首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the most precise methods of determining hydrogen peroxide (H2O2) formation by biological systems is based on measuring the rate of enzyme-substrate complex formation between H2O2 and cytochrome c peroxidase (CCP). The main problem with this method is that CCP is not commercially available and has to be prepared in the laboratory. We have modified some currently available methods for purifying a highly active preparation of CCP in about 4 d. It includes a batch extraction of protein using DEAE-sepharose followed by concentration either by lyophilization or by passing the extract through a small DEAE-sepharose column instead of by ultrafiltration. The concentrated preparation is passed through a Sephadex G-75 column and the final CCP crystallized against water. The final preparations had a purity index (PI, ratio of absorbance at 408 nm/280 nm, equivalent to heme/protein ratio) above 1.2. These changes make the overall procedure very simple, preserving enzyme activity and spectral properties. In addition, we point out that special care has to be taken to eliminate cytochrome c from crude CCP extracts. Cytochrome c not only introduces an artifact when determining PI, but is also may act as a hydrogen donor for CCP when monitoring H2O2 formation, thus decreasing the sensitivity of this method.  相似文献   

2.
Immobilization of enzymes on porous inorganic materials is very important for biocatalysis and biotransformation. In this paper, nanoporous gold (NPG) was used as a support for lignin peroxidase (LiP) immobilization. NPG with a pore size of 40–50 nm was prepared by dealloying Au/Ag alloy (50:50 wt%) for 17 h. By incubation with LiP aqueous solution, LiP was successfully immobilized on NPG. The optimal temperature of the immobilized LiP was ca. 40, 10 °C higher than that of free LiP. After 2 h incubation at 45 °C, 55% of the initial activity of the immobilized LiP was still retained while the free LiP was completely deactivated. In addition, a high and sustainable LiP activity was achieved via in situ release of H2O2 by a co-immobilized glucose oxidase. The present co-immobilization system was demonstrated to be very effective for LiP-mediated dye decolourization.  相似文献   

3.
The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time‐resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β‐sheet structure. Under constant pressure there is an optimum amount of D2O in the wet film (D2O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β‐sheet structure. Under constant amount of D2O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α‐helix, and β‐turn were quickly transformed into β‐sheet. In the second stage, random coil and β‐turn were relatively slowly transformed into β‐sheet and α‐helix, and the content of α‐helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure.  相似文献   

4.
The aim of this study was to use direct electron paramagnetic resonance (EPR) spectroscopy at 37 °C and spin trapping techniques to study radical species formed during horseradish peroxidase/H2O2-initiated low-density lipoprotein (LDL) oxidation. Using direct EPR, we obtained evidence for the formation not only of the α-tocopheroxyl radical but also of a protein radical(s), assigned to a tyrosyl radical(s) of apolipoprotein B-100 (apo B-100). Spin trapping with 2-methyl-2-nitrosopropane revealed (i) the formation of a mobile adduct with β-hydrogen coupling assigned to a lipid radical and (ii) a partially immobilised adduct detected in LDL as well as in apo B-100, assigned after proteolytic digestion to the trapping of a radical centred on a tertiary carbon atom of an aromatic residue, probably tyrosine. Our results support the hypothesis that radicals are initiators of the oxidative process, and show that their formation is an early event in peroxidase-mediated oxidation. We also tested the effects of resveratrol (RSV), a polyphenolic antioxidant present in red wine. Our data indicate that 1–10 μM RSV is able to accelerate α-tocopherol consumption, conjugated dienes formation and the decay kinetics of LDL-centred radicals. Since phenols are substrates for peroxidases, this result may be ascribed to a RSV-mediated catalysis of peroxidase activity.  相似文献   

5.
为了进一步提高伤口敷料的止血性能,文中在生物相容性良好的壳聚糖溶液中引入含有多种生长因子的人源性富血小板血浆(Humanplatelet-richplasma,hPRP),并加入不同体积比例(1∶1、1∶3、3∶1、1∶0)的丝素蛋白溶液以提高材料的多孔性与止血性,通过冷冻干燥法制备不同配比的hPRP-壳聚糖/丝素蛋白敷料,并将纯壳聚糖敷料作为对照组,研究hPRP和丝素蛋白对敷料的止血性能的影响以及丝素蛋白对PRP中生长因子控制释放的影响。结果表明,在壳聚糖敷料中引入hPRP对敷料的止血性有所提高,但对敷料的多孔结构及吸水率无明显改善,若在hPRP-壳聚糖溶液中按照体积比为1∶1的比例加入丝素蛋白溶液,会得到具有较为均匀的多孔结构的敷料,敷料的孔隙率与吸水率分别可达到86.83%±3.84%与1 474%±114%,且该比例的敷料在快速止血性能上表现优异。此外,加入丝素蛋白与壳聚糖比例为1∶1的PRP敷料能有效减少PRP中生长因子在初始阶段的爆裂释放。因此,含hPRP的壳聚糖/丝素蛋白复合敷料有望成为一种能快速止血且能促进伤口愈合的新型伤口敷料。  相似文献   

6.
采用酪氨酸酶对丝素蛋白催化氧化,考察了酶促氧化反应对丝素蛋白结构及丝素膜性能的影响。研究结果表明,酪氨酸酶可催化氧化丝素蛋白中酪氨酸残基生成多巴和多巴醌结构衍生物,并且两者含量随催化反应时间延长呈波动性变化;酶促反应后丝素蛋白中游离氨基含量下降,丝素风干膜断裂强度增加,表明酶促氧化中丝素大分子间发生自交联。XRD结果表明酪氨酸酶催化氧化对丝素蛋白二级结构有一定影响;SEM显示酶促改性可能影响丝素蛋白冷冻干燥膜多孔形态结构。  相似文献   

7.
Glucose oxidase (GOD) was immobilized in Bombyx mori silk fibroin membrane by only physical treatment, i.e., stretching without any chemical reagents. This is due to the structural transition of the silk fibroin membrane from random coil to antiparallel beta-sheet (Silk II) induced by the stretching treatment. Permeability coefficients of glucose and oxygen through the fibroin membrane were determined; the permeability of glucose decreased with increasing degree of stretching. The immobilized enzyme activity was characterized with apparent Michaelis constant K(m) (app) and maximal activity V(m). Optimum pH of the activity of the immobilized enzyme was shifted to the value around neutrality, and the activity was maintained to the higher values on both sides of the optimum pH compared with the case of free enzymes. Thermal stability was scarcely lost even at 50 degrees C, although the free enzyme lost about 70% of the original activity. Thus, the stabilities of the enzyme vs. pH and heat were much improved by the immobilization with silk. Glucose sensor prepared with this GOD-immobilized fibroin membrane was developed; the capabilities such as the response time, calibration curve, and repeating usage were determined.  相似文献   

8.
In this work, we studied the effects of incubation concentration and time on the self‐assembly behaviors of regenerated silk fibroin (RSF). Our results showed the assembly ways of RSF were concentration‐dependent and there were four self‐assembly ways of RSF: (i) At relatively low concentration (≤0.015%), RSF molecules assembled into protofilaments (random coil), and then the thickness decreased and the secondary conformation changed to antiparallel β‐sheet; (ii) at the concentration of 0.015%, RSF molecules assembled into protofilaments (random coil), and then assembled into protofibrils (antiparallel β‐sheet). The protofibrils experienced the appearance and disappearance of phase periodic intervals in turn; (iii) at the concentration of 0.03%, RSF molecules assembled into bead‐like oligomers (random coil), and then assembled into protofibrils (antiparallel β‐sheet), and finally the height and phase periodic intervals of RSF protofibrils disappeared in turn; and (iv) at the relatively high concentration (≥0.15%), RSF molecules assembled into protofilaments (random coil), then aggregated into blurry cuboid‐like micelles (random coil), and finally self‐arranged to form smooth and clear cuboid‐like micelles (antiparallel β‐sheet). These results provide useful insights into the process by which the RSF molecules self‐assemble into protofilaments, protofibrils and micelles. Furthermore, our work will be beneficial to basic understanding of the nanoscale structure formations in different silk‐based biomaterials. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1181–1192, 2014.  相似文献   

9.
Horseradish peroxidase displayed a ping-pong kinetic reaction mechanism with lignin model compounds and lignins. Oxidation of the α carbon on acetosyringone or acetovanillone failed above pH 6.5, while conversion of α-methylsyringyl (or guaiacyl) alcohol to acetosyringone (or vanillone) occurred optimally at pH 7.8. Small MW fragments were not formed from lignins at pH 6.4 and 7.8. These observations provide evidence for the growing concept that freely soluble peroxidase is not a lignolytic enzyme.  相似文献   

10.
Hydrogen peroxide is an important second messenger controlling intracellular signaling cascades by selective oxidation of redox active thiolates in proteins. Changes in intracellular [H2O2] can be tracked in real time using HyPer, a ratiometric genetically encoded fluorescent probe. Although HyPer is sensitive and selective for H2O2 due to the properties of its sensing domain derived from the Escherichia coli OxyR protein, many applications may benefit from an improvement of the indicator’s dynamic range. We here report HyPer-2, a probe that fills this demand. Upon saturating [H2O2] exposure, HyPer-2 undergoes an up to sixfold increase of the ratio F500/F420 versus a threefold change in HyPer. HyPer-2 was generated by a single point mutation A406V from HyPer corresponding to A233V in wtOxyR. This mutation was previously shown to destabilize interface between monomers in OxyR dimers. However, in HyPer-2, the A233V mutation stabilizes the dimer and expands the dynamic range of the probe.  相似文献   

11.

Aims

Neuroprotective effects of maysin, which is a flavone glycoside that was isolated from the corn silk (CS, Zea mays L.) of a Korean hybrid corn Kwangpyeongok, against oxidative stress (H2O2)-induced apoptotic cell death of human neuroblastoma SK-N-MC cells were investigated.

Main methods

Maysin cytotoxicity was determined by measuring cell viability using MTT and lactate dehydrogenase (LDH) assays. Intracellular reactive oxygen species (ROS) were measured using a 2,7-dichlorofluorescein diacetate (DCF-DA) assay. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by a TUNEL assay. Antioxidant enzyme mRNA levels were determined by real-time PCR. The cleavage of poly (ADP-ribose) polymerase (PARP) was measured by western blotting.

Key findings

Maysin pretreatment reduced the cytotoxic effect of H2O2 on SK-N-MC cells, as shown by the increase in cell viability and by reduced LDH release. Maysin pretreatment also dose-dependently reduced the intracellular ROS level and inhibited PARP cleavage. In addition, DNA damage and H2O2-induced apoptotic cell death were significantly attenuated by maysin pretreatment. Moreover, maysin pretreatment (5–50 μg/ml) for 2 h significantly and dose-dependently increased the mRNA levels of antioxidant enzymes (CAT, GPx-1, SOD-1, SOD-2 and HO-1) in H2O2 (200 μM)-insulted cells.

Significance

These results suggest that CS maysin has neuroprotective effects against oxidative stress (H2O2)-induced apoptotic death of human brain SK-N-MC cells through its antioxidative action. This report is the first regarding neuroprotective health benefits of corn silk maysin by its anti-apoptotic action and by triggering the expression of intracellular antioxidant enzyme systems in SK-N-MC cells.  相似文献   

12.
Catalase is a homo-tetrameric enzyme that has its heme active site deeply buried inside the protein. Its only substrate, hydrogen peroxide (H2O2), reaches the heme through a 45 Å-long channel. Large-subunit catalases, but not small-subunit catalases, have a loop (gate loop) that interrupts the major channel. Two accesses lead to a gate that opens the final section of the channel to the heme; gates from the R-related subunits are interconnected. Using molecular dynamic simulations of the Neurospora crassa catalase-1 tetramer in a box of water (48,600 molecules) or 6 M H2O2, it is shown that the number of H2O2 molecules augments at the surface of the protein and in the accesses to the gate and the final section of the channel. Increase in H2O2 is due to the prevalence and distribution of amino acids that have an increased residency for H2O2 (mainly histidine, proline and charged residues), which are localized at the protein surface and the accesses to the gate. In the section of the channel from the heme to the gate, turnover rate of water molecules was faster than for H2O2 and increased residence sites for water and H2O2 were determined. In the presence of H2O2, the exclusion of water molecules from a specific site suggests a mechanism that could contend with the competing activity of water, allowing for catalase high kinetic efficiency.  相似文献   

13.
Abstract

Phenolic compounds such as catechol and resorcinol are toxic and persistent pollutants in the aqueous environment. Detection procedures such as chromatographic and spectrophotometric methods are time-consuming and require sophisticated instruments with skilled manpower. Development of a simple, cost effective, portable and disposable paper based biosensor could be a better alternative to the conventional methods. The present study attempted to develop a paper based biosensor by immobilizing horseradish peroxidase enzyme to detect catechol and resorcinol in aqueous samples. Horseradish peroxidase catalyzes the oxidation of phenolic compounds to semiquinones, which on reaction with a chromogen, 3-methyl 2-benzothiazolinone hydrazine (MBTH) gives faint pink to red color depending on the compound and its concentration in the sample is the basis for biosensing application. Different methods of enzyme immobilization on filter paper like physical adsorption, covalent coupling, and polysaccharide entrapment were executed. The performance of the various enzyme immobilization methods was evaluated by analyzing the developed color intensity using ImageJ software. Entrapment technique is the most effective method of immobilizing enzyme on the filter paper that produces the highest color intensity with better stability. The visible limit of detection (LoD) was observed as 0.45?mM (50?mg/L) for catechol and 0.09?mM (10?mg/L) for resorcinol in aqueous samples.  相似文献   

14.

Background

Reactive oxygen species (ROS) are not only cytotoxic compounds leading to oxidative damage, but also signaling molecules for regulating plant responses to stress and hormones. Arabidopsis cytosolic ascorbate peroxidase 1 (APX1) is thought to be a central regulator for cellular ROS levels. However, it remains unclear whether APX1 is involved in plant tolerance to wounding and methyl jasmonate (MeJA) treatment, which are known to enhance ROS production.

Methods

We studied the effect of wounding and MeJA treatment on the levels of H2O2 and oxidative damage in the Arabidopsis wild-type plants and knockout mutants lacking APX1 (KO-APX1).

Results

The KO-APX1 plants showed high sensitivity to wounding and MeJA treatment. In the leaves of wild-type plants, H2O2 accumulated only in the vicinity of the wound, while in the leaves of the KO-APX1 plants it accumulated extensively from damaged to undamaged regions. During MeJA treatment, the levels of H2O2 were much higher in the leaves of KO-APX1 plants. Oxidative damage in the chloroplasts and nucleus was also enhanced in the leaves of KO-APX1 plants. These findings suggest that APX1 protects organelles against oxidative stress by wounding and MeJA treatment.

General significance

This is the first report demonstrating that H2O2-scavenging in the cytosol is essential for plant tolerance to wounding and MeJA treatment.  相似文献   

15.
Cadmium(Cd) stress induced alterations in the activities of several representatives of the enzymatic antioxidant defense system such as guiacol peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were comparatively studied in green and greening barley seedlings that represent two different stages of plant development. Although roots were the main site of Cd accumulation, 1.5–3% of Cd was translocated into leaves and it induced oxidative damage which was indicated by the reduced chlorophyll and increased malondialdehyde content of the leaves. In roots of both types of seedlings exposed to various Cd concentrations, the APX activity was enhanced without any increase in the activity of POD. In leaves, however, elevated activities of both POD and APX could be observed. In roots of green seedlings at high concentration of Cd, the APX activity was reduced on the fourth day of culture but no inhibition was found in the POD activity. Leaf CAT which mainly represented the peroxisomal enzyme activity did not display any changes under Cd stress. Our results show that at both developmental stages barley seedlings exhibit a well-defined activity of the enzymatic antioxidant system, which operates differentially in roots and shoots subjected to Cd stress.  相似文献   

16.
外源H2O2和·OH对大麦幼苗根系线粒体膜脂和流动性的伤害   总被引:3,自引:0,他引:3  
以大麦(HordeumvulgareL.)为材料,研究了外源H2O2和*OH对大麦根系呼吸速率、线粒体膜流动性和膜脂脂肪酸组成的影响。结果表明,10mmol/LH2O2或·OH处理4d,大麦幼苗根系呼吸速率和线粒体膜脂不饱和脂肪酸含量及脂肪酸不饱和指数下降,线粒体膜脂荧光强度增加,膜流动性下降,且H2O2或·OH处理浓度(在0.1~10mmol/L范围内)越高,膜脂流动性下降越明显。H2O2和·OH处理的同时加入同浓度的抗坏血酸(AsA)和甘露醇,膜流动性明显增强或恢复。  相似文献   

17.
18.
UV-B对拟南芥叶片不同来源H2O2的活化和气孔关闭的诱导   总被引:1,自引:0,他引:1  
在UV-B调控植物许多生理过程中过氧化氢(H2O2)作为第二信使发挥着重要作用,但H2O2来源途径并不清楚。该研究借助气孔开度分析和激光扫描共聚焦显微镜技术,探讨H2O2在介导不同剂量UV-B诱导拟南芥叶片气孔关闭过程中的酶学来源途径。结果发现:0.5W.m-2 UV-B能诱导野生型拟南芥叶片保卫细胞的H2O2产生和气孔关闭,且该效应能被NADPH氧化酶抑制剂二苯基碘(DPI)抑制,而不能被细胞壁过氧化物酶抑制剂水杨基氧肟酸(SHAM)抑制,同时该剂量UV-B也不能诱导NADPH氧化酶功能缺失单突变体AtrbohD和AtrbohF以及双突变体AtrbohD/F保卫细胞的H2O2产生和气孔关闭;相反,0.65 W.m-2 UV-B既能诱导野生型也能诱导NADPH氧化酶突变体保卫细胞的H2O2产生和气孔关闭,且该效应能被SHAM抑制,却不能被DPI抑制。结果表明,不同剂量UV-B通过活化不同生成途径的H2O2来诱导拟南芥叶片气孔关闭,即低剂量UV-B主要诱导NADPH氧化酶AtrbohD和AtrbohF途径来源的H2O2生成,而高剂量UV-B主要活化细胞壁过氧化酶途径来源的H2O2。  相似文献   

19.
20.
Chitosan (CS) is considered a suitable biomaterial for enzyme immobilization. CS combination with polyethylene glycol (PEG) can improve the biocompatibility and the properties of the immobilized system. Thus, the present work investigated the effect of the PEG in the horseradish peroxidase (HRP) immobilization into chitosan nanoparticles from the morphological, physicochemical, and biochemical perspectives. CS and CS/PEG nanoparticles were obtained by ionotropic gelation and provided immobilization efficiencies (IE) of 65.8 % and 51.7 % and activity recovery (AR) of 76.4 % and 60.4 %, respectively. The particles were characterized by DLS, ZP, SEM, FTIR, TGA and DSC analysis. Chitosan nanoparticles showed size around 135 nm and increased to 229 nm after PEG addition and HRP immobilization. All particles showed positive surface charges (20−28 mV). Characterizations suggest nanoparticles formation and effective immobilization process. Similar values for optimum temperature and pH for immobilized HRP into both nanoparticles were found (45 °C, 7.0). Vmax value decreased by 5.07 to 3.82 and 4.11 mM/min and KM increased by 17.78 to 18.28 and 19.92 mM for free and immobilized HRP into chitosan and chitosan/PEG nanoparticles, respectively. Another biochemical parameters (Kcat, Ke, and Kα) evaluated showed a slight reduction for the immobilized enzyme in both nanoparticles compared to the free enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号