis isthmi were studied by means of postembedded electron-microscopical (EM) γ-aminobutyric acid (GABA)-immunogold staining. In the parvocellular nucleus, none of the neuronal cell bodies or dendrites displayed GABA-like immunoreactivity in EM preparations stained by postembedded GABA-immunogold. However, numerous GABA-like immunoreactive and also unlabeled terminals established synapses with GABA-negative neurons. GABA-like immunoreactive terminals were usually found at the dendritic origin. Around the dendritic profiles, isolated synapses of both GABA-like immunoreactive and immunonegative terminals established glomerulus-like structures enclosed by glial processes. All giant and large neurons of the magnocellular nucleus of the isthmi displayed GABA-like immunoreactivity. Their cell surface was completely covered by GABA-like immunoreactive and unlabeled terminals that established synapses with the neurons. These neurons are thought to send axon collaterals to the parvocellular nucleus; their axons enter the tectum opticum. The morphological characteristics of neurons of both isthmic nuclei are like those of interneurons, because of their numerous axosomatic synapses with both asymmetrical and symmetrical features. These neurons are not located among their target neurons and exert their modulatory effect on optic transmission in the optic tectum at a distance.  相似文献   

16.
Summary The catecholaminergic innervation of the hypothalamic paraventricular nucleus (PVN) of the rat was studred by preembedding immunocytochemical methods utilizing specific antibodies which were generated against catecholamine synthesizing enzymes. Phenylethanolamine-N-methyltransferase (PNMT)-immunoreactive terminals contained 80–120 nm dense core granules and 30–50 nm clear synaptic vesicles. The labeled boutons terminated on cell bodies and dendrites of both parvo- and magnocellular neurons of PVN via asymmetric synapses. The parvocellular subnuclei received a more intense adrenergic innervation than did the magnocellular regions of the nucleus. Dopamine--hydroxylase (DBH)-immunopositive axons were most numerous in the periventricular zone and the medial paryocellular subnucleus of PVN. Labeled terminal boutens contained 70–100 nm dense granules and clusters of spherical, electron lucent vesicles. Dendrites, perikarya and spinous structures of paraventricular neurons were observed to be the postsynaptic targets of DBH axon terminals. These asymmetric synapses frequently exhibited subsynaptic dense bodies. Paraventricular neurons did not demonstrate either PNMT or DBH immunoreactivity. The fibers present within the nucleus which contained these enzymes are considered to represent extrinsic afferent connections to neurons of the PVN.Tyrosine hydroxylase (TH)-immunoreactivity was found both in neurons and neuronal processes within the PVN In TH-cells, the immunolabel was associated with rough endoplasmic reticulum, free ribosomes and 70–120 nm dense granules. Occasionally, nematosome-like bodies and cilia were observed in the TH-perikarya. Unlabeled axons established en passant and bouton terminaux type synapses with these TH-immunopositive cells. TH-immunoreactive axons terminated on cell bodies as well as somatic and dendritic spines of paraventricular parvocellular neurons. TH-containing axons were observed to deeply invaginate into both dendrites and perikarya of magnocellular neurons.These observations provide ultrastructural evidence for the participation of central catecholaminergic neuronal systems in the regulation of the different neuronal and neuroendocrine functions which have been related to hypothalamic paraventricular neurons.Supported by NIH Grant NS 19266 to W.K. Paull  相似文献   

17.
Summary Two nuclei, termed here the medial hypothalamic nucleus and the lateral hypothalamic retinorecipient nucleus, are possible homologs of the mammalian suprachiasmatic nucleus. As the mammalian suprachiasmatic nucleus is characterized by a dense concentration of vasoactive intestinal peptide (VIP)-and neurophysin (NP)-immunoreactive neurons and an absence of acetylcholinesterase (AChE) staining, we decided to examine these factors in the ring dove hypothalamus. Neither the medial hypothalamic nucleus nor the lateral hypothalamic retinorecipient nucleus contained either VIP-or NP-like immunoreactive neurons. The lateral hypothalamic retinorecipient nucleus stained darkly for AChE. Although there was some overlap in the distribution of VIP-and NP-like immunoreactive neurons, a clustering of both types into a well defined nucleus was not observed. Therefore, an avian homolog to the mammalian suprachiasmatic nucleus must differ in its chemoarchitecture from that of mammalian species described to date.  相似文献   

18.
The hypothalamic suprachiasmatic nucleus is centrally involved in generation of several circadian rhythms. Neurons of the mammalian suprachiasmatic nucleus express a number of neuropeptides including vasopressin. The suprachiasmatic nucleus of the mink (Mustela vison) is easily distinguished from neighbouring hypothalamic areas and the underlying optic chiasm as a small nucleus containing densely packed parvocellular neurons. A dorsal and ventral subdivision were clearly recognized within the midportion and caudal part of the nuclcus. Using immunohistochemistry, we have identified vasopressin-, neurophysin-, and vasoactive intestinal peptide-immunoreactive neuronal elements in the hypothalamus of the mink. Vasoactive intestinal peptide-immunoreactive neurons can be observed in the ventral aspect of the suprachiasmatic nucleus, but to our surprise, no vasopressin immunoreactive perikarya are found within the suprachiasmatic nucleus, this absence being independent of the experienced annual cycle. The hypothalamic paraventricular and supraoptic nuclei contain large numbers of vasopressin-, neurophysin-and vasoactive intestinal peptide-immunoreactive magnocellular neurons with extensive projections towards the infundibulum and neurohypophysis. A comparative analysis of the distribution of vasopressin-immunoreactive elements in a number of conventional laboratory animals has demonstrated that, in contrast to the rat, golden hamster and Mongolian gerbil, neither vasopressin-containing perikarya in the suprachiasmatic nucleus nor fine calibered immunoreactive fibres entering the adjacent subparaventricular zone are present in the mink. The mink is a photodependent seasonal breeder, and thus vasopressin-immunoreactive neurons in the suprachiasmatic nuclei may not be essential for the photoperiodic regulation of reproduction and seasonal events experienced by this species.  相似文献   

19.
Cholinergic agonists and certain peptides of the glucagon-secretin family acutely increase tyrosine hydroxylase activity in the superior cervical ganglion in vitro. The present study was designed to investigate possible interactions between these two classes of agonists in regulating catecholamine biosynthesis. Synergistic effects were found between carbachol and either secretin or vasoactive intestinal peptide in the regulation of DOPA (dihydroxyphenylalanine) synthesis. In addition, synergism was found at the level of the accumulation of cyclic adenosine monophosphate, the likely second messenger in the peptidergic regulation of tyrosine hydroxylase activity. The synergism seen with carbachol was blocked by a muscarinic, but not by a nicotinic, antagonist. Synergism was also found between bethanechol, a muscarinic agonist, and secretin, but not between secretin and dimethylphenylpiperazinium, a nicotinic agonist. Since previous immunohistochemical results suggest that vasoactive intestinal peptide and acetylcholine are colocalized in some preganglionic sympathetic neurons, the present data raise the possibility that the two might act synergistically in vivo in regulating catecholamine biosynthesis. Synergistic postsynaptic actions may be a common feature at synapses where peptides of the secretin-glucagon and acetylcholine are colocalized.  相似文献   

20.
Summary The anterograde tracer Phaseolus vulgaris-leucoagglutinin was injected into the medial nucleus of the solitary tract and into the rostral dorsomedial medulla. A sequential two-color immunoperoxidase staining was accomplished in order to demonstrate the co-distribution of presumed terminal axons with chemically distinct neurons in the dorsal raphe nucleus of the midbrain central gray, i.e., B7 serotonergic and A10dc dopaminergic neurons. Black-stained efferent fibers from the medial nucleus of the solitary tract and the rostral dorsomedial medulla intermingled with brown-stained serotonergic (5-hydroxytryptamine-immunoreactive) or dopaminergic (tyrosine hydroxylase-immunoreactive) neurons. Light microscopy revealed that the black-stained efferent axons exhibited numerous en passant and terminal varicosities that were often found in close apposition to brown-stained serotonergic and dopaminergic somata, and to proximal and distal dendrites and dendritic processes. The close association of immunoreactive elements suggests the presence of axo-somatic and axodendritic synaptic contacts of medullary fibers with serotonergic and dopaminergic neurons in the dorsal raphe nucleus. These projections could be involved in the modulation of dorsal raphe neurons, depending on the autonomic status of an animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号