首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel model lipid bilayer membrane is prepared by the addition of phospholipid vesicles to alkanethiol monolayers on gold. This supported hybrid bilayer membrane is rugged, easily and reproducibly prepared in the absence of organic solvent, and is stable for very long periods of time. We have characterized the insulating characteristics of this membrane by examining the rate of electron transfer and by impedance spectroscopy. Supported hybrid bilayers formed from phospholipids and alkanethiols are pinhole-free and demonstrate measured values of conductivity and resistivity which are within an order of magnitude of that reported for black lipid membranes. Capacitance values suggest a dielectric constant of 2.7 for phospholipid membranes in the absence of organic solvent. The protein toxin, melittin, destroys the insulating capability of the phospholipid layer without significantly altering the bilayer structure. This model membrane will allow the assessment of the effect of lipid membrane perturbants on the insulating properties of natural lipid membranes.  相似文献   

2.
A hybrid bilayer membrane is a planar model membrane that is formed at an alkanethiol monolayer-coated gold surface by the spontaneous reorganization of phospholipid vesicles. Membrane vesicles from monkey kidney COS-1 cells also reorganize at an alkanethiol/lipid monolayer-coated surface resulting in the formation of a cell membrane hybrid bilayer. Atomic force microscopy and spectroscopic ellipsometry indicate that the cell membrane layer is equivalent to the thickness of one leaflet of the membrane and is continuous over large areas. Cell membrane hybrid bilayers were formed from membrane vesicles from COS-1 cells that were transiently transfected with a synthetic human CCR5 chemokine receptor gene. Preparations that contained "inside out" and "right side out" membrane vesicles were used. Binding of monoclonal antibodies to either the amino- or carboxyl-terminus of CCR5 was observed by surface plasmon resonance and confirmed the presence and the random orientation of these integral membrane receptors. Specific and concentration-dependent binding of the beta-chemokine RANTES to the cell membrane hybrid confirmed that CCR5 retained ligand-binding activity. The ability to form cell membrane hybrid bilayers that contain functional G-protein-coupled or other multispanning receptors without requiring protein isolation, purification, and reconstitution offers a promising method for the rapid screening of potential ligands.  相似文献   

3.
The structural effects of cadmium on cell membranes were studied through the interaction of Cd(2+) ions with human erythrocytes and their isolated unsealed membranes (IUM). Studies were carried out by scanning electron microscopy and fluorescence spectroscopy, respectively. Cd(2+) induced shape changes in erythrocytes, which took the form of echinocytes. According to the bilayer couple hypothesis, this result meant that Cd(2+) ions located in the outer monolayer of the erythrocyte membrane. Fluorescence spectroscopy measurements in IUM indicated a disordering effect at both the polar headgroup and the acyl chain packing arrangements of the membrane phospholipid bilayer. Cd(2+) ions also interacted with molecular models of the erythrocyte membrane consisting in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representing classes of phospholipids located in the outer and inner monolayers the erythrocyte membrane, respectively. X-ray diffraction indicated that Cd(2+) ions induced structural perturbation of the polar headgroup and of the hydrophobic acyl regions of DMPC, while the effects of cadmium on DMPE bilayers were much milder. This conclusion is supported by fluorescence spectroscopy measurements on DMPC large unilamellar vesicles (LUV). All these findings point to the important role of phospholipid bilayers in the interaction of cadmium on cell membranes.  相似文献   

4.
This study reports the solid-state NMR spectroscopic characterization of a long chain phospholipid bilayer system which spontaneously aligns in a static magnetic field. Magnetically aligned phospholipid bilayers or bicelles are model systems which mimic biological membranes for magnetic resonance studies. The oriented membrane system is composed of a mixture of the bilayer forming phospholipid palmitoylstearoylphosphatidylcholine (PSPC) and the short chain phospholipid dihexanoylphosphatidylcholine (DHPC) that breaks up the extended bilayers into bilayered micelles or bicelles that are highly hydrated (approx. 75% aqueous). Traditionally, the shorter 14 carbon chain phospholipid dimyristoylphosphatidylcholine (DMPC) has been utilized as the bilayer forming phospholipid in bicelle studies. Alignment (perpendicular) was observed with a PSPC/DHPC q ratio between 1.6 and 2.0 slightly above T(m) at 50 degrees C with (2)H and (31)P NMR spectroscopy. Paramagnetic lanthanide ions (Yb(3+)) were added to flip the bilayer discs such that the bilayer normal was parallel with the static magnetic field. The approx. 1.8 (PSPC/DHPC) molar ratio yields a thicker membrane due to the differences in the chain lengths of the DMPC and PSPC phospholipids. The phosphate-to-phosphate thickness of magnetically aligned PSPC/DHPC phospholipid bilayers in the L(alpha) phase may enhance the activity and/or incorporation of different types of integral membrane proteins for solid-state NMR spectroscopic studies.  相似文献   

5.
As an approach to create versatile model systems of the biological membrane we have recently developed a novel micropatterning strategy of substrate-supported planar lipid bilayers (SPBs) based on photolithographic polymerization of a diacetylene phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine. The micropatterned SPBs are composed of a polymeric bilayer matrix and embedded fluid lipid bilayers. In this study, we investigated the incorporation of fluid bilayers into micropatterned polymeric bilayer matrices through the adsorption and reorganization of phospholipid vesicles (vesicle fusion). Total internal reflection fluorescence microscopy observation showed that vesicle fusion started at the boundary of polymeric bilayers and propagated into the central part of lipid-free regions. On the other hand, quartz crystal microbalance with dissipation monitoring revealed that the transformation from adsorbed vesicles into SPBs was significantly accelerated for substrates with micropatterned polymeric bilayers. These results indicate that the edges of polymeric bilayers catalyze the formation of SPBs by destabilizing adsorbed vesicles and also support the premise that polymeric bilayers and embedded fluid bilayers are forming a continuous hybrid bilayer membrane, sealing energetically unfavorable bilayer edges.  相似文献   

6.
Drugs which exert their effects by interacting with DNA cause structural and functional membrane alterations which may be essential for growth inhibition by these agents. This paper describes the interaction of cisplatin with the human erythrocyte membrane and models constituted by bilayers of dimyristoylphosphatidylethanolamine (DMPE) and diacylphosphatidylserine (DAPS), representative of phospholipid classes located in the inner monolayer of the erythrocyte membrane, and of dimyristoylphosphatidylcholine (DMPC), a class present in its outer monolayer. Cisplatin ability to perturb DMPE, DAPS and DMPC bilayer structures was determined by X-ray diffraction and fluorescence spectroscopy. Electron microscopy disclosed that human erythrocytes incubated with 35 microM cisplatin, which is its therapeutical concentration in serum, developed cup-shaped forms (stomatocytes). According to the bilayer couple hypothesis, this means that the drug is inserted into the inner monolayer of the erythrocyte membrane, a conclusion supported by the studies on model systems.  相似文献   

7.
Phospholipid single bilayers supported on a hydrophilic solid substrate are extensively used in the study of the interaction between model membranes and proteins or polypeptides. In this article, the formation of a single dimyristoylphosphatidylcholine (DMPC) bilayer under an octadecyltrimethoxysilane (OTMS) polymerized Langmuir monolayer at the air-water interface is followed by Brewster angle microscopy (BAM) and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). The formation of the bilayer is initiated by injection of dimyristoylphosphatidylcholine small unilamellar vesicles into the aqueous subphase. Brewster angle microscopy allows visualization of the kinetics of formation and the homogeneity of the bilayer. Spectral simulations of the polarization-modulated infrared reflection absorption spectroscopy spectra reveal that the bilayer thickness is 39 +/- 5 A. This system constitutes the first example of a phospholipid bilayer on a "nanoscopic" support and opens the way to studies involving supported bilayers using powerful experimental techniques such as x-ray reflectivity, vibrational spectroscopies, or Brewster angle microscopy.  相似文献   

8.
Sun F 《Biophysical journal》2002,82(5):2511-2519
A constant normal pressure, constant surface tension, and constant temperature (NP(N)gammaT) molecular dynamics (MD) simulation of the liquid condensed phase of a 1,2-dilignoceroylphosphatidylcholine (DLGPC) monolayer has been performed at 293.15 K. A DLGPC molecule has two saturated 24-carbon acyl chains, giving the hydrocarbon core thickness of the monolayer approximately 28 A, which is close to the hydrocarbon core thickness of a membrane of a living system. NP(N)gammaT ensemble was used to reproduce the experimental observations, such as area/lipid, because surface tension is an essential factor in determining the monolayer structure. Data analysis on DLGPC/water monolayer shows that various liquid condensed-phase properties of the monolayer have been well reproduced from the simulation, indicating that surface tension 22.9 mN/M used in the simulation is an appropriate condition for the condensed-phase NP(N)gammaT simulation. The simulation results suggest that this long-chain phospholipid monolayer shares many structural characteristics with typical short-chain 1,2-diacylphosphatidylcholine systems, such as DPPC/water monolayer in the condensed phase and DPPC/water bilayer in the gel phase. Furthermore, it was found that DLGPC/water monolayer has almost completely rotationally disordered acyl chains, which have not been observed so far in short-chain 1,2-diacylphosphatidylcholine/water bilayers. This study indicates the good biological relevance of the DLGPC/water monolayer which might be useful in protein/lipid studies to reveal protein structure and protein/lipid interactions in a membrane environment.  相似文献   

9.
Deuterium solid-state NMR spectroscopy was used to qualitatively study the effects of both 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLiPC) and cholesterol on magnetically aligned phospholipid bilayers (bicelles) as a function of temperature utilizing the chain-perdeuterated probe 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC-d54) in DMPC/dihexanoylPC (DHPC) phospholipid bilayers. The results demonstrate that polyunsaturated PC and cholesterol were successfully incorporated into DMPC/DHPC phospholipid bilayers, leading to a bicelle that will be useful for investigations of eukaryotic membrane protein-lipid interactions. The data indicate that polyunsaturated PC increases membrane fluidity and decreases the minimum magnetic alignment temperature for DMPC/DHPC bicelles. Conversely, the introduction of cholesterol into aligned DMPC/DHPC bilayers decreases fluidity in the membrane and increases the minimum temperature necessary to magnetically align the phospholipid bilayers. Finally, the addition of Tm3+ to magnetically aligned DMPC/DMPC-d54/PLiPC/DHPC bilayers doubles the quadrupolar splittings, indicating that this unique bicelle system can be aligned with the bilayer normal parallel to the static magnetic field.  相似文献   

10.
Bovine lactoferricin (LfcinB) is an antimicrobial peptide released by pepsin cleavage of lactoferrin. In this work, the interaction between LfcinB and acidic phospholipid bilayers with the weight percentage of 65% dimyristoylphosphatidylglycerol (DMPG), 10% cardiolipin (CL) and 25% dimyristoylphosphatidylcholine (DMPC) was investigated as a mimic of cell membrane of Staphylococcus aureus by means of quartz crystal microbalance (QCM) and solid-state (31)P and (1)H NMR spectroscopy. Moreover, we elucidated a molecular mechanism of the antimicrobial activity of LfcinB by means of potassium ion selective electrode (ISE). It turned out that affinity of LfcinB for acidic phospholipid bilayers was higher than that for neutral phospholipid bilayers. It was also revealed that the association constant of LfcinB was larger than that of lactoferrin as a result of QCM measurements. (31)P DD-static NMR spectra indicated that LfcinB interacted with acidic phospholipid bilayers and bilayer defects were observed in the bilayer systems because isotropic peaks were clearly appeared. Gel-to-liquid crystalline phase transition temperatures (Tc) in the mixed bilayer systems were determined by measuring the temperature variation of relative intensities of acyl chains in (1)H MAS NMR spectra. Tc values of the acidic phospholipid and LfcinB-acidic phospholipid bilayer systems were 21.5 degrees C and 24.0 degrees C, respectively. To characterize the bilayer defects, potassium ion permeation across the membrane was observed by ISE measurements. The experimental results suggest that LfcinB caused pores in the acidic phospholipid bilayers. Because these pores lead the permeability across the membrane, the molecular mechanism of the antimicrobial activity could be attributed to the pore formation in the bacterial membrane induced by LfcinB.  相似文献   

11.
Lipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein interactions that depend on bilayer material properties. Here we address the changes in lipid bilayer structure induced by external pressure. Solid-state 2H NMR spectroscopy of phospholipid bilayers under osmotic stress allows structural fluctuations and deformation of membranes to be investigated. We highlight the results from NMR experiments utilizing pressure-based force techniques that control membrane structure and tension. Our 2H NMR results using both dehydration pressure (low water activity) and osmotic pressure (poly(ethylene glycol) as osmolyte) show that the segmental order parameters (S(CD)) of DMPC approach very large values of ≈ 0.35 in the liquid-crystalline state. The two stresses are thermodynamically equivalent, because the change in chemical potential when transferring water from the interlamellar space to the bulk water phase corresponds to the induced pressure. This theoretical equivalence is experimentally revealed by considering the solid-state 2H NMR spectrometer as a virtual osmometer. Moreover, we extend this approach to include the correspondence between osmotic pressure and hydrostatic pressure. Our results establish the magnitude of the pressures that lead to significant bilayer deformation including changes in area per lipid and volumetric bilayer thickness. We find that appreciable bilayer structural changes occur with osmotic pressures in the range of 10-100 atm or lower. This research demonstrates the applicability of solid-state 2H NMR spectroscopy together with bilayer stress techniques for investigating the mechanism of pressure sensitivity of membrane proteins.  相似文献   

12.
We have investigated the phospholipase A(2) catalyzed hydrolysis of supported phospholipid bilayers using neutron reflection and ellipsometry. At the hydrophilic silica-water interface, hydrolysis of phosphatidylcholine bilayers by phospholipase A(2) from Naja mossambica mossambica venom is accompanied by destruction of the bilayer at an initial rate, which is comparable for DOPC and DPPC but is doubled for POPC. The extent of bilayer destruction at 25 degrees C decreases from DOPC to POPC and is dramatically reduced for DPPC. Neutron reflectivity measurements indicate that the enzyme penetrates into the bilayers in increasing order for DOPC, POPC, and DPPC, while the amount of enzyme adsorbed at the interface is smallest for DPPC and exhibits a maximum for POPC. Penetration into the hydrophobic chain region in the bilayer is further supported by the fact that the enzyme adsorbs strongly and irreversibly to a hydrophobic monolayer of octadecyltrichlorosilane. These results are rationalized in terms of the properties of the reaction products and the effect of their accumulation in the membrane on the kinetics of enzyme catalysis.  相似文献   

13.
Substrate-supported lipid bilayers have been prepared from bis-diene functionalized phosphorylcholine (PC) lipids and polymerized by UV irradiation. The overall bilayer structure is largely preserved upon removal from water, although significant loss of material occurs from the upper leaflet of the bilayer, likely due to desorption at the air/water interface. The morphology and surface structure of the bilayer, as observed by AFM, indicate a substantially different arrangement of the lipids in the hydrated and dehydrated states, presumably due to the loss of water from the near surface region. These changes have been correlated with infrared spectral shifts sensitive to the conformation of the hydrocarbon chains. Protein adsorption studies show that rehydrated, polymerized bilayers retain a degree of resistance to BSA adsorption intermediate between model hydrophobic and fluid PC lipid bilayer surfaces. The degree of protein adsorption is correlated with desorption of material from the upper leaflet of the bilayer upon drying, which produces voids at which hydrophobically driven protein adsorption occurs.  相似文献   

14.
These studies develop a methodology to form supported phospholipid bilayers at an electrode/solution interface that models biological membrane systems. Two kinds of electrode were used, a planar gold electrode and a microporous aluminium oxide electrode on which octadecanethiol or octadecyltrichlorosilane was self-assembled. The supported lipidic structures were produced by transfer of a phospholipid monolayer by the Langmuir—Blodgett technique or by direct fusion of phospholipid vesicles. Ubiquinone was introduced into the lipidic structures during their formation; electrochemical measurements demonstrated the mobility of ubiquinone along the plane of the bilayer. A membrane enzyme, pyruvate oxidase from E. coli, was successfully incorporated into this artificial bilayer and was found to be able to exchange electrons with ubiquinone present in the bilayer.  相似文献   

15.
Lipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein interactions that depend on bilayer material properties. Here we address the changes in lipid bilayer structure induced by external pressure. Solid-state 2H NMR spectroscopy of phospholipid bilayers under osmotic stress allows structural fluctuations and deformation of membranes to be investigated. We highlight the results from NMR experiments utilizing pressure-based force techniques that control membrane structure and tension. Our 2H NMR results using both dehydration pressure (low water activity) and osmotic pressure (poly(ethylene glycol) as osmolyte) show that the segmental order parameters (SCD) of DMPC approach very large values of ≈0.35 in the liquid-crystalline state. The two stresses are thermodynamically equivalent, because the change in chemical potential when transferring water from the interlamellar space to the bulk water phase corresponds to the induced pressure. This theoretical equivalence is experimentally revealed by considering the solid-state 2H NMR spectrometer as a virtual osmometer. Moreover, we extend this approach to include the correspondence between osmotic pressure and hydrostatic pressure. Our results establish the magnitude of the pressures that lead to significant bilayer deformation including changes in area per lipid and volumetric bilayer thickness. We find that appreciable bilayer structural changes occur with osmotic pressures in the range of 10−100 atm or lower. This research demonstrates the applicability of solid-state 2H NMR spectroscopy together with bilayer stress techniques for investigating the mechanism of pressure sensitivity of membrane proteins.  相似文献   

16.
Bovine lactoferricin (LfcinB) is an antimicrobial peptide released by pepsin cleavage of lactoferrin. In this work, the interaction between LfcinB and acidic phospholipid bilayers with the weight percentage of 65% dimyristoylphosphatidylglycerol (DMPG), 10% cardiolipin (CL) and 25% dimyristoylphosphatidylcholine (DMPC) was investigated as a mimic of cell membrane of Staphylococcus aureus by means of quartz crystal microbalance (QCM) and solid-state 31P and 1H NMR spectroscopy. Moreover, we elucidated a molecular mechanism of the antimicrobial activity of LfcinB by means of potassium ion selective electrode (ISE). It turned out that affinity of LfcinB for acidic phospholipid bilayers was higher than that for neutral phospholipid bilayers. It was also revealed that the association constant of LfcinB was larger than that of lactoferrin as a result of QCM measurements. 31P DD-static NMR spectra indicated that LfcinB interacted with acidic phospholipid bilayers and bilayer defects were observed in the bilayer systems because isotropic peaks were clearly appeared. Gel-to-liquid crystalline phase transition temperatures (Tc) in the mixed bilayer systems were determined by measuring the temperature variation of relative intensities of acyl chains in 1H MAS NMR spectra. Tc values of the acidic phospholipid and LfcinB-acidic phospholipid bilayer systems were 21.5 °C and 24.0 °C, respectively. To characterize the bilayer defects, potassium ion permeation across the membrane was observed by ISE measurements. The experimental results suggest that LfcinB caused pores in the acidic phospholipid bilayers. Because these pores lead the permeability across the membrane, the molecular mechanism of the antimicrobial activity could be attributed to the pore formation in the bacterial membrane induced by LfcinB.  相似文献   

17.
Quinn PJ  Wolf C 《The FEBS journal》2010,277(22):4685-4698
Protein sorting and assembly in membrane biogenesis and function involves the creation of ordered domains of lipids known as membrane rafts. The rafts are comprised of all the major classes of lipids, including glycerophospholipids, sphingolipids and sterol. Cholesterol is known to interact with sphingomyelin to form a liquid-ordered bilayer phase. Domains formed by sphingomyelin and cholesterol, however, represent relatively small proportions of the lipids found in membrane rafts and the properties of other raft lipids are not well characterized. We examined the structure of lipid bilayers comprised of aqueous dispersions of ternary mixtures of phosphatidylcholines and sphingomyelins from tissue extracts and cholesterol using synchrotron X-ray powder diffraction methods. Analysis of the Bragg reflections using peak-fitting methods enables the distinction of three coexisting bilayer structures: (a) a quasicrystalline structure comprised of equimolar proportions of phosphatidylcholine and sphingomyelin, (b) a liquid-ordered bilayer of phospholipid and cholesterol, and (c) fluid phospholipid bilayers. The structures have been assigned on the basis of lamellar repeat spacings, relative scattering intensities and bilayer thickness of binary and ternary lipid mixtures of varying composition subjected to thermal scans between 20 and 50 °C. The results suggest that the order created by the quasicrystalline phase may provide an appropriate scaffold for the organization and assembly of raft proteins on both sides of the membrane. Co-existing liquid-ordered structures comprised of phospholipid and cholesterol provides an additional membrane environment for assembly of different raft proteins.  相似文献   

18.
Blume A 《Biophysical chemistry》1979,10(3-4):371-378
The influence of 1.4.-dioxan on the bilayer phase transition of various phospholipids was studied by differential scanning calorimetry and turbidity measurements. The addition of 1.4.-dioxan to lipid bilayers decreases the transition temperature Tm increases the transition enthalpy of the transition. The cooperativity of the transition is unaffected. The phospholipid monolayer transition from the liquid-condensed to the liquid-expanded phase was measured by recording area versus temperature curves at constant surface pressure (isobars). The monolayer transition temperature at constant surface pressure is increased when 1.4.-dioxan is added to the subphase. The change in molecular area becomes larger. A comparison of monolayer isobars on water and water/dioxan as subphase at constant surface tension rather than surface pressure leads to a decrease of the transition temperature on water/dioxan as subphase. This decrease as well as the larger change in molecular area at the monolayer transition can be correlated to the decrease in Tm and the increase in the transition enthalpy of the corresponding bilayer system. 1.4.-Dioxan seems to accumulate at the lipid head group/water interface, thus lowering the tension of the bilayer membrane. This cyclic ether can be used for altering the characteristics of bilayer membranes without disturbing the lipid chain organization.  相似文献   

19.
We examined the permeabilization of lipid bilayers by the beta-sheet, cyclic antimicrobial decapeptide gramicidin S (GS) in phospholipid bilayers formed either by mixtures of zwitterionic diphytanoylphosphatidylcholine and anionic diphytanoylphosphatidylglycerol or by single zwitterionic unsaturated phosphatidylcholines having various hydrocarbon chain lengths, with and without cholesterol. In the zwitterionic bilayers formed by the phosphatidylcholines, without or with cholesterol, the peptide concentrations and membrane potentials required to initiate membrane permeabilization vary little as function of bilayer thickness and cholesterol content. In all the systems tested, the GS-induced transient ion conductance events exhibit a broad range of conductances, which are little affected by the bilayer composition or thickness. In the zwitterionic phosphatidylcholine bilayers, the effect of GS does not depend on the polarity of the transmembrane potential; however, in bilayers formed from mixtures of phosphatidylcholines and anionic phospholipids, the polarity of the transmembrane potential becomes important, with the GS-induced conductance events being much more frequent when the GS-containing solution is positive relative to the GS-free solution. Overall, these results suggest that GS does not form discrete, well-defined, channel-like structures in phospholipid bilayers, but rather induces a wide variety of transient, differently sized defects which serve to compromise the bilayer barrier properties for small electrolytes.  相似文献   

20.
Functional tethered lipid bilayers   总被引:3,自引:0,他引:3  
Our strategy to provide the structural basis for the build-up of functional tethered membranes focuses on three approaches: the first one is based on the pre-organization of a monomolecular layer of a lipopolymer at the water/air interface which is then transferred to a solid support. Prior to deposition, the substrate is coated with a layer of benzophenone-derivatized silane molecules that allow for a stable covalent attachment by photo-cross-linking of some of the monomer units of the lipopolymer to the support. An alternative concept realizes a layer-by-layer deposition of the various structural elements: (1) the attachment layer with the reactive sites for the chemical stabilization; (2) a polymer 'cushion' prepared by adsorption and simultaneous or subsequent partial covalent binding to the reactive sites; and (3) a lipid monolayer transferred from the water/air interface, that contains a certain amount of lipids with reactive headgroups which, upon binding to the polymer tether, act as anchor lipids stabilizing the whole monolayer/cushion-composite. And finally, we build peptide-supported monolayers by first (self-) assembling amino acid sequences of various lengths via a SH-group near their N-terminus onto Au substances and use then their COO(-)-terminus to chemically attach phosphatidyl-ethanolamine lipids to form a stable monolayer of lipid-peptide conjugates. All the individual preparation steps and the various resulting (multi-) layers are characterized by surface plasmon spectroscopy, X-ray and neutron-reflectometry, contact angle measurements, IR spectroscopy, fluorescence microscopy, scanning probe microscopies, as well as, electrochemical techniques. For all tethering systems, the final membranes' architecture is obtained by fusing lipid vesicles onto the lipid monolayer. Proteins can be incorporated by either fusing vesicles that are loaded with the respective receptors, pores, or ion pumps via a reconstitution procedure, or via a transfer directly from a micellar solution to the pre-formed lipid bilayer at the solid support by a dialysis step. Two structural/dynamical features of tethered membranes which are considered to be of particular functional relevance, i.e. the degree of water uptake and, hence, the degree of swelling of the polymer support, as well as the lateral mobility of the lipid molecules in the membrane, are tested by surface plasmon optics and by measurements of the fluorescence recovery after photobleaching (FRAP), respectively. The results confirm that the presented preparation protocols yield fluid bilayers that mimic certain relevant properties of biological membranes. The functional characterization of tethered membranes, which is briefly summarized, is based on various electrochemical techniques, in particular, impedance spectroscopy, cyclic voltammetry, and chronoamperometric studies. The results obtained for reconstituted H(+)-ATPase from chloroplasts and E. coli and for cytochrome oxidase (with and without cytochrome c) confirm the incorporation of the proteins in an active form, thus, opening opportunities for novel sensor formats or offering a completely new model membrane system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号