首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
3-Mercaptopicolinic acid (3-MPA) is reportedly a specific inhibitor of phosphoenolpyruvate (PEP) carboxykinase and has hitherto been used accordingly to elucidate the metabolic role of PEP carboxykinase in vitro and in vivo. We show that 3-MPA has multiple effects on intermediary metabolism in hemidiaphragms from 40 h-starved rats. It decreases the release of lactate + pyruvate and alanine in hemidiaphragms provided with no added substrate or with valine, leucine or isoleucine. Moreover, irrespective of the substrate provided (none, valine, leucine, isoleucine, glucose, acetate, oleate), 3-MPA decreases the [lactate]/[pyruvate] ratio. 3-MPA is without effect on 14CO2 production from [U-14C]valine, [1-14C]valine, [1-14C]leucine, [U-14C]isoleucine or [1-14C]oleate, but stimulates 14CO2 production from [U-14C]glucose and [1-14C]pyruvate and inhibits 14CO2 production from [1-14C]acetate. Glycolytic flux (measured as 3H2O formation from [5-3H]glucose) is stimulated by 3-MPA. It is concluded that 3-MPA has site(s) of actions other than PEP carboxykinase and that the putative role of PEP carboxykinase in alanine synthesis de novo in skeletal muscle from tricarboxylic acid-cycle intermediates and related amino acids requires reappraisal.  相似文献   

2.
The rapid stimulation of lipogenesis in mammary gland that occurs on re-feeding starved lactating rats with a chow diet was decreased (60%) by injection of mercaptopicolinic acid, an inhibitor of hepatic gluconeogenesis at the phosphoenolpyruvate carboxykinase step. Mercaptopicolinate had no effect on lipogenesis in mammary glands of fed lactating rats. The inhibition of lipogenesis persisted in vitro when acini from mammary glands of re-fed rats treated with mercaptopicolinate were incubated with [1-14C]glucose. Mercaptopicolinate added in vitro had no significant effect on lipogenesis in acini from starved-re-fed lactating rats. Mercaptopicolinate prevented the deposition of glycogen and increased the rate of lipogenesis in livers of starved-re-fed lactating rats, whereas it had no significant effect on livers of fed lactating rats. Administration of intraperitoneal glucose restored the rate of mammary-gland lipogenesis in re-fed rats treated with mercaptopicolinate to the values for re-fed rats. Hepatic glycogen deposition was also restored, and the rate of hepatic lipogenesis was stimulated 5-fold. It is concluded that stimulation of mammary-gland lipogenesis on re-feeding with a chow diet after a period of starvation is in part dependent on continued hepatic gluconeogenesis during the absorptive period. Possible sources of the glucose precursors are discussed.  相似文献   

3.
1. The effects of intragastric glucose feeding and L-tri-iodothyronine (T3) administration on rates of hepatic and brown-fat lipogenesis in vivo were examined in fed and 48 h-starved rats. 2. T3 treatment increased hepatic lipogenesis in the fed but not the starved animals. Brown-fat lipogenesis was unaffected or slightly decreased by T3 treatment of fed or starved rats. 3. Intragastric glucose feeding increased hepatic lipogenesis in control or T3-treated fed rats, but did not increase hepatic lipogenesis in starved control rats. Glucose feeding increased hepatic lipogenesis if the starved rats were treated with T3. Glucose feeding increased rates of brown-fat lipogenesis in all experimental groups. The effects of glucose feeding on liver and brown-fat lipogenesis were mimicked by insulin injection. 4. The increase in hepatic lipogenesis in T3-treated 48 h-starved rats after intragastric glucose feeding was prevented by short-term insulin deficiency, but not by (-)-hydroxycitrate, an inhibitor of ATP citrate lyase. The increase in lipogenesis in brown adipose tissue in response to glucose feeding was inhibited by both short-term insulin deficiency and (-)-hydroxycitrate. 5. The results tend to preclude pyruvate kinase and acetyl-CoA carboxylase as the sites of interaction of insulin and T3 in the regulation of hepatic lipogenesis in 48 h-starved rats. Other potential sites of interaction are discussed.  相似文献   

4.
In this study we utilized the phosphorylase b kinase-deficient (gsd/gsd) rat as a model of hepatic substrate utilization where there is a constraint on glycogenesis imposed by the maintenance of high glycogen concentrations. Glucose re-feeding of 48 h-starved gsd/gsd rats led to suppression of hepatic glucose output. In contrast with the situation in normal rats, activation of the pyruvate dehydrogenase complex and lipogenesis was observed. It is suggested that impeding glycogenic flux may divert substrate into lipogenesis, possibly via activation of the pyruvate dehydrogenase complex.  相似文献   

5.
Effects of myricetin on glycemia and glycogen metabolism in diabetic rats   总被引:5,自引:0,他引:5  
Ong KC  Khoo HE 《Life sciences》2000,67(14):1695-1705
In our previous study, we found that myricetin, a naturally occurring bioflavonoid, was able to stimulate glucose transport in rat adipocytes and enhance insulin-stimulated lipogenesis. We report here that after 2 days of treatment with myricetin (3 mg/12 h), hyperglycemia in diabetic rats was reduced by 50% and the hypertriglyceridemia that is often associated with diabetes was normalised. Treatment with myricetin increased hepatic glycogen and glucose-6-phosphate content. It increased hepatic glycogen synthase I activity without having any effect on total glycogen synthase nor phosphorylase a activity. It lowered phosphorylase a activity in the muscle. Thus, the hypoglycemic effect of myricetin is likely to be due to its effect on glycogen metabolism. There was no indication of serious hepatotoxicity with myricetin treatment and therefore, myricetin could be of therapeutic potential in diabetes.  相似文献   

6.
1. The hepatic utilization of gluconeogenic substrates was investigated shortly after portal infusion of either insulin or glucose in fasted rats. 2. After 20 min of insulin infusion blood glucose concentration decreased. However, neither glucose generation from precursors such as alanine or pyruvate nor their incorporation into fatty acids was modified. Under these conditions, insulin rapidly increased the incorporation of gluconeogenic substrates into the hepatic glyceride glycerol fraction. Insulin treatment led to a decrease in substrate incorporation into liver glycogen. 3. After 20 min of portal glucose infusion both plasma insulin and glucose concentrations increased and the incorporation of pyruvate into hepatic glyceride glycerol and into glycogen was also stimulated. 4. A close relationship was observed between blood glucose concentrations and the level of incorporation of gluconeogenic substrates into liver glycogen. 5. In conclusion, during fasting insulin stimulates the incorporation of gluconeogenic substrates into the glycerol moiety of hepatic glycerides, which may be the preferential mechanism through which fatty acid esterification is accomplished during refeeding. This effect of insulin is rapid and detected even before other classical modifications induced by the hormone such as gluconeogenesis inhibition or lipogenesis activation. Furthermore, the effect is not related to insulin-induced hypoglycemia since glucose infusion mimics insulin action on glyceride glycerol synthesis.  相似文献   

7.
1. Administration of cycloheximide (an inhibitor of protein synthesis) to lactating rats raised the concentrations of amino acids, and in particular, the branched-chain amino acids (valine, leucine and isoleucine) in blood, liver and mammary gland. 2. Inhibition of protein synthesis increased the incorporation in vivo of L-[U-14C]leucine into lipids of mammary gland and liver. 3. Cycloheximide treatment caused no immediate change in the overall rate of lipogenesis in vivo (measured with 3H2O) in mammary gland but increased the rate in liver 3-fold; this latter effect also occurred in livers of virgin rats. 4. The increased rate of hepatic lipogenesis was not accompanied by significant changes in the plasma insulin concentration or the activity of acetyl-CoA carboxylase. 5. Although cycloheximide decreased the entry of total triacylglycerol into the circulation it did not alter the rate of secretion of newly synthesized saponifiable lipid. 6. Cycloheximide slightly stimulated lipogenesis from endogenous substrates in isolated hepatocytes, but this effect was abolished when lactate was the exogenous substrate. 7. Administration of cycloheximide to virgin rats decreased liver glycogen and increased the hepatic content of glucose 6-phosphate, pyruvate and lactate. 8. It is concluded that (a) there is no short-term link between the rate of protein synthesis and lipogenesis in the lactating mammary gland and (b) the increased rate of hepatic lipogenesis in cycloheximide-treated rats is mainly due to stimulation of glycogenolysis, glycolytic flux and consequent increased availability of pyruvate.  相似文献   

8.
The effects of intragastric feeding with glucose and of the administration of L-triiodothyronine (T3) on in vivo rates of hepatic lipogenesis were investigated in control (fed ad libitum on norrnal diet), diabetic (fed ad libitum on normal diet), fat-fed (fed ad libitum on high-fat diet), and starved (food removed for 48 h) rats. Two days of T3 treatment increased hepatic lipogenesis in control and fat-fed animals but not in the diabetic or starved animals, although increases in lipogenesis in diabetic animals were observed after 4 days of T3 treatment. Intragastric glucose feeding increased hepatic lipogenesis in the livers of control animals and T3-treated control animals. Such increases are mediated by an increase in the circulating insulin concentration, as increases are not observed in diabetic rats or T3-treated diabetic rats. Glucose feeding failed to increase hepatic lipogenesis in fat-fed rats or starved rats. Insulin injection together with glucose feeding increased lipogenesis in the fat-fed group but not the starved group; i.e., impaired insulin secretion following an oral glucose load may in part explain the lack of response in the fat-fed but not the starved animals. Marked increases in hepatic ]ipogenesis after glucose feeding were, however, observed if either the starved or the fat-fed animals were treated with T3, The physiological implications of these observations are discussed.  相似文献   

9.
Evidence is presented in support of a pathway in skeletal muscle of glyconeogenesis (glycogen biosynthesis de novo) from L-glutamate and related amino acids involving the enzyme phosphoenolpyruvate carboxykinase (PEP CK). In the rat hemidiaphragm in vitro, not only did L-[U-14C]glutamate exert a glycogen-sparing action, but14C-label was incorporated into glycogen. The incorporation is thought not to be simply via label randomization and was decreased by factors that increased glycolysis or pyruvate oxidation. 3-Mercaptopicolinate and amino-oxyacetate, specific inhibitors of PEP CK and aminotransferase-type enzymes, respectively, decreased14C-incorporation from L-[U-14C]glutamate into glycogen. No quantitative determination of apparent glyconeogenic flux was made, and it remains to be established whether glyconeogenesis via PEP CK and/or via PEP CK coupled with 'malic' enzyme (or pyruvate carboxylase) is functionally important in skeletal muscle.  相似文献   

10.
Phosphoenolpyruvate (PEP) generated from pyruvate is required for de novo synthesis of glycerol and glycogen in skeletal muscle. One possible pathway involves synthesis of PEP from the citric acid cycle intermediates via PEP carboxykinase, whereas another could involve reversal of pyruvate kinase (PK). Earlier studies have reported that reverse flux through PK can contribute carbon precursors for glycogen synthesis in muscle, but the physiological importance of this pathway remains uncertain especially in the setting of high plasma glucose. In addition, although PEP is a common intermediate for both glyconeogenesis and glyceroneogenesis, the importance of reverse PK in de novo glycerol synthesis has not been examined. Here we studied the contribution of reverse PK to synthesis of glycogen and the glycerol moiety of acylglycerols in skeletal muscle of animals with high plasma glucose. Rats received a single intraperitoneal bolus of glucose, glycerol, and lactate under a fed or fasted state. Only one of the three substrates was 13C-labeled in each experiment. After 3 h of normal awake activity, the animals were sacrificed, and the contribution from each substrate to glycogen and the glycerol moiety of acylglycerols was evaluated. The fraction of 13C labeling in glycogen and the glycerol moiety exceeded the possible contribution from either plasma glucose or muscle oxaloacetate. The reverse PK served as a common route for both glyconeogenesis and glyceroneogenesis in the skeletal muscle of rats with high plasma glucose. The activity of pyruvate carboxylase was low in muscle, and no PEP carboxykinase activity was detected.  相似文献   

11.
The contribution of hepatic glycogen to lipogenesis was studied in isolated, intact rat hepatocytes. To establish its importance as a substrate for lipogenesis, the glycogen of isolated hepatocytes was prelabelled with 14C from glucose. Evidence is presented that neither glucose nor glycogen constitute major sources of carbon for de novo synthesis of fatty acids and that less than 1% of glycogen is converted into fatty acids.  相似文献   

12.
In chronically catheterized rats hepatic glycogen was increased by fructose (approximately 10 g/kg) gavage (FF rats) or lowered by overnight food restriction (FR rats). [3-3H]- and [U-14C]glucose were infused before, during, and after treadmill running. During exercise the increase in glucose production (Ra) was always directly related to work intensity and faster than the increase in glucose disappearance, resulting in increased plasma glucose levels. At identical work-loads the increase in Ra and plasma glucose as well as liver glycogen breakdown were higher in FF and control (C) rats than in FR rats. Breakdown of muscle glycogen was less in FF than in C rats. Incorporation of [14C]glucose in glycogen at rest and mobilization of label during exercise partly explained that 14C estimates of carbohydrate metabolism disagreed with chemical measurements. In some muscles glycogen depletion was not accompanied by loss of 14C and 3H, indicating futile cycling of glucose. In FR rats a postexercise increase in liver glycogen was seen with 14C/3H similar to that of plasma glucose, indicating direct synthesis from glucose. In conclusion, in exercising rats the increase in glucose production is subjected to feedforward regulation and depends on the liver glycogen concentration. Endogenous glucose may be incorporated in glycogen in working muscle and may be used directly for liver glycogen synthesis rather than after conversion to trioses. Fructose ingestion may diminish muscular glycogen breakdown. The [14C]glucose infusion technique for determination of muscular glycogenolysis is of doubtful value in rats.  相似文献   

13.
SYNOPSIS. Tetrahymena grown overnight in deep cultures were incubated for 1 hr with [1-14C]labeled substrates in the presence or absence of 3-mercaptopicolinic acid (3-MPA). 3-MPA inhibited appearance of label in glycogen from bicarbonate, acetate, pentanoate, octanoate, and succinate, but not from glycerol or glucose. In vitro assays of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase activity showed that both enzymes were about equally distributed between the particulate and cytosol fractions. 3-MPA inhibited phosphoenolpyruvate carboxykinase from both the cytoplasmic and particulate fractions, but had no effect on phosphoenolpyruvate carboxylase from either location. These results suggest that the in vivo effects of this drug are due to inhibition of glyconeogenesis at this site.  相似文献   

14.
1. Intragastric administration of ethanol (75 mmol/kg body wt.) at 1 h before glucose refeeding of 24 h-starved rats inhibited hepatic glycogen deposition (by 69%) and synthesis (by approx. 70%), but was without significant effect on muscle glycogen deposition and synthesis. 2. Treatment of ethanol-administered rats with methylpyrazole (an inhibitor of alcohol dehydrogenase) did not significantly diminish the inhibitory effect of ethanol on hepatic glycogen deposition after glucose refeeding, suggesting that the inhibition was not dependent on ethanol metabolism. 3. Ethanol delayed and diminished intestinal glucose absorption, at least in part by delaying gastric emptying. 4. At a lower dose (10 mmol/kg body wt.), ethanol inhibited hepatic glycogen repletion and synthesis without compromising intestinal glucose absorption. Ethanol inhibited glycogen deposition (by 40%) in hepatocytes from starved rats provided with glucose + lactate + pyruvate as substrates, consistent with it having a direct effect to diminish hepatic glycogen synthesis by inhibition of gluconeogenic flux at a site(s) between phosphoenolpyruvate and triose phosphate in the pathway. 5. It is concluded that ethanol acutely impairs hepatic glycogen repletion by inhibition at at least two distinct sites, namely (a) intestinal glucose absorption and (b) hepatic gluconeogenic flux.  相似文献   

15.
The hepatic response to cyclic adenosine monophosphate (cAMP) and N6-monobutyryl-cAMP (N6-MB-cAMP) in the glucose and glycogen catabolism and hepatic glycogen levels were evaluated in Walker-256 tumor-bearing rats, on days 5 (WK5), 8 (WK8), and 11 (WK11) after the implantation of tumor. Rats without tumor fed ad libitum (fed control rats) or that received the same daily amount of food ingested by anorexics tumor-bearing rats (pair-fed control rats) or 24 h fasted (fasted control rats) were used as controls. Glucose and glycogen catabolism were measured in perfused liver. Hepatic glycogen levels were lower (p < 0.05) in WK5, WK8, and WK11 rats in comparison with fed control rats, but not in relation to the pair-fed control rats. However, the stimulatory effect of cAMP (3 and 9 μM) in the glycogen catabolism was lower (p < 0.05), respectively, in WK5 and WK8 rats compared to the pair-fed and fed control rats. Accordingly, the suppressive effect of cAMP (6 μM) in the glucose catabolism, under condition of depletion of hepatic glycogen (24 h fast), was lower (p < 0.05) in WK5 and WK11 rats than in fasted control rats. Similarly, the suppressive effect of N6-MB-cAMP (1 μM), a synthetic analogue of cAMP that it is not degraded by phosphodiesterase 3B (PDE3B), in the glucose catabolism was lower (p < 0.05) in WK5 rats compared to fasted control rats. In conclusion, livers of Walker-256 tumor-bearing rats showed lower response to cAMP in the glucose and glycogen catabolism in various stages of tumor development (days 5, 8 and 11), which was probably not due to the lower hepatic glycogen levels nor due to the increased activity of PDE3B.  相似文献   

16.
A comparison was made between the time courses of restoration of pyruvate dehydrogenase activities, fructose 2,6-bisphosphate concentrations and lipogenic rates, together with net hepatic glucose flux and glycogen synthesis/deposition in livers of 48 h-starved rats provided with laboratory chow ad libitum for up to 24 h. Increased glycogenesis, lipogenesis and net glucose uptake were observed after 1 h of re-feeding, preceding re-activation of pyruvate dehydrogenase, which occurred after 3-4 h. Increased concentrations of fructose 2,6-bisphosphate were only observed after 5-6 h. The implication of the temporal relationship between these parameters is discussed.  相似文献   

17.
Synthesis of fatty acids in the perfused mouse liver   总被引:6,自引:3,他引:3       下载免费PDF全文
1. Fatty acid synthesis de novo was measured in the perfused liver of fed mice. 2. The total rate, measured by the incorporation into fatty acid of (3)H from (3)H(2)O (1-7mumol of fatty acid/h per g of fresh liver), resembled the rate found in the liver of intact mice. 3. Perfusions with l-[U-(14)C]lactic acid and [U-(14)C]glucose showed that circulating glucose at concentrations less than about 17mm was not a major carbon source for newly synthesized fatty acid, whereas lactate (10mm) markedly stimulated fatty acid synthesis, and contributed extensive carbon to lipogenesis. 4. The identification of 50% of the carbon converted into newly synthesized fatty acid lends further credibility to the use of (3)H(2)O to measure hepatic fatty acid synthesis. 5. The total rate of fatty acid synthesis, and the contribution of glucose carbon to lipogenesis, were directly proportional to the initial hepatic glycogen concentration. 6. The proportion of total newly synthesized lipid that was released into the perfusion medium was 12-16%. 7. The major products of lipogenesis were saturated fatty acids in triglyceride and phospholipid. 8. The rate of cholesterol synthesis, also measured with (3)H(2)O, expressed as acetyl residues consumed, was about one-fourth of the basal rate of fatty acid synthesis. 9. These results are discussed in terms of the carbon sources of hepatic newly synthesized fatty acids, and the effect of glucose, glycogen and lactate in stimulating lipogenesis, independently of their role as precursors.  相似文献   

18.
The aim of this work was to find by which mechanisms an increased availability of plasma free fatty acids (FFA) reduced carbohydrate utilization during exercise. Rats were fed high-protein medium-chain triglycerides (MCT), high-protein long-chain triglycerides (LCT), carbohydrate (CHO) or high-protein low-fat (HP) diets for 5 weeks, and liver and muscle glycogen, gluconeogenesis and FFA oxidation were studied in rested and trained runner rats. In the rested state the hepatic glycogen store was decreased by fat and protein feeding, whereas soleus muscle glycogen concentration was only affected by high-protein diets. The percentage decrease in liver and muscle glycogen stores, after running, was similar in fat-fed, high-protein and CHO-fed rats. The fact that plasma glucose did not drastically change during exercise could be explained by a stimulation of hepatic gluconeogenesis: the activity of phosphoenolpyruvate carboxykinase (PEPCK) and liver phosphoenolpyruvate (PEP) concentration increased as well as cyclic adenosine monophosphate (AMPc) while liver fructose 2,6-bisphosphate decreased and plasma FFA rose. In contrast, the stimulation of gluconeogenesis in rested HP-, MCT- and LCT-fed rats appears to be independent of cyclic AMP.  相似文献   

19.
The effects of food deprivation on body weight, liver weight, hepatic glycogen content, glycogenolytic enzymes and blood metabolites were compared in young and old phosphorylase b kinase-deficient (gsd/gsd) rats. Although the concentration of glycogen in liver from 9-week-old female gsd/gsd rats (730 mumol of glucose equivalents/g wet wt.) was increased by 7-8% during starvation, total hepatic glycogen was decreased by 12% after 24 h without food. In 12-month-old male gsd/gsd rats the concentration of liver glycogen (585 mumol of glucose equiv./g wet wt.) was decreased by 16% and total hepatic glycogen by nearly 40% after food deprivation for 24 h. Phosphorylase b kinase and phosphorylase a were present at approx. 10% of the control activities in 9-week-old gsd/gsd rats, but both enzyme activities were increased more than 3-fold in 12-month-old affected rodents. It is concluded that the age-related ability to mobilize hepatic glycogen appears to result from the augmentation of phosphorylase b kinase during maturation of the gsd/gsd rat.  相似文献   

20.
1. A trace amount of glucose labelled with 14C uniformly and with 3H at position 2, 3 or 6 was injected intravenously into starved rats to measure the turnover rate of blood glucose. 2. Reliable estimates were made based on the semilogarithmic plot of specific radioactivity of the glucose contained in whole blood samples taken from the tail vein. 3. Glucose turned over more rapidly in hyperthyroid and more slowly in hypothyroid than in euthyroid rats. The percentage contribution of glucose recycling (determined from the difference in replacement rates between [U-14C]glucose and [6-3H]glucose) to the glucose utilization increased on induction of hyperthyroidism. 4. Futile cycles between glucose and glucose 6-phosphate (determined from the difference between replacement rates of [2-3H]glucose and [6-3H]glucose) were activated and inactivated by induction of hyperthyroid and hypothyroid states respectively. 5. The hepatic content of glycogen was much lower in hyper- and hypo-thyroid than in euthyroid rats. The enhanced glucose production in hyperthyroid rats resulted from not only activationof hepatic gluconeogenesis but also diversion of the final product of gluconeogenesis from liver glycogen to blood glucose. In hypothyroidism, the inhibition of gluconeogensis led to suppression of both glucose production and glycogenesis in the liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号