首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short-term testing--are we looking at wrong endpoints?   总被引:3,自引:0,他引:3  
C Ramel 《Mutation research》1988,205(1-4):13-24
Short-term testing has been performed and interpreted on the basis of correlation between these tests and animal carcinogenicity. This empirical approach has been the only feasible one, due to a lack of knowledge of the actual genetic endpoints of relevance in carcinogenicity. However, the rapidly growing information on genetic alterations actually involved in carcinogenicity and in particular activation of oncogenes, provides facts of basic importance for the strategy of short-term testing. The presently used sets of short-term tests focus on standard genetic endpoints, mainly point mutations and chromosomal aberrations. Little attention has been paid in that connection to other endpoints, which have been shown or suspected to play an important role in carcinogenicity. These endpoints include gene amplification, transpositions, hypomethylation, polygene mutations and recombinogenic effects. Furthermore, indirect effects, for instance via radical generation and an imbalance of the nucleotide pool, may be of great significance for the carcinogenic and cocarcinogenic effects of many chemicals. Modern genetic and molecular technology has opened entirely new prospects for identifying genetic alterations in tumours and in its turn these prospects should be taken advantage of in order to build up more sophisticated batteries of assays, adapted to the genetic endpoints actually demonstrated to be involved in cancer induction. Development of new assay systems in accordance with the elucidation of genetic alterations in carcinogenicity will probably constitute one of the most important areas in genetic toxicology in the future. From a regulatory point of view the prerequisite for a development in this direction will be a flexibility of the handling of questions concerning short-term testing also at a bureaucratic level.  相似文献   

2.
J A Heddle 《Mutation research》1991,247(2):221-229
The activation of oncogenes and our knowledge of the chromosome breakage syndromes show that both intragenic mutations and chromosomal aberrations are important in carcinogenesis. Each suggests that an agent could produce genetic changes in a tissue without producing cancer there, if the types of genetic change do not match: chromosomal aberrations may be irrelevant in the mammary epithelium but be very significant in the bone marrow, and vice versa. This has vital implications for genetic toxicology: (1) both gene mutations and chromosomal aberrations should be measured, and (2) carcinogens may be mutagenic in tissues in which they are not carcinogenic. One might therefore expect in vivo assays for mutagenicity to correlate rather well with cancer bioassays; unfortunately, the bioassays themselves seem faulty. If cancer bioassays are valid, they would be reproducible. If bioassays are reproducible, they would be internally consistent. The information supplied by Tennant et al. (1987) for their validation of in vitro assays gives data from both sexes in rats and mice for 70 chemicals. When the data are analyzed site-by-site, positive results were not replicated in the other sex or in the other species much of the time: in half the cases the other sex does not give the same result; in two-thirds of the cases the other species does not give the same result. There are 3 potential explanations for these differing results: (1) genuine sex-specific carcinogens are common, (2) genuine species-specific carcinogens are common, or (3) the bioassay does not replicate well, i.e., is erratic. The third possibility best explains the data. The apparent inability of short-term in vitro tests to discriminate well between carcinogens and non-carcinogens may be more a reflection of the cancer bioassays that were used to determine which chemicals were carcinogenic than any defect in the assays. In this situation in vivo assays can scarcely be expected to do better even if they are better.  相似文献   

3.
111 chemicals of known rodent carcinogenicity (49 carcinogens, 62 noncarcinogens), including many promoters of carcinogenesis, nongenotoxic carcinogens, hepatocarcinogens, and halogenated hydrocarbons, were selected for study. The chemicals were administered by gavage in two dose levels to female Sprague-Dawley rats. The effects of these 111 chemicals on 4 biochemical assays (hepatic DNA damage by alkaline elution (DD), hepatic ornithine decarboxylase activity (ODC), serum alanine aminotransferase activity (ALT), and hepatic cytochrome P-450 content (P450)) were determined. Composite parameters are defined as follows: CP = [ODC and P450), CT = [ALT and ODC), and TS = [DD or CP or CT]. The operational characteristics of TS for predicting rodent cancer were sensitivity 55%, specificity 87%, positive predictivity 77%, negative predictivity 71%, and concordance 73%. For these chemicals, the 73% concordance of this study was superior to the concordance obtained from published data from other laboratories on the Ames test (53%), structural alerts (SA) (46%), chromosome aberrations in Chinese hamster ovary cells (ABS) (48%), cell mutation in mouse lymphoma 15178Y cells (MOLY) (52%), and sister-chromatid exchange in Chinese hamster ovary cells (SCE) (60%). The 4 in vivo biochemical assays were complementary to each other. The composite parameter TS also shows complementarity to all 5 other predictors of rodent cancer examined in this paper. For example, the Ames test alone has a concordance of only 53%. In combination with TS, the concordance is increased to 62% (Ames or TS) or to 63% (Ames and TS). For the 67 chemicals with data available for SA, the concordance for predicting rodent carcinogenicity was 47% (for SA alone), 54% (for SA or TS), and 66% (for SA and TS). These biochemical assays will be useful: (1) to predict rodent carcinogenicity per se, (2) to 'confirm' the results of short-term mutagenicity tests by the high specificity mode of the biochemical assays (the specificity and positive predictivity are both 100%), and (3) to be a component of future complementary batteries of tests for predicting rodent carcinogenicity.  相似文献   

4.
In 1969, the International Agency for Research on Cancer (IARC) initiated the Monographs Programme to evaluate the carcinogenic risk of chemicals to humans. Results from short-term mutagenicity tests were first included in the IARC Monographs in the mid-1970s based on the observation that most carcinogens are also mutagens, although not all mutagens are carcinogens. Experimental evidence at that time showed a strong correlation between mutagenicity and carcinogenicity and indicated that short-term mutagenicity tests are useful for predicting carcinogenicity. Although the strength of these correlations has diminished over the past 20 years with the identification of putative nongenotoxic carcinogens, such tests provide vital information for identifying potential human carcinogens and understanding mechanisms of carcinogenesis. The short-term test results for agents compiled in the EPA/IARC Genetic Activity Profile (GAP) database over nearly 15 years are summarized and reviewed here with regard to their IARC carcinogenicity classifications. The evidence of mutagenicity or nonmutagenicity based on a 'defining set' of test results from three genetic endpoints (gene mutation, chromosomal aberrations, and aneuploidy) is examined. Recommendations are made for assessing chemicals based on the strength of evidence from short-term tests, and the implications of this approach in identifying mutational mechanisms of carcinogenesis are discussed. The role of short-term test data in influencing the overall classification of specific compounds in recent Monograph volumes is discussed, particularly with reference to studies in human populations. Ethylene oxide is cited as an example.  相似文献   

5.
An integrative theory is proposed in which environmental carcinogenesis is viewed as a process by which the genetic control of cell division and differentiation is altered by carcinogens. In this theory, carcinogens include physical, chemical, and viral "mutagens," as well as chemical and viral gene modulators. Existing explanations of carcinogenesis can be considered either as somatic mutation theories or as epigenetic theories. Evidence seems to support the hypothesis that both mutations and epigenetic processes are components of carcinogenesis. The mutational basis of cancer is supported by the clonal nature of tumors, the mutagenicity of most carcinogens, high mutation frequencies in cells of cancer-prone human fibroblasts lacking DNA repair enzymes, the correlation of in vitro DNA damage and in vitro mutation and transformation frequencies with in vivo tumorigenesis, age-related incidences of various hereditary tumors, and the correlation between photoreactivation of DNA damage and the biological amelioration of UV-induced neoplasms. Since both mutagens and gene modulators can be carcinogenic it may be that carcinogens affect genes which control cell division. An integration of the mutation and epigenetic theories of cancer with the "two-stage" theory and Comings's general theory of carcinogenesis is proposed. This integrative theory postulates that carcinogens can affect regulatory genes which control a series of "transforming genes." A general hypothesis is advanced that involves a common mechanism of somatic mutagenesis via error-prone repair of DNA damage which links carcinogenesis, teratogenesis, atherosclerosis and aging. Various concepts are presented to provide a framework for evaluating the scientific, medical, and social implications of cancer.  相似文献   

6.
Cancer is a genetic disease and carcinogenesis is the process whereby the relevant genetic alterations are acquired. Environmental carcinogens may damage DNA to induce mutations and chromosomal aberrations as permanent heritable changes in the genome that initiate carcinogenesis. For many carcinogens initiation of carcinogenesis requires the initiation of DNA replication suggesting that genetic alterations are fixed in the genome during replication of damaged DNA. It is of great interest to understand the mechanisms whereby carcinogen-induced damage to DNA causes mutations and chromosomal aberrations, and how cells may resist such events. It is clear now that cells express a complex repertoire of responses to DNA damage including several pathways of DNA repair and cell cycle checkpoints that protect against carcinogenesis. This commentary is concerned with the protective influence of DNA damage checkpoints that delay or arrest progression through the cell division cycle and especially with the responses of S phase cells to the environmental carcinogens UV and benzo[a]pyrene diolepoxide I (BPDE). Recent studies indicate that checkpoint responses may act at the very point of replication of damaged DNA to slow DNA chain elongation, inhibit replicon initiation, and suppress initiation of carcinogenesis.  相似文献   

7.
This report examines a group of putative nongenotoxic carcinogens that have been cited in the published literature. Using short-term test data from the U.S. Environmental Protection Agency/International Agency for Research on Cancer genetic activity profile (EPA/IARC GAP) database we have classified these agents on the basis of their mutagenicity emphasizing three genetic endpoints: gene mutation, chromosomal aberration and aneuploidy. On the basis of results of short-term tests for these effects, we have defined criteria for evidence of mutagenicity (and nonmutagenicity) and have applied these criteria in classifying the group of putative nongenotoxic carcinogens. The results from this evaluation based on the EPA/IARC GAP database are presented along with a summary of the short-term test data for each chemical and the relevant carcinogenicity results from the NTP, Gene-Tox and IARC databases. The data clearly demonstrate that many of the putative nongenotoxic carcinogens that have been adequately tested in short-term bioassays induce gene or chromosomal mutations or aneuploidy.  相似文献   

8.
Environmental tobacco smoke (ETS), or second-hand smoke, is a widespread contaminant of indoor air in environments where smoking is not prohibited. It is a significant source of exposure to a large number of substances known to be hazardous to human health. Numerous expert panels have concluded that there is sufficient evidence to classify involuntary smoking (or passive smoking) as carcinogenic to humans. According to the recent evaluation by the International Agency for Research on Cancer, involuntary smoking causes lung cancer in never-smokers with an excess risk in the order of 20% for women and 30% for men. The present paper reviews studies on genotoxicity and related endpoints carried out on ETS since the mid-1980s. The evidence from in vitro studies demonstrates induction of DNA strand breaks, formation of DNA adducts, mutagenicity in bacterial assays and cytogenetic effects. In vivo experiments in rodents have shown that exposure to tobacco smoke, whole-body exposure to mainstream smoke (MS), sidestream smoke (SS), or their mixture, causes DNA single strand breaks, aromatic adducts and oxidative damage to DNA, chromosome aberrations and micronuclei. Genotoxicity of transplacental exposure to ETS has also been reported. Review of human biomarker studies conducted among non-smokers with involuntary exposure to tobacco smoke indicates presence of DNA adducts, urinary metabolites of carcinogens, urinary mutagenicity, SCEs and hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutations (in newborns exposed through involuntary smoking of the mother). Studies on human lung cancer from smokers and never-smokers involuntarily exposed to tobacco smoke suggest occurrence of similar kinds of genetic alterations in both groups. In conclusion, these overwhelming data are compatible with the current knowledge on the mechanisms of carcinogenesis of tobacco-related cancers, occurring not only in smokers but with a high biological plausibility also in involuntary smokers.  相似文献   

9.
To ascertain whether measurement of possible contributing factors to carcinogenesis concurrently with the transgenic mutation assay is useful to understand the mode of action underlying tumorigenesis of non-genotoxic carcinogens, male and female gpt delta mice were given dicyclanil (DC), a mouse hepatocarcinogen showing all negative results in various genotoxicity tests, at a carcinogenic dose for 13 weeks. Together with gpt and Spi(-) mutations, thiobarbituric acid-reactive substances (TBARS), 8-hydroxydeoxyguanosine (8-OHdG) and bromodeoxyuridine labeling indices (BrdU-LIs) in the livers were examined. Whereas there were no changes in TBARS levels among the groups, significant increases in 8-OHdG levels and centrilobular hepatocyte hypertrophy were observed in the treated mice of both genders. In contrast, BrdU-LIs and liver weights for the treated females, but not the males were significantly higher than those for the controls. Likewise, the gpt mutant frequencies (MFs) in the treated females were significantly elevated, GC:TA transversion mutations being predominant. No significant alterations were found in the gpt MFs of the males and the Spi(-) MFs of both sexes. The results for the transgenic mutation assays were consistent with DC carcinogenicity in terms of the sex specificity for females. Considering that 8-OHdG induces GC:TA transversion mutations by mispairing with A bases, it is likely that cells with high proliferation rates and a large amounts of 8-OHdG come to harbor mutations at high incidence. This is the first report demonstrating DC-induced genotoxicity, the results implying that examination of carcinogenic parameters concomitantly with reporter gene mutation assays is able to provide crucial information to comprehend the underlying mechanisms of so-called non-genotoxic carcinogenicity.  相似文献   

10.
Genotoxicity testing of extracts of a Swedish moist oral snuff   总被引:3,自引:0,他引:3  
The present study was designed to investigate the potential genotoxicity of aqueous and methylene chloride extracts of Swedish moist oral snuff. The test systems were selected to provide optimal data for the prediction of carcinogenicity in rodents and included assays for the induction of mutation in bacteria, sister-chromatid exchanges (SCE) in human lymphocytes, of chromosome aberrations and gene mutations in V79 Chinese hamster cells and of micronuclei in mouse bone marrow cells. In addition, the methylene chloride extract was tested for the induction of sex-linked recessive lethal mutations in Drosophila melanogaster. The aqueous extract of 'Snus' induced SCE in human lymphocytes and chromosome aberrations in V79 cells, the latter effect being observed both with and without metabolic activation. No induction of point mutations was detected with the Ames test or in V79 cells and the micronucleus test in mice was negative. It was demonstrated that the induction of chromosome aberrations without metabolic activation may be due to a high salt concentration, indicating that the clastogenic agent(s) in this extract required metabolic activation. The methylene chloride extract showed genotoxicity in the Ames test, the SCE test and the chromosome aberration test, whereas no induction of gene mutations in V79 cells was observed. Once again, the results suggested that metabolism is required for genotoxicity. The methylene chloride extract did not cause induction of micronuclei in mice or of sex-linked recessive lethal mutations in Drosophila melanogaster. These combined data on genotoxicity were analyzed using various models for the prediction of carcinogenicity. In a sequential testing model, the probabilities that the aqueous and methylene chloride extracts of 'Snus' are carcinogenic due to a genotoxic mechanism were both predicted to be low. Using carcinogenicity prediction by battery selection (CPBS), the probabilities of the methylene chloride and aqueous extracts being correctly identified as non-carcinogens are 71 and 77%, respectively. Up to date, the CPBS approach has been validated primarily for individual compounds, so some caution should at present be exercised in interpreting the results using this method. Based on these results, the carcinogenic potential of Swedish 'Snus' should be considered to be low, a conclusion in agreement with the low incidence of oral cancer in Sweden compared to other countries.  相似文献   

11.
The prudent assumption that carcinogen bioassays in rodents predict for human carcinogenicity is examined. It is suggested that in certain cases, as for example the induction of tumors against a high incidence in controls, or in situations in which high dose toxicity may be a critical factor in the induction of cancer, the probability that animal bioassays predict for humans may be low. The term 'biological risk assessment' is introduced to describe that part of risk assessment concerned with the relevance of specific animal results to the induction of human cancer. Biological risk assessment, which is almost entirely dependent on an understanding of carcinogenesis mechanisms, is an important addition to present mathematical modeling used to predict the effects of animal carcinogens that have been demonstrated after high dose exposure, to the effects of the much smaller doses to which humans are perceived to be exposed. Evidence for the conclusions reached by biological risk assessment may sometimes be supported by a careful review of human epidemiological data.  相似文献   

12.
Genotypic selection methods detect rare sequence changes in populations of DNA molecules. These methods have been used to investigate the chemical induction of mutation and for the detection and diagnosis of cancer. The possible use of genotypic selection for improving current risk assessment practices is based on the premise that the frequency of somatic mutation is of critical importance in understanding and modeling carcinogenesis. If genotypic selection can measure the induction of specific mutations that disrupt normal cell/tissue homeostasis, then it could provide key mechanistic information for cancer risk assessment. For example, genotypic selection data might support a particular low-dose extrapolation method or characterize the relationship between rodent and human cancer risk. Strategies for evaluating the use of genotypic selection in cancer risk assessment include the concept of developing a battery of targets that detect a range of agent-specific effects. Ideal targets to examine by genotypic selection are the oncogene and tumor suppressor gene mutations frequently detected in human tumors because these are thought to represent tumor-initiating events. The most commonly occurring basepair (bp) substitutions within the ras and p53 genes are identified. Also, the battery of genotypic selection methods is defined in terms of the most important mutational specificities to include. In theory, the major basepair substitution mutations induced by 29 of 31 chemical carcinogens could be detected by analyzing three different mutations: G:C-->T:A, G:C-->A:T, and A:T-->T:A. Genotypic selection will have the greatest impact on risk assessment if measurement of spontaneous mutation is possible. Data from phenotypic selection assays suggest this corresponds to detection of mutant fractions of approximately 10(-7), and this would necessitate examining DNA samples containing >10(7) target molecules. Despite its apparent potential, considerable development and validation is needed before genotypic selection data can be applied to cancer risk assessment.  相似文献   

13.
The most promising new techniques for the study of in vivo mammalian mutagenesis make use of transgenic mice carrying a recoverable vector. Mutation systems in mammals can be based on the selection of altered phenotypes among cells sampled from the whole animal, but they are then limited to the very few cell types in which the marker gene is expressed. Such systems require both in vivo and in vitro cell proliferation for expression and verification of the mutations. To avoid these complications, the study of mutations in most tissues must be based on the detection of genetic alterations in a vector that is independent of the phenotype of the mammalian cell. The vector is only a small portion of the mammalian genome, and many of the procedures for recovering the vector are inhibited by the host DNA. For this reason, partial purification is necessary. The purification is made possible by using vectors which are not cut by restriction enzymes that cut the host DNA to pieces of an average size considerably smaller than the vector. The efficiency for measuring mutation frequencies depends on the number of vectors which can be recovered from a certain amount of DNA and is affected by the number of vectors per mammalian genome and the transfection efficiency of the partially-purified vector. In order to avoid selection against or for the spontaneous or induced mutations, the transfection efficiency of the vector from the transformed DNA and of the pure vector DNA should be of the same order of magnitude. Differences in the response to mutagens between the mammalian genome and the procaryotic vector may be expected due to the lack of unique mammalian topographical features in the vectors. Any mutation induction which depends preferentially on these unique features of the mammalian genome may not be detected in a shuttle vector system unless the vector has been engineered or specifically designed to include such topographical characters. The shortcoming of short-term tests that use mutagenicity for predicting human carcinogenicity is usually lack of correlation between mutagenesis in the short-term tests and the corresponding results in carcinogenesis bioassays in mammals. One factor which could contribute to the lack of correlation between the short-term test systems and the bioassays is that we are comparing mutations in totally different genes in different organisms. By using the phi X174 shuttle system, one of the variables may be eliminated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Data on transgenic rodent mutagenicity of five human carcinogens were summarised and compared with the results from rodent carcinogenicity studies. Four out of five carcinogens showed mutagenic activity already at daily dose levels which induced cancer in long-term rodent bioassays in at least one target tissue of carcinogenesis. In several of these studies, even single dose applications were sufficient to significantly increase the mutation frequency in vivo. Other genotoxic carcinogens required application of multiple dosing at dose-levels used in rodent cancer bioassays to show their in vivo mutagenicity. A rodent respiratory tract carcinogen, 1,2-dibromoethane (DBE), following inhalation exposure, displayed no mutagenic activity, neither in lung nor in nasal mucosa, at a single 2-h exposure to 30 ppm, which is below the highest concentration used in a NTP cancer bioassay. In contrast, after multiple treatment for 10 days at the same daily doses, a significant increase of the mutation frequency in nasal mucosa was apparent. We conclude, that especially when studying new chemicals in these transgenic rodent mutation assays, a multiple dosing protocol should be preferred. For dose selection, the same criteria could be applied as for chronic rodent bioassays.  相似文献   

15.
The many complex phenotypes of cancer have all been attributed to "somatic mutation." These phenotypes include anaplasia, autonomous growth, metastasis, abnormal cell morphology, DNA indices ranging from 0.5 to over 2, clonal origin but unstable and non-clonal karyotypes and phenotypes, abnormal centrosome numbers, immortality in vitro and in transplantation, spontaneous progression of malignancy, as well as the exceedingly slow kinetics from carcinogen to carcinogenesis of many months to decades. However, it has yet to be determined whether this mutation is aneuploidy, an abnormal number of chromosomes, or gene mutation. A century ago, Boveri proposed cancer is caused by aneuploidy, because it correlates with cancer and because it generates "pathological" phenotypes in sea urchins. But half a century later, when cancers were found to be non-clonal for aneuploidy, but clonal for somatic gene mutations, this hypothesis was abandoned. As a result aneuploidy is now generally viewed as a consequence, and mutated genes as a cause of cancer although, (1) many carcinogens do not mutate genes, (2) there is no functional proof that mutant genes cause cancer, and (3) mutation is fast but carcinogenesis is exceedingly slow. Intrigued by the enormous mutagenic potential of aneuploidy, we undertook biochemical and biological analyses of aneuploidy and gene mutation, which show that aneuploidy is probably the only mutation that can explain all aspects of carcinogenesis. On this basis we can now offer a coherent two-stage mechanism of carcinogenesis. In stage one, carcinogens cause aneuploidy, either by fragmenting chromosomes or by damaging the spindle apparatus. In stage two, ever new and eventually tumorigenic karyotypes evolve autocatalytically because aneuploidy destabilizes the karyotype, ie. causes genetic instability. Thus, cancer cells derive their unique and complex phenotypes from random chromosome number mutation, a process that is similar to regrouping assembly lines of a car factory and is analogous to speciation. The slow kinetics of carcinogenesis reflects the low probability of generating by random chromosome reassortments a karyotype that surpasses the viability of a normal cell, similar again to natural speciation. There is correlative and functional proof of principle: (1) solid cancers are aneuploid; (2) genotoxic and non-genotoxic carcinogens cause aneuploidy; (3) the biochemical phenotypes of cells are severely altered by aneuploidy affecting the dosage of thousands of genes, but are virtually un-altered by mutations of known hypothetical oncogenes and tumor suppressor genes; (4) aneuploidy immortalizes cells; (5) non-cancerous aneuploidy generates abnormal phenotypes in all species tested, e.g., Down syndrome; (6) the degrees of aneuploidies are proportional to the degrees of abnormalities in non-cancerous and cancerous cells; (7) polyploidy also varies biological phenotypes; (8) variation of the numbers of chromosomes is the basis of speciation. Thus, aneuploidy falls within the definition of speciation, and cancer is a species of its own. The aneuploidy hypothesis offers new prospects of cancer prevention and therapy.  相似文献   

16.
To determine whether genotoxic and non-genotoxic carcinogens contribute similarly to the cancer burden in humans, an analysis was performed on agents that were evaluated in Supplements 6 and 7 to the IARC Monographs for their carcinogenic effects in humans and animals and for the activity in short-term genotoxicity tests. The prevalence of genotoxic carcinogens on four groups of agents, consisting of established human carcinogens (group 1, n = 30), probable human carcinogens (group 2A, n = 37), possible human carcinogens (group 2B, n = 113) and on agents with limited evidence of carcinogenicity in animals (a subset of group 3, n = 149) was determined. A high prevalence in the order of 80 to 90% of genotoxic carcinogens was found in each of the groups 1, 2A and 2B, which were also shown to be multi-species/multi-tissues carcinogens. The distribution of carcinogenic potency in rodents did not reveal any specific characteristic of the human carcinogens in group 1 that would differentiate them from agents in groups 2A, 2B and 3. The results of this analysis indicate that (a) an agent with unknown carcinogenic potential showing sufficient evidence of activity in in vitro/in vivo genotoxicity assays (involving as endpoints DNA damage and chromosomal/mutational damage) may represent a hazard to humans; and b) an agent showing lack of activity in this spectrum of genotoxicity assays should undergo evaluation for carcinogenicity by rodent bioassay, in view of the present lack of validated short-term tests for non-genotoxic carcinogens. Overall, this analysis implies that genotoxic carcinogens add more to the cancer burden in man than non-genotoxic carcinogens. Thus, identification of such genotoxic carcinogens and subsequent lowering of exposure will remain the main goal for primary cancer prevention in man.  相似文献   

17.
18.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Despite significant progresses in the last decades, the origin of this cancer remains unclear and no efficient therapy exists. PDAC does not arise de novo: three remarkable different types of pancreatic lesions can evolve towards pancreatic cancer. These precursor lesions include: Pancreatic intraepithelial neoplasia (PanIN) that are microscopic lesions of the pancreas, Intraductal Papillary Mucinous Neoplasms (IPMN) and Mucinous Cystic Neoplasms (MCN) that are both macroscopic lesions. However, the cellular origin of these lesions is still a matter of debate. Classically, neoplasm initiation or progression is driven by several genetic and epigenetic alterations. The aim of this review is to assemble the current information on genetic mutations and epigenetic disorders that affect genes during pancreatic carcinogenesis. We will further discuss the interest of the genetic and epigenetic alterations for the diagnosis and prognosis of PDAC. Large genetic alterations (chromosomal deletion/amplification) and single point mutations are well described for carcinogenesis inducers. Mutations classically occur within key regions of the genome. Consequences are various and include activation of mitogenic pathways or silencing of apoptotic processes. Alterations of K-RAS, P16 and DPC4 genes are frequently observed in PDAC samples and have been described to arise gradually during carcinogenesis. DNA methylation is an epigenetic process involved in imprinting and X chromosome inactivation. Alteration of DNA methylation patterns leads to deregulation of gene expression, in the absence of mutation. Both genetic and epigenetic events influence genes and non-coding RNA expression, with dramatic effects on proliferation, survival and invasion. Besides improvement in our fundamental understanding of PDAC development, highlighting the molecular alterations that occur in pancreatic carcinogenesis could provide new clinical tools for early diagnosis of PDAC and the molecular basis for the development of new effective therapies.  相似文献   

19.
By definition, short-term tests (STTs) for genetic toxicity detect genotoxic agents, not carcinogens specifically. However, there is sufficient evidence, based on mechanistic considerations alone, to say that genotoxic agents are potential carcinogens. STTs have high statistical power, are almost always replicated, can be performed rather easily under various sets of experimental conditions, are relatively inexpensive, and detect a variety of endpoints relevant to carcinogenesis. In addition, several STTs have shown considerable utility in evaluating the genotoxic effects of real-world, environmental complex mixtures as well as the antimutagenic effects of various pure compounds and complex mixtures. STTs are likely to continue to be refined, resulting in STTs that are increasingly more relevant to human mutation and disease. Their utility should not be judged solely against the questionable standard of a rodent carcinogenicity assay.  相似文献   

20.
Differences between the results of numerical validation studies comparing in vitro and in vivo genotoxicity tests with the rodent cancer bioassay are leading to the perception that short-term tests predict carcinogenicity only with uncertainty. Consideration of factors such as the pharmacokinetic distribution of chemicals, the systems available for metabolic activation and detoxification, the ability of the active metabolite to move from the site of production to the target DNA, and the potential for expression of the induced lesions, strongly suggests that the disparate sensitivity of the different test systems is a major reason why numerical validation is not more successful. Furthermore, genotoxicity tests should be expected to detect only a subset of carcinogens, namely genotoxic carcinogens, rather than those carcinogens that appear to act by non-genetic mechanisms. Instead of relying primarily on short-term in vitro genotoxicity tests to predict carcinogenic activity, these tests should be used in a manner that emphasizes the accurate determination of mutagenicity or clastogenicity. It must then be determined whether the mutagenic activity is further expressed as carcinogenicity in the appropriate studies using test animals. The prospects for quantitative extrapolation of in vitro or in vivo genotoxicity test results to carcinogenicity requires a much more precise understanding of the critical molecular events in both processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号